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Abstract: The logarithmic coefficients are very essential in the problems of univalent functions theory.
The importance of the logarithmic coefficients is due to the fact that the bounds on logarithmic
coefficients of f can transfer to the Taylor coefficients of univalent functions themselves or to their
powers, via the Lebedev–Milin inequalities; therefore, it is interesting to investigate the Hankel
determinant whose entries are logarithmic coefficients. The main purpose of this paper is to obtain
the sharp bounds for the second Hankel determinant of logarithmic coefficients of strongly starlike
functions and strongly convex functions.
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1. Introduction

Let A stand for the standard class of analytic functions of the form

f (z) = z +
∞

∑
k=2

akzk, z ∈ U = {z ∈ C : |z| < 1}, (1)

and let S be the class of functions in A, which are univalent in U.
A function f of the form (1) is said to be starlike of order α in U if

<
{

z f ′(z)
f (z)

}
> α (z ∈ U).

The set of all such functions is denoted by S∗(α).
Next, by K(α), we denote the class of convex functions of order α in U that satisfy the

following inequality:

<
{

1 +
z f ′′(z)
f ′(z)

}
> α (z ∈ U).

A function f of the form (1) is said to be strongly starlike of order α, (0 < α ≤ 1), in U if∣∣∣∣ arg
z f ′(z)

f (z)

∣∣∣∣ < πα

2
(z ∈ U). (2)
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The set of all such functions is denoted by S∗s (α). Moreover, a function f of the form (1)
is said to be strongly convex of order α, (0 < α ≤ 1), in U if∣∣∣∣ arg

(
1 +

z f ′′(z)
f ′(z)

)∣∣∣∣ < πα

2
(z ∈ U). (3)

The set of all such functions is denoted by Kc(α).
The class S∗s (α) was independently introduced by Brannan and Kirwan [1] and

Stankiewicz [2] (see also [3]). Clearly, S∗s (1) = S∗ is the class of starlike functions and
K∗c (1) = K is the class of convex functions in U. We should observe that as α increases
the sets S∗(α) and K(α) become smaller; however as α increases the sets S∗s (α) and Kc(α)
become larger. Furthermore, although the sharp coefficient bounds of the functions in the
classes S∗(α) and K(α) are known, sharp coefficient bounds for the functions in the sets
S∗s (α) and Kc(α) are much harder to obtain, and only partial results are known [1,4].

Let P denote the class of analytic functions p(z) in U satisfying p(0) = 1 and
<
(

p(z)
)
> 0. Thus, if p ∈ P , then have the following form:

p(z) = 1 +
∞

∑
k=1

ckzk, z ∈ U. (4)

Functions in P are called Carathedory functions.
Associated with each f ∈ S , is a well-defined logarithmic function

F f := log
f (z)

z
= 2

∞

∑
k=1

γkzk, z ∈ U. (5)

The numbers γk are called the logarithmic coefficients of f . The logarithmic coefficients
are very essential in the problems of univalent functions coefficients. The importance of the
logarithmic coefficients is due to the fact that the bounds on logarithmic coefficients of f
can transfer to the Taylor coefficients of univalent functions themselves or to their powers,
via the Lebedev–Milin inequalities.

Relatively little exact information is known about the logarithmic coefficients of f
when f ∈ S . The logarithmic coefficients of the Koebe function K(z) = z(1− z)−2 are
γk = 1/k. Because of the extremal properties of the Koebe function, one could expect that
γk ≤ 1/k, for each f ∈ S ; however, this conjecture is false even in the case k = 2. For the
whole class S , the sharp estimates of single logarithmic coefficients are known only for

|γ1| ≤ 1 and |γ2| ≤
1
2
+

1
e2 = 0.6353 . . .

and are unknown for k ≥ 3. Recently, logarithmic coefficients have been studied by various
authors and upper bounds of logarithmic coefficients of functions in some important
subclasses of S have been obtained (e.g., [5–10]). For a summary of some of the significant
results concerning the logarithmic coefficients for univalent functions, we refer to [11].

For q, n ∈ N, the Hankel determinant Hq,n( f ) of f ∈ A of form (1) is defined as

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣.
The Hankel determinant H2,1( f ) = a3− a2

2 is the well-known Fekete–Szegö functional.
The second Hankel determinant H2,2( f ) is given by H2,2( f ) = a2a4 − a2

3.



