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Abstract: An implicit time–fractal–fractional differential equation involving the Atangana’s fractal–
fractional derivative in the sense of Caputo with the Mittag–Leffler law type kernel is studied.
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1. Introduction

The fractal–fractional differential equation is a link between the fractal and fractional
differential equations. Fractal and fractional differential equations are known for modeling
complex physical processes and phenomena, particularly irregular systems with mem-
ory. Although fractional equations are renowned for representing systems with long-term
memory and long-range interactivity, fractal calculus, conversely, is immensely effective in
working with occurrence in stratified or porous media. That is, fractal–fractional differen-
tial operator models physical phenomena and real-world activities that exhibit or display
fractional behaviours (sponge-like media, aquifer, turbulence, etc.) namely finance, vis-
coelasticity, control theory, electrical networks, goundwater flow and geo-hydrology, wave
propagation, plasma physics and fusion, rheology, chaotic processes, fluid mechanics and
biological activities [1–6]. For more applications of fractal-fractional differential equations,
see [7–10] and for recent results on fractional differential equations and their applications,
see [11–13]. To explore more results on implicit fractional differential equations and their
applications, see [14–17]. There are many results relating to implicit fractional differen-
tial equations in literature involving Caputo fractional derivatives both for initial value
problems (IVP) and boundary value problems (BVP) [15,18–21].

In 2015, Benchohra and Souid in [18] studied the existence of integrable solutions
for IVP for some given implicit fractional order functional differential equations with
infinite delay { CDµφ(τ) = σ(τ, φτ , CDµφτ), τ ∈ I = [0, b],

φ(τ) = v(τ), τ ∈ (−∞, 0],

where CDµ is the Caputo fractional differential operator, σ : I × B× B → R is a given
function and B is a phase space with its element φτ(ε) = φ(τ + ε), ε ∈ [−∞, 0].

In 2016, Kucche et al., in [20], considered the following equation:

CDµφ(τ) = σ(τ, φ(τ), CDµφ(τ)), φ(0) = φ0 ∈ R, τ ∈ [0, T], (1)
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where CDµ(0 < µ < 1) stands for the Caputo fractional derivative and σ : [0, T]×R×R→
R is a known continuous function fulfilling some conditions. The authors investigated the
well-posedness, interval of existence, and continuous dependence on the initial condition
of solutions to Equation (1). Recently, in 2021, Shabbir et al. [17] worked on an implicit
boundary value problem (BVP) involving an Atangana–Baleanu–Caputo (ABC) derivative
of the form{ ABC

0 Dµ
τ φ(τ) = σ(τ, φ(τ), ABC

0 Dµ
τ φ(τ)), 1 < µ ≤ 2, τ ∈ I = [0, b],

φ(0) = φ0, φ(b) = φ1,
(2)

where ABC
0 Dµ

τ denotes the ABC derivative of order 1 < µ ≤ 2 and σ : I ×R×R→ R is a
continuous function. Here, the authors established the existence of solution, uniqueness
of solution and stability of solution to the class of implicit BVPs (2) with an ABC type
derivative and integral.

Motivated by some applications of the implicit fractal–fractional differential equation
in modeling complex phonemena and systems in porous media with memory, and the
result in [17], where the authors used the ABC derivative operator to study Equation (2);
therefore, we generalize (2) for a class of fractal–fractional derivative operator known
as the Mittag–Leffler kernel law Fractal–Fractional (FFM), to study the well-posedness,
exponential growth bound, and long-time behaviour of a solution to the class of implicit
time–fractal–fractional differential equation:

 FFM
a Dµ,υ

t ψ(t) = ς

(
t, ψ(t), FFM

a Dµ,υ
t ψ(t)

)
, 0 < a < t ≤ T < ∞,

ψ(a) = ψa,
(3)

with ψa taken to be a bounded and non-negative function, FFM
0 Dµ,υ

t represents Atangana’s
fractal–fractional derivative of orders µ, υ ∈ (0, 1] in the sense of Caputo with generalized
Mittag–Leffler law type kernel, ς : [a, T]×R×R→ R is Lipschitz continuous. Information
within our disposal, suggests that we are the first to study this class of implicit fractal–
fractional differential equation. Using similar ideas in [2,3], we give the formulation of the
solution to Equation (3) as follows:

