Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions
Abstract
:1. Introduction
2. Second Hankel Determinant of Logarithmic Coefficients for the Class
3. Second Hankel Determinant of Logarithmic Coefficients for the Class
- (i)
- If , then we have
- (ii)
- If , then using the fact that and , we can write
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brannan, D.A.; Kirwan, W.E. On some classes of bounded univalent functions. J. Lond. Math. Soc. 1969, 2, 431–443. [Google Scholar] [CrossRef]
- Stankiewicz, J. On a family of starlike functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1968, 22–24, 175–181. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner Comp.: Tampa, FL, USA, 1983; Volume 1. [Google Scholar]
- Brannan, D.; Clunie, J.; Kirwan, W. Coefficient Estimates for a Class of Star-Like Functions. Can. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Ali, M.F.; Vasudevarao, A. On logarithmic coefficients of some close-to-convex functions. Proc. Am. Math. Soc. 2018, 146, 1131–1142. [Google Scholar] [CrossRef]
- Ali, M.F.; Vasudevarao, A.; Thomas, D.K. On the third logarithmic coefficients of close-to-convex functions. Curr. Res. Math. Comput. Sci. II 2018, 271–278. [Google Scholar]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. On the third logarithmic coefficient in some subclasses of close-to-convex functions. Rev. Real. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2020, 114, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.P.; Vasudevarao, A. Logarithmic coefficients for certain subclasses of close-to-convex functions. Monats. Math. 2018, 187, 543–563. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.K. On logarithmic coefficients of close to convex functions. Proc. Am. Math. Soc. 2016, 144, 1681–1687. [Google Scholar] [CrossRef] [Green Version]
- Zaprawa, P. Initial logarithmic coefficients for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2021, 27, 1–13. [Google Scholar] [CrossRef]
- Vasudevarao, A.; Thomas, D.K. The logarithmic coefficients of univalent functions—An overview. Curr. Res. Math. Comput. Sci. II 2018, 257–269. [Google Scholar]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Some Coefficient Inequalities Related to the Hankel Determinant for Strongly Starlike Functions of Order Alpha. J. Math. Ineq. 2017, 11, 429–439. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound for the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Krishna, D.V.; Ramreddy, T. Hankel determinant for starlike and convex functions of order alpha. Tbilisi Math. J. 2012, 5, 65–76. [Google Scholar] [CrossRef]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281. [Google Scholar] [CrossRef] [Green Version]
- Sokol, J.; Thomas, D.K. The second Hankel determinant for alpha-convex functions. Lith. Math. J. 2018, 58, 212–218. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Darus, M.; Khan, N.; Khan, B.; Zaman, N.; Shah, H.H. Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli. Mathematics 2019, 7, 848. [Google Scholar] [CrossRef] [Green Version]
- Sim, Y.J.; Lecko, A.; Thomas, D.K. The second Hankel determinant for strongly convex and Ozaki close-to-convex functions. Ann. Mat. 2021, 200, 2515–2533. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Breaz, V.D.; Cătaş, A.; Cotîrlă, L. On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function. An. Şt. Univ. Ovidius Constanţa 2022, 30, 75–89. [Google Scholar] [CrossRef]
- Khan, B.; Aldawish, I.; Araci, S.; Khan, M.G. Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function. Fractal Fract. 2022, 6, 261. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B.; Mashwani, W.K.; Agarwal, P.; Momani, S. Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions. Fractal Fract. 2021, 5, 137. [Google Scholar] [CrossRef]
- Rahman, I.A.R.; Atshan, W.G.; Oros, G.I. New concept on fourth Hankel determinant of a certain subclass of analytic functions. Afr. Mat. 2022, 33, 7. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2022, 105, 458–467. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2022, 45, 727–740. [Google Scholar] [CrossRef]
- Allu, V.; Arora, V. Second Hankel determinant of logarithmic coefficients of certain analytic functions. arXiv 2021, arXiv:2110.05161. [Google Scholar]
- Cho, N.; Kowalczyk, B.; Lecko, A. Sharp Bounds of Some Coefficient Functionals Over The Class of Functions Convex in The Direction of the Imaginary Axis. Bull. Aust. Math. Soc. 2019, 100, 86–96. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete–Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sümer Eker, S.; Şeker, B.; Çekiç, B.; Acu, M. Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions. Axioms 2022, 11, 369. https://doi.org/10.3390/axioms11080369
Sümer Eker S, Şeker B, Çekiç B, Acu M. Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions. Axioms. 2022; 11(8):369. https://doi.org/10.3390/axioms11080369
Chicago/Turabian StyleSümer Eker, Sevtap, Bilal Şeker, Bilal Çekiç, and Mugur Acu. 2022. "Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions" Axioms 11, no. 8: 369. https://doi.org/10.3390/axioms11080369
APA StyleSümer Eker, S., Şeker, B., Çekiç, B., & Acu, M. (2022). Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions. Axioms, 11(8), 369. https://doi.org/10.3390/axioms11080369