Axioms 2022, 11, 369 3 of 14

The problem of computing the upper bound of Hq,n over various subfamilies of A
is interesting and widely studied in the literature on the geometric function theory of
complex analysis. The upper bounds of H2,2, H3,1 and higher-order Hankel determinants
for subclasses of analytic functions were obtained by various authors [12–24].

Very recently, Kowalczyk and Lecko [25] introduced the Hankel determinant Hq,n(Ff /2),
which are logarithmic coefficients of f , i.e.,

Hq,n(Ff /2) =

∣∣∣∣∣∣∣∣∣
γn γn+1 · · · γn+q−1

γn+1 γn+2 · · · γn+q
...

...
...

γn+q−1 γn+q · · · γn+2(q−1)

∣∣∣∣∣∣∣∣∣.
For a function f ∈ S given in (1), by differentiating (5) one can obtain the following:

γ1 =
1
2

a2, γ2 =
1
2
(
a3 −

1
2

a2
2
)
, γ3 =

1
2
(
a4 − a2a3 +

1
3

a3
2
)
. (6)

Therefore, the second Hankel determinant of Ff /2 can be obtained by

H2,1(Ff /2) = γ1γ3 − γ2
2 =

1
4

(
a2a4 − a2

3 +
1

12
a4

2

)
. (7)

Furthermore, if f ∈ S , then for

fθ(z) = e−iθ f (eiθz) (θ ∈ R),

we find that (see [26])

H2,1

( Ffθ

2

)
= e4iθ H2,1

( Ff

2

)
.

Kowalczyk and Lecko [26] obtained sharp bounds for H2,1(Ff /2) for the classes of
starlike and convex functions of order α. The problem of computing the sharp bounds of
H2,1(Ff /2) for starlike and convex functions with respect to symmetric points in the open
unit disk has been considered by Allu and Arora [27].

In this paper, we calculate the sharp bounds for H2,1(Ff /2) = γ1γ3− γ2
2 for the classes

S∗s (α) and Kc(α).
To establish our main results, we will require the following Lemmas:

Lemma 1 ([28] (see also [26])). If p ∈ P is of the form (4) with c1 ≥ 0, then

c1 = 2d1,

c2 = 2d2
1 + 2(1− d2

1)d2,

c3 = 2d3
1 + 4(1− d2

1)d1d2 − 2(1− d2
1)d1d2

2 + 2(1− d2
1)(1− |d2|2)d3

(8)

for some d1 ∈ [0, 1] and d2, d3 ∈ U = {z ∈ C : |z| ≤ 1}.
For d1 ∈ U and d2 ∈ ∂U = {z ∈ C : |z| = 1}, there is a unique function p ∈ P with c1 and

c2 as in (8), namely

p(z) =
1 + (d1d2 + d1)z + d2z2

1 + (d1d2 − d1)z− d2z2
, z ∈ U.

Lemma 2 ([29]). Given real numbers A, B, C, let

Y(A, B, C) = max
{∣∣A + Bz + Cz2∣∣+ 1− |z|2 : z ∈ U

}
.
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I. If AC ≥ 0, then

Y(A, B, C) =


|A|+ |B|+ |C|, |B| ≥ 2(1− |C|),

1 + |A|+ B2

4(1−|C|) , |B| < 2(1− |C|).

II. If AC < 0, then

Y(A, B, C) =



1− |A|+ B2

4(1−|C|) , −4AC(C−2 − 1) ≤ B2 ∧ |B| < 2(1− |C|),

1 + |A|+ B2

4(1+|C|) , B2 < min{4(1 + |C|)2, −4AC(C−2 − 1)},

R(A, B, C), otherwise.

where

R(A, B, C) =



|A|+ |B| − |C|, |C|(|B|+ 4|A|) ≤ |AB|,

−|A|+ |B|+ |C|, |AB| ≤ |C|(|B| − 4|A|),

(|A|+ |C|)
√

1− B2

4AC , otherwise.