Definition 1. Let ς : [a, T] × R × R → R be a continuous function. Then, the IVP (3) is
equivalent to

ψ(t) = ψa +
(1− µ)υ

AB(µ) tυ−1ς

(
t, ψ(t), FFM

a Dµ,υ
t ψ(t)

)
(4)

+
µυ

AB(µ)Γ(µ)

∫ t

a
τυ−1(t− τ)µ−1ς

(
τ, ψ(τ), FFM

a Dµ,υ
τ ψ(τ)

)
dτ,

which follows by the definition of the operator FFM
a Iµ,υ

t .

Next, we define the norm of the solution ψ by

‖ψ‖ := sup
a≤t≤T

|ψ(t)|.

The organization of the paper is as follows. In Section 2, we present the preliminaries;
and in Section 3, we give the statements and proofs of the main results of the paper.
Section 5 contains a brief summary of the paper.

2. Preliminaries

In this section, one gives some concepts that will be useful for the main result.
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Definition 2 ([22]). Suppose φ : (a, b) → R is differentiable and 0 < µ < 1. Then the ABC
fractional derivative for function φ of order µ is defined as

ABC
a Dµ

t φ(t) =
M(µ)

1− µ

∫ t

a
φ′(τ)Eµ

[
− µ

1− µ
(t− τ)µ

]
dτ, (5)

with M(µ) > 0 a normalization function satisfying M(0) = M(1) = 1.

Definition 3 ([1–3]). Let φ : (a, b)→ R be a differentiable function, suppose φ is fractal differen-
tiable in (a, b) with order υ > 0. Then, the fractal–fractional derivative of φ(t) of order µ in Caputo
sense with the Mittag–Leffler kernel is defined by

FFM
a Dµ,υ

t φ(t) =
AB(µ)
1− µ

∫ t

a

dφ(τ)

dτυ
Eµ

[
− µ

1− µ
(t− τ)µ

]
dτ, (6)

with 0 < µ, υ ≤ 1 and AB(µ) = 1− µ + µ
Γ(µ) . The generalized form is given by

FFM
a Dµ,υ,ε

t φ(t) =
AB(µ)
1− µ

∫ t

a

dεφ(τ)

dτυ
Eµ

[
− µ

1− µ
(t− τ)µ

]
dτ, 0 < µ, υ, θ ≤ 1,

where
dεφ(τ)

dτυ
= lim

t→τ

φε(t)− φε(τ)

tυ − τυ
.

Remark 1. When υ = 1 in Equation (6), one obtains Equation (5).

Definition 4 ([1–3]). Let φ : (a, b) → R be a continuous function. Then, the fractal–fractional
integral of φ with order µ possessing Mittag–Leffler type kernel is defined as

FFM
a Iµ,υ

t φ(t) =
µυ

AB(µ)Γ(µ)

∫ t

a
τυ−1(t− τ)µ−1φ(τ)dτ +

(1− µ)υtυ−1

AB(µ) φ(t).

Definition 5 ([23]). One defines the incomplete beta function by

Bτ(µ, υ) =
∫ τ

0
tµ−1(1− t)υ−1dt, τ ∈ [0, 1].

It also has a representation in terms of a hypergeometric function given by

Bτ(µ, υ) =
τµ

µ
2F1(µ, 1− υ; µ + 1; τ).

Definition 6 ([24]). The regularized incomplete beta function is given by

Iτ(µ, υ) =
Bτ(µ, υ)

B(µ, υ)
=

1
B(µ, υ)

∫ τ

0
τµ−1(1− τ)υ−1dτ,

satisfying the following properties:

1. Iτ(µ, υ) = Iτ(µ + 1, υ− 1) + τµ(1−τ)υ−1

µB(µ,υ) ;

2. Iτ(µ, υ) = Iτ(µ + 1, υ + 1)− τµ(1−τ)υ−1

υB(µ,υ) ;

3. Iτ(µ, υ) = Iτ(µ + 1, υ) + τµ(1−τ)υ

µB(µ,υ) ;

4. Iτ(µ, υ) = Iτ(µ, υ + 1)− τµ(1−τ)υ

υB(µ,υ) ;

5. Iτ(µ, υ) + I1−τ(υ, µ) = 1;
6. I1(µ, υ) = 1 and Iτ(µ, υ) ∈ [0, 1].
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Lemma 1 ([25]). For all µ > 0, υ ≥ 1, 0 ≤ τ ≤ 1, we have

1. τµ(1−τ)υ−1

µB(µ,υ) ≤ Iτ(µ, υ);

2. Iτ(µ, υ) ≤ τµ

µB(µ,υ) .

3. Main Results

This section starts with a Lipschitz condition on ς(.):

Condition 1. Let 0 < Lipς < ∞. Given that ξ1, ξ2, ζ1, ζ2 ∈ R, one has

|ς(τ, ξ1, ζ1)− ς(τ, ξ2, ζ2)| ≤ Lipς

(
|ξ1 − ξ2|+ |ζ1 − ζ2|

)
,

with ς(τ, 0, 0) = 0 and
|ς(τ, ξ1, ζ1)| ≤ Lipς(|ξ1|+ |ζ1|). (7)

Lemma 2. Let 0 < Lipς < 1 and Condition 1 holds. Then FFM
a Dµ,υ

t is a global Lipschitz
continuous operator.

Proof. From Equations (3) and (7), we have FFM
a Dµ,υ

τ ψ(τ)

 =

ς

(
τ, ψ(τ), FFM

a Dµ,υ
τ ψ(τ)

) ≤ Lipς

(
|ψ(τ)|+

 FFM
a Dµ,υ

τ ψ(τ)

),

and, therefore,  FFM
a Dµ,υ

τ ψ(τ)

 ≤ Lipς

1− Lipς

|ψ(τ)|.

Furthermore, one obtains FFM
a Dµ,υ

τ ψ(τ)− FFM
a Dµ,υ

τ ϕ(τ)

 ≤ Lipς

1− Lipς

|ψ(τ)− ϕ(τ)|.

3.1. Existence and Uniqueness Result

Here, we establish the well-posedness of solution to Equation (3). Now, define

Aψ(t) = ψa +
(1− µ)υ

AB(µ) tυ−1ς

(
t, ψ(t), FFM

a Dµ,υ
t ψ(t)

)
+

µυ

AB(µ)Γ(µ)

∫ t

a
τυ−1(t− τ)µ−1ς

(
τ, ψ(τ), FFM

a Dµ,υ
τ ψ(τ)

)
dτ,

and obtain the following auxiliary results:

Lemma 3. Let ψ be a solution satisfying Equation (4) and let Condition 1 be satisfied. Then, it
follows that for all µ, υ ∈ (0, 1] such that µ + υ ≥ 1, we have

‖Aψ‖ ≤ c1 + c2
Lipς

1− Lipς

‖ψ‖,

where c1 and c2 := υ
AB(µ)

[
(1− µ)aυ−1 + µΓ(υ)

Γ(µ+υ)
Tµ+υ−1

]
are positive constants with |ψa| ≤ c1.
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Proof. By taking absolute value on the operator A, we have

|Aψ(t)| ≤ |ψa|+
(1− µ)υ

AB(µ) tυ−1
ς

(
t, ψ(t), FFM

a Dµ,υ
t ψ(t)

)
+

µυ

AB(µ)Γ(µ)

 ∫ t

a
τυ−1(t− τ)µ−1ς

(
τ, ψ(τ), FFM

a Dµ,υ
τ ψ(τ)

)
dτ


≤ |ψa|+

(1− µ)υ

AB(µ) tυ−1
ς

(
t, ψ(t), FFM

a Dµ,υ
t ψ(t)

)
+

µυ

AB(µ)Γ(µ)

∫ t

a
τυ−1(t− τ)µ−1

ς

(
τ, ψ(τ),FFM

a Dµ,υ
τ ψ(τ)

)dτ.

Applying Condition 1 and |ϕa| ≤ c1, to obtain

|Aψ(t)| ≤ c1 +
(1− µ)υ

AB(µ) tυ−1Lipς

[
|ψ(t)|+

 FFM
a Dµ,υ

t ψ(t)
]

+
µυ

AB(µ)Γ(µ)

∫ t

a
τυ−1(t− τ)µ−1Lipς

[
|ϕ(τ)|+

 FFM
a Dµ,υ

τ ψ(τ)

]dτ.