2. Second Hankel Determinant of Logarithmic Coefficients for the Class S∗s (α)
Theorem 1. Let α ∈ (0, 1]. If f ∈ S∗s (α), then∣∣∣γ1γ3 − γ2

2

∣∣∣ ≤ α2

4
. (9)

This inequality is sharp. Equality holds for the function

f (z) = zexp

∫ z

0

(1− u2)−2α − 1
u

du, z ∈ U. (10)

Proof. Let α ∈ (0, 1] and f ∈ S∗s (α) be of the form (1). Then by (2) we have

z f ′(z)
f (z)

=
(

p(z)
)α, z ∈ U, (11)

for some function p ∈ P of the form (4). Since the class P and the functional |H2,1(Ff /2)|
are rotationally invariant, we may assume that c1 ∈ [0, 2] (i.e., in view of (8) that d1 ∈ [0, 1]).
Equating the coefficients, we obtain

a2 = αc1

a3 =
α

2

(
c2 −

1− 3α

2
c2

1

)
a4 =

α

3

(
c3 +

5α− 2
2

c1c2 +
17α2 − 15α + 4

12
c3

1

)
.

(12)
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Hence by using (6)–(8) we obtain

γ1γ3 − γ2
2 =

1
4

(
a2a4 − a2

3 +
1

12
a4

2

)
=

α2

576

[
(7 + α)(1− α)c4

1 − 12(1− α)c2
1c2 + 48c1c3 − 36c2

2

]
=

α2

36

[
(4− α2)d4

1 + 6α(1− d2
1)d

2
1d2 − (1− d2

1)
[
12d2

1 + 9(1− d2
1)
]
d2

2

+ 12(1− d2
1)(1− |d2|2)d1d3

]
.

(13)

Now, we may have the following cases on d1:
Case 1. Suppose that d1 = 1. Then by (13) we obtain∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ = α2

36
(4− α2)

Case 2. Suppose that d1 = 0. Then by (13) we obtain∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ = α2

4
|d2|2 ≤

α2

4
.

Case 3. Suppose that d1 ∈ (0, 1). By the fact that |d3| ≤ 1, applying the triangle
inequality to (13) we can write∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ = ∣∣∣∣α2(1− d2
1)

3

[
4− α2

12(1− d2
1)

d4
1 +

α

2
d2

1d2 −
12d2

1 + 9(1− d2
1)

12
d2

2 + (1− |d2|2)d1d3

]∣∣∣∣
≤

α2d1(1− d2
1)

3

[∣∣∣∣ 4− α2

12(1− d2
1)

d3
1 +

α

2
d1d2 −

12d2
1 + 9(1− d2

1)

12d1
d2

2

∣∣∣∣+ 1− |d2|2
]

=
α2d1(1− d2

1)

3

[∣∣∣A + Bd2 + Cd2
2

∣∣∣+ 1− |d2|2
] (14)

where

A =
4− α2

12(1− d2
1)

d3
1 B =

α

2
d1 C = −

d2
1 + 3
4d1

.

Since AC < 0, we apply Lemma 2 only for the case II.
We consider the following sub-cases.
3 (a) Since

−4AC
( 1

C2 − 1
)
− B2 =

(4− α2)d2
1(d

2
1 + 3)

12(1− d2
1)

( 16d2
1

(d2
1 + 3)2

− 1
)
−

α2d2
1

4
≤ 0

equivalent to (1− α2)d2
1 ≤ 9, which evidently holds for d1 ∈ (0, 1). Further, the inequality

|B| < 2(1− |C|) is equivalent to 3 + (1 + α)d2
1 − 4d1 < 0 which is false for d1 ∈ (0, 1).

3 (b) Since

4(1 + |C|)2 =
(d2

1 + 4d1 + 3)2

4d2
1

> 0

and

−4AC
( 1

C2 − 1
)
=

(4− α2)d2
1(d

2
1 − 9)

12(d2
1 + 3)

< 0,
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we see that the inequality

α2d2
1

4
< min

{
4(1 + |C|)2, −4AC(

1
C2 − 1)

}
is false for d1 ∈ (0, 1).

3 (c) The inequality

|C|
(
|B|+ 4|A|

)
− |AB| =

(d2
1 + 3)
4d1

(
αd1

2
+

(4− α2)d3
1

3(1− d2
1)

)
−

α(4− α2)d4
1

24(1− d2
1)
≤ 0,

is equivalent to

d4(8 + α3 − 2α2 − 7α) + d2(24− 6α2 − 6α) + 9α ≤ 0.