From Lemma 2, we arrive at

|Aψ(t)| ≤ c1 +
(1− µ)υ

AB(µ) tυ−1Lipς

[
|ψ(t)|+

Lipς

1− Lipς

|ψ(t)|
]

+
µυ

AB(µ)Γ(µ)

∫ t

a
τυ−1(t− τ)µ−1Lipς

[
|ψ(τ)|+

Lipς

1− Lipς

|ψ(τ)|
]

dτ

= c1 +
(1− µ)υ

AB(µ) tυ−1
Lipς

1− Lipς

|ψ(t)|

+
µυ

AB(µ)Γ(µ)
Lipς

1− Lipς

∫ t

a
τυ−1(t− τ)µ−1|ψ(τ)|dτ

≤ c1 +
(1− µ)β

AB(µ) tυ−1
Lipς

1− Lipς

|ψ(t)|

+
µυ

AB(µ)Γ(µ)
Lipς

1− Lipς

‖ψ‖
∫ t

a
τυ−1(t− τ)µ−1dτ.

Evaluating the integral above, we have

|Aψ(t)| ≤ c1 +
(1− µ)υ

AB(µ) tυ−1
Lipς

1− Lipς

|ψ(t)|

+
µυ

AB(µ)Γ(µ)
Lipς

1− Lipς

‖ψ‖tµ+υ−1[B(µ, υ)− B a
t
(µ, υ)

]
= c1 +

(1− µ)υ

AB(µ) tυ−1
Lipς

1− Lipς

|ψ(t)|

+
µυ

AB(µ)Γ(µ)
Lipς

1− Lipς

‖ψ‖B(µ, υ)tµ+υ−1[1− I a
t
(µ, υ)

]
≤ c1 +

(1− µ)υ

AB(µ) tυ−1
Lipς

1− Lipς

|ψ(t)|

+
µυ

AB(µ)Γ(µ)
Lipς

1− Lipς

‖ψ‖B(µ, υ)tµ+υ−1, (8)
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since 1− I a
t
(µ, υ) ∈ [0, 1]. We observe that aυ−1 > tυ−1 since υ − 1 < 0. Thus, taking

supremum over t ∈ [a, T] in (8) and recalling that µ + υ ≥ 1, we obtain

‖Aψ‖ ≤ c1 +
(1− µ)υ

AB(µ) aυ−1
Lipς

1− Lipς

‖ψ‖+ µυ

AB(µ)Γ(µ)
Lipς

1− Lipς

‖ϕ‖B(µ, υ)Tµ+υ−1

= c1 +
υ

AB(µ)
Lipς

1− Lipς

[
(1− µ)aυ−1 +

µΓ(υ)
Γ(µ + υ)

Tµ+υ−1
]
‖ψ‖,

and the proof is complete.

Lemma 4. Suppose ψ and ϕ are solutions satisfying Equation (4) and let Condition 1 be satisfied.
Then, if it follows that for all µ, υ ∈ (0, 1] such that µ + υ ≥ 1, we have

‖Aψ−Aϕ‖ ≤ c2‖ψ− ϕ‖.

Proof. The proof is skipped since it follows similar steps as the proof of Lemma 3.

Next, we state the existence and uniqueness theorem for Equation (3).

Theorem 1. Let α + β ≥ 1 and suppose Condition 1 is satisfied. Let c2 > 0, such that c2 <
1−Lipς

Lipς
, where c2 := υ

AB(µ)

[
(1− µ)aυ−1 + µΓ(υ)

Γ(µ+υ)
Tµ+υ−1

]
. Then, there exists a unique solution

to Equation (3).

Proof. We proceed by applying the Banach fixed point theorem. Let ψ(t) = Aψ(t), then
using Lemma 3, we have

‖ψ‖ = ‖Aψ‖ ≤ c1 + c2
Lipς

1− Lipς

‖ψ‖.

Collecting similar terms, we have ‖ψ‖
[

1− c2
Lipς

1−Lipς

]
≤ c1. This shows that ‖ψ‖ < ∞

since c2 <
1−Lipς

Lipς
. Furthermore, if ψ 6= ϕ are solutions to Equation (3), then from Lemma 4,

we have

‖ψ− ϕ‖ = ‖Aψ−Aϕ‖ ≤ c2
Lipς

1− Lipς

‖ψ− ϕ‖.

It follows that ‖ψ− ϕ‖
[

1− c2
Lipς

1−Lipς

]
≤ 0. Since 1− c2

Lipς

1−Lipς
> 0, that is, c2 <

1−Lipς

Lipς
,

then ‖ψ− ϕ‖ < 0. This is a contradiction and, therefore, ‖ψ− ϕ‖ = 0.

Exponential Growth

We present an inequality needed in proving the upper growth bound:

Theorem 2 ([26]). Given that f , g, h : I → R+ are continuous functions. If φ : I → R+ is
continuous and

φ(t) ≤ f (t) +
∫ t

t0

(t− τ)ν−1g(τ)φ(τ)dτ +
∫ t

t0

(t− τ)ν−1h(τ)φγ(τ)dτ, t ∈ I,

with constants ν > 0 and 0 < γ < 1, then the following statements are true.
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(i) Given that ν > 1
2 . It follows that

φ(t) ≤
[

A1−γ
1 (t)

+ (1− γ)K1

∫ t

t0

exp
(
(γ− 1)K1

∫ s

t0

g2(τ)dτ

)
h2(s)R1(s)ds

] 1
2(1−γ)

× exp
(

t +
K1

2

∫ t

t0

g2(s)ds
)

, t ∈ I,

where A1(t) = max
t0≤s≤t

{2e−2s f 2(s)}, K1 = 2Γ(2ν−1)
4ν−1 , and R1(t) = e2(ρ−1)t.

(ii) Given that ρ ∈ (0, 1
2 ], $ = 1+ν

ν and p = 1 + ν. Then

φ(t) ≤
[

A1−γ
2 (t)

+ (1− γ)K2

∫ t

t0

exp
(
(γ− 1)K2

∫ s

t0

g$(τ)dτ

)
h$(s)R2(s)ds

] 1
$(1−γ)

× exp
(

t +
K2

$

∫ t

t0

g$(s)ds
)

, t ∈ I,

where A2(t) = max
t0≤s≤t

{2$−1e−s$ f $(s)}, K2 = 22$−2
(

Γ(1− (1− ρ)p
p1−(1−ν)p

) $
p

, and R2(t) =

e$(ν−1)t.

Theorem 3. Given that ψ satisfies Equation (4) and the initial function ψa is bounded above.
Suppose Condition 1 is satisfied, then it follows that for all µ ∈ ( 1

2 , 1] and υ ∈ [0, 1], one gets

|ψ(t)| ≤ c5 exp
(
t− c6tυ−1), t ∈ [a, T],

where c5 = (2e−2ac2
3)

1/2 exp
( aυ−1

1−υ

)
and c6 = (c4Lipς)

2 Γ(2µ−1)
4µ−1

1
1−υ are some positive numbers.

Proof. Following from the line of proof of Theorem 3, one obtains

|ψ(t)| ≤ c1 +
(1− µ)υ

AB(µ) tυ−1
Lipς

1− Lipς

|ψ(t)|

+
µυ

AB(µ)Γ(µ)
Lipς

1− Lipς

∫ t

a
τυ−1(t− τ)µ−1|ψ(τ)|dτ

≤ c1 +
(1− µ)υ

AB(µ) aυ−1
Lipς

1− Lipς

|ψ(t)|

+
µυ

AB(µ)Γ(µ)
Lipς

1− Lipς

∫ t

a
τυ−1(t− τ)µ−1|ψ(τ)|dτ. (9)

Let Υ(t) := |ψ(t)| and c̃2 := 1 − Lipς

1−Lipς

aυ−1(1−µ)υ
AB(µ) > 0. Thus, for Lipς <

AB(µ)
AB(µ)+υ(1−µ)aυ−1 , it follows from (9) that

c̃2Υ(t) ≤ c1 +
µυ

AB(µ)Γ(µ)
Lipς

1− Lipς

∫ t

a
τυ−1(t− τ)µ−1Υ(τ)dτ.
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Now, dividing by c̃2 =
AB(µ)−Lipς