It is easy to verify that

d4(8 + α3 − 2α2 − 7α) + d2(24− 6α2 − 6α) + 9α

> d4(32 + α3 − 8α2 − 13α) + 9α > 0.

for d1 ∈ (0, 1). Thus, the inequality |C|
(
|B|+ 4|A|

)
≤ |AB| does not hold for α ∈ (0, 1]

and d1 ∈ (0, 1).
3 (d) We can write

|AB| − |C|
(
|B| − 4|A|

)
=

α(4− α2)d4
1

24(1− d2
1)
−

(d2
1 + 3)
4d1

(
αd1

2
−

(4− α2)d3
1

3(1− d2
1)

)

=
1

24(1− t)
(
K1t2 + L1t + M1

)
where t = d2

1 ∈ (0, 1) and

K1 = −α3 − 2α2 + 7α + 8

L1 = 6(4 + α− α2)

M1 = −9α.

It is easy to see that K1 > 0, L1 > 0 and M1 < 0, for α ∈ (0, 1].
For the equation K1t2 + L1t + M1, we have ∆ = 144(4 + 4α− α3) > 0. Since K1 > 0,

M1
K1

< 0 and K1 + L1 + M1 = 32− α3 − 8α2 + 4α > 0, for α ∈ (0, 1], the equation K1t2 +
L1t + M1 has positive unique root such that

0 < t1 =
−L1 +

√
∆

2K1
< 1,

Therefore, for d∗1 =
√

t1, it follows that |AB| = |C|
(
|B| − 4|A|

)
.

Moreover, |AB| ≤ |C|
(
|B| − 4|A|

)
, when d1 ∈ (0, d∗1 ], and |AB| ≥ |C|

(
|B| − 4|A|

)
,

when d1 ∈ [d∗1 , 1).
Then for d1 ∈ (0, d∗1 ], we can write from (14) and Lemma 2, we obtain∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ ≤ α2d1(1− d2
1)

3

(
− |A|+ |B|+ |C|

)
= Φ(d1)

where
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Φ(d1) =
α2

36

(
− (4− α2)d4

1 + 3(1 + 2α)d2
1(1− d2

1) + 9(1− d2
1)
)

.

Since

Φ′(d1) =
−α2d1

9

[
(7 + 6α− α2)d2

1 + 3(1− α)
]
< 0,

for d1 ∈ [0, d∗1 ], Φ is a decreasing function on [0, d∗1 ]. This implies that∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤ Φ(0) =
α2

4
.

3 (e) Next consider the case d1 ∈ [d∗1 , 1]. Using the last case of Lemma 2,∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤ α2d1(1− d2
1)

3

((
|A|+ |C|

)√
1− B2

4AC

)
= Ψ(d1)

where

Ψ(d1) =
α2

18
[9 + (1− α2)d4

1 − 6d2
1]

√
(1− α2)d2

1 + 3
(4− α2)(d2

1 + 3)
.

To find the maximum of the function Ψ(d1) on the interval d1 ∈ [d∗1 , 1], let us investi-
gate the derivative of Ψ(d1):

Ψ′(d1) =
−d2

1α2

18(4− α2)(d2
1 + 3)2

√
(4− α2)(d2

1 + 3)
(1− α2)d2

1 + 3

×
[

4(3− (1− α2)d2
1)(d

2
1 + 3)((1− α2)d2

1 + 3) + 3α2(9 + (1− α2)d4
1 − 6d2

1))

]
< 0,

since
4(3− (1− α2)d2

1 ≥ 8 + 4α2 > 0

and

9 + (1− α2)d4
1 − 6d2

1 ≥ 9− d2
1
(
6− (1− α2)d2

1
)
= 3 + (1− α2)d2

1 > 0

for α ∈ (0, 1] and d1 ∈ [d∗1 , 1]. Thus Ψ is a decreasing function on [d∗1 , 1].
Furthermore, Φ(d∗1) = Ψ(d∗1). This implies that∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ ≤ Ψ(d1) ≤ Ψ(d∗1) = Φ(d∗1) ≤ Φ(0) =
α2

4
.

Summarizing parts from Cases 1–3, it follows the desired inequality.
In order to show that the inequality is sharp, let us set c1 = 0 and d2 = 1 into (8). Then,

we obtain c2 = 2 and c3 = 0. Hence by (12) we have a2 = a4 = 0 and a3 = α. This shows
that equality is attained for the function given in (10).

This completes the proof of the theorem.

For α = 1 we obtain the bounds for the class S∗ of starlike functions given in [25].

Corollary 1. Let f (z) ∈ S∗. Then ∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
4

.

The inequality is sharp.
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3. Second Hankel Determinant of Logarithmic Coefficients for the Class Kc(α)

Theorem 2. Let α ∈ (0, 1]. If f ∈ Kc(α), then

∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤


α2

36 , 0 < α ≤ 1
3

α2(13α2+18α+17)
144(α2+6α+4) , 1

3 < α ≤ 1.
(15)

The inequalities in (15) are sharp.

Proof. Let α ∈ (0, 1] and f ∈ Kc(α) be of the form (1). Then, by (3), we have

1 +
z f ′′(z)
f ′(z)

=
(

p(z)
)α, z ∈ U, (16)

for some function p ∈ P of the form (4). As in the proof of Theorem 1, we may assume that
c1 ∈ [0, 2] (i.e., in view of (8) that d1 ∈ [0, 1]). Equating the coefficients, we obtain

a2 =
α

2
c1

a3 =
α

6

(
c2 −

1− 3α

2
c2

1

)
a4 =

α

144

(
(17α2 − 15α + 4)c3

1 + 6(5α− 2)c1c2 + 12c3

)
.

(17)

Hence, by using (6)–(8) we obtain

γ1γ3 − γ2
2 =

1
4

(
a2a4 − a2

3 +
1

12
a4

2

)
=

α2

2304

[
(α2 − 6α + 4)c4

1 + 4(3α− 2)c2
1c2 + 24c1c3 − 16c2

2

]
=

α2

144

[
(2 + α2)d4

1 + 6α(1− d2
1)d

2
1d2 − (1− d2

1)
[
6d2

1 + 4(1− d2
1)
]
d2

2

+ 6(1− d2
1)(1− |d2|2)d1d3

]
.

(18)

Now, we may have the following cases on d1:
Case 1. Suppose that d1 = 1. Then, by (18) we obtain∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ = α2

144
(2 + α2)

Case 2. Suppose that d1 = 0. Then, by (18) we obtain∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ = α2

36
|d2|2 ≤

α2

36
.

Case 3. Suppose that d1 ∈ (0, 1). By the fact that |d3| ≤ 1, applying the triangle
inequality to (18) we can write
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∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ = ∣∣∣∣ α2

144

[
(2 + α2)d4

1 + 6α(1− d2
1)d

2
1d2

− (1− d2
1)
[
6d2

1 + 4(1− d2
1)
]
d2

2 + 6(1− d2
1)(1− |d2|2)d1d3

]∣∣∣∣
≤

α2d1(1− d2
1)

24

[∣∣∣∣ (2 + α2)

6(1− d2
1)

d3
1 + αd1d2 −

4 + 2d2
1

6d1
d2

2

∣∣∣∣+ 1− |d2|2
]

=
α2d1(1− d2

1)

24

[∣∣∣A + Bd2 + Cd2
2

∣∣∣+ 1− |d2|2
]

(19)

where

A =
2 + α2

6(1− d2
1)

d3
1 B = αd1 C = −

2 + d2
1

3d1
.

Since AC < 0, we apply Lemma 2 only for the case II.
We consider the following sub-cases.
3 (a) Note that

−4AC
( 1

C2 − 1
)
− B2 =

−d2
1
[
d2

1(7α2 − 4) + 26α2 + 16
]

9(d2
1 + 2)

=
−d2

1
[
α2(7d2

1 + 26) + 4(4− d2
1)
]

9(d2
1 + 2)

≤ 0.

for d1 ∈ (0, 1) and α ∈ (0, 1]. On the other hand, we have

|B| − 2(1− |C|) =
d2

1(3α + 2)− 6d1 + 4
3d1

.

Since ∆ = 4(1− 12α) ≤ 0 for 1
12 ≤ α < 1, we have

d2
1(3α + 2)− 6d1 + 4 ≥ 0.

Further, since ∆ = 4(1− 12α) > 0 for 0 < α < 1
12 , the equation

d2
1(3α + 2)− 6d1 + 4 = 0

has the roots

s1,2 =
3±
√

1− 12α

3α + 2

which are greater than 1. So

d2
1(3α + 2)− 6d1 + 4 > 0

for d1 ∈ (0, 1) and α ∈ (0, 1].
Consequently |B| < 2(1− |C|) does not hold for d1 ∈ (0, 1) and α ∈ (0, 1] .
3 (b) Since

4(1 + |C|)2 =
4(d2

1 + 3d1 + 2)2

9d2
1

> 0

and

−4AC
(

1
C2 − 1

)
= −

2d2
1(4− d2

1)(α
2 + 2)

9(d2
1 + 2)

< 0,

we see that the inequality

α2d2
1 < min

{
4(1 + |C|)2, −4AC

(
1

C2 − 1
)}
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is false for d1 ∈ (0, 1).
3 (c) We can write

|C|
(
|B|+ 4|A|

)
− |AB| = 1

18(1− d2
1)
(K2d4

1 + L2d2
1 + M2)

where

K2 = −3α3 + 4α2 − 12α + 8

L2 = 8α2 − 6α + 16

M2 = 12α.

It is easy to see that L2 > 0 and M2 > 0, for α ∈ (0, 1].
There are two cases according to the sign of K2:

(i) If K2 ≥ 0, then we have

|C|
(
|B|+ 4|A|

)
− |AB| = 1

18(1− d2
1)
(K2d4

1 + L2d2
1 + M2) > 0.

(ii) If K2 < 0, then using the fact that α ∈ (0, 1] and d1 ∈ (0, 1), we can write

|C|
(
|B|+ 4|A|

)
− |AB| = 1

18(1− d2
1)

(
K2d4

1 + L2d2
1 + M2

)
>

1
18(1− d2

1)

(
K2 + L2d2

1 + M2
)

=
1

18(1− d2
1)

(
L2d2

1 − 3α3 + 4α2 + 8
)

≥ 1
18(1− d2

1)

(
L2d2

1 + 5 + 4α2) > 0.

Therefore, the inequality |C|
(
|B|+ 4|A|

)
≤ |AB| does not hold for α ∈ (0, 1] and d1 ∈ (0, 1).

3 (d) We can write

|AB| − |C|
(
|B| − 4|A|

)
=

α(α2 + 2)
6(1− d2

1)
d4

1 −
d2

1 + 2
3d1

(
αd1 − 4

α2 + 2
6(1− d2

1)
d3

1

)
=

1
18(1− t)

(
K3t2 + L3t + M3

)
where t = d2

1 ∈ (0, 1) and

K3 = 3α3 + 4α2 + 12α + 8

L3 = 8α2 + 6α + 16

M3 = −12α.

It is easy to see that K3 > 0, L3 > 0 and M3 < 0, for α ∈ (0, 1].
For the equation K3t2 + L3t + M3 = 0, we have ∆ > 0. Since M3

K3
< 0 and K3 + L3 +

M3 > 0, for α ∈ (0, 1], the equation K3t2 + L3t + M3 = 0 has a unique positive root t1 < 1.
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Thus, the inequality |AB| − |C|
(
|B| − 4|A|

)
≤ 0 holds for (0, d∗∗1 ], where d∗∗1 =

√
t1. So we

can write from (19) and Lemma 2,∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤ α2d1(1− d2
1)

24

(
− |A|+ |B|+ |C|

)
=

α2

144
Φ1(d1)

where

Φ1(d1) =
(

Dd4
1 + Ed2

1 + 4
)

,

and

D = −(α2 + 6α + 4)

E = 6α− 2.

If Φ′1(d1) = 2d1
(
2Dd2

1 + E
)
= 0, then d2

1 = − E
2D . So if E = 6α− 2 > 0, i.e., 1

3 < α ≤ 1,
then we have a critical point:

ξ =

√
− E

2D
=

√
3α− 1

α2 + 6α + 4
. (20)

Since

K3ξ4 + L3ξ2 + M3 = K3

(
3α− 1

α2 + 6α + 4

)2

+ L3

(
3α− 1

α2 + 6α + 4

)
+ M3

=
39α5 + 28α4 − 243α3 − 296α2 − 156α− 56

(α2 + 6α + 4)2

≤ −243α3 − 296α2 − 89α− 56
(α2 + 6α + 4)2

< 0,

we have 0 < ξ < d∗∗1 ; therefore, we obtain∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤ α2

144
Φ1(ξ)

=
α2(13α2 + 18α + 17)

144(α2 + 6α + 4)
,

for 1
3 < α ≤ 1.
Furthermore, if 0 < α ≤ 1

3 , then the function Φ1(d1) is decreasing on (0, d∗∗1 ]. Thus
we have ∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ ≤ α2

144
Φ1(d1)

≤ α2

36
.

3 (e) Next consider the case d1 ∈ [d∗∗1 , 1]. Using the last case of the Lemma 2,
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∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ ≤ α2d1(1− d2
1)

24

((
|A|+ |C|

)√
1− B2

4AC

)
=

α2

144
Ψ1(d1)

where

Ψ1(d1) = (α2d4
1 − 2