[
AB(µ)+υ(1−µ)aυ−1

]
(1−Lipς)AB(µ)

, to get

Υ(t) ≤ c3 + c4Lipς

∫ t

a
τυ−1(t− τ)µ−1Υ(τ)dτ,

with c3 := c1
c̃2

and c4 := µυ

Γ(µ)
(
AB(µ)−Lipς

[
AB(µ)+(1−µ)υaυ−1

]) . Next, using Theorem 2 (i) with

h(τ) = 0, g(τ) = c4Lipςτυ−1 and ν = µ > 1
2 , to obtain

Υ(t) ≤ A1/2
1 (t) exp

(
t +

K1

2
(c4Lipς)

2
∫ t

a
τ2υ−2dτ

)
= A1/2

1 (t) exp
(

t + (c4Lipς)
2 Γ(2µ− 1)

4µ−1
tυ−1 − aυ−1

υ− 1

)
= (2e−2ac2

3)
1/2 exp

( aυ−1

1− υ

)
exp

(
t− (c4Lipς)

2 Γ(2µ− 1)
4µ−1

tυ−1

1− υ

)
,

where K1 = 2Γ(2µ−1)
4µ−1 and A1(t) = max

a≤s≤t
{2e−2sc2

3} = 2e−2ac2
3, since e−2t is decreasing.

3.2. Asymptotic Property of the Solution

Here, we show the long term (limiting) property of our solution. The corollary
indicates that the rate of energy growth of the solution is finite when time becomes large.

Corollary 1. Under the hypotheses of Theorem 3 and for all 0 < β < 1, we have

lim sup
t→∞

log |ϕ(t)|
t

≤ 1.

Proof. We obtained from Thereom 3 that

|ψ(t)| ≤ c5 exp
(
t− c6tυ−1), t ∈ [a, T].

If we take log of both sides of the above equation, it will yield

log |ψ(t)| ≤ log(c5) + t− c6tυ−1.

Next, divide through by t to obtain

log |ψ(t)|
t

≤ log(c5)

t
+ 1− c6

tυ−1

t
=

log(c5)

t
+ 1− c6

t2−υ
.

Since 0 < υ < 1, it follows that 2− υ ≥ 1. Now, take limit supremum over t in both
sides to get

lim sup
t→∞

log |ψ(t)|
t

≤ lim sup
t→∞

log(c5)

t
+ 1− lim sup

t→∞

c6

t2−υ
= 1.

4. Examples

Now, we give examples to illustrate the result in Theorem 3. The following are
some plots (graphs) for the upper bound growth of our energy solution |ψ(t)| ≤ exp

(
t−

1
1−υ tυ−1), t ∈ [a, T]. For convenience, we set c5 = 1 and choose µ ∈ ( 1

2 , 1], such that
c6 = 1

1−υ with c4 = 1, Lipς = 1. We plotted graphs of the growth bound for υ =
1

10 , 1
5 , 1

4 , 1
2 , 2

3 , 8
10 , 9

10 , and for various time intervals. It is observed that as closer the pa-
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rameter υ is to zero, the faster the rate of growth is to the bound. However, as time grows
large, the growth rate is at most at t = 600 irrespective of the values of υ, as shown in the
Figure 1 below.

Figure 1. Graphical illustration of the growth bounds.

5. Conclusions

Fractional order derivatives are used to represent memory formalism in modeling
phenomena or processes in porous media in order to diminish the size of the pores and
the permeability of the porous matrix [27]. Hence, implicit fractal–fractional differential
equations are very important because they model many technical processes and systems in
porous environment exhibiting long time memory property. In this paper, we estimated
the higher growth bound of our solution and it is shown that the solution exhibits an
exponential growth in t at a specific rate. Furthermore, the result shows a long time
behaviour of the mild solution. Banach fixed point theorem was applied to prove the
well-posedness of mild solution to the class of implicit time–fractal–fractional differential
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equation with Mittag–Leffler law. For future work, one can investigate the lower growth
estimate of the solution, the stability of the solution, and the continuous dependence on the
initial condition, as shown in [20].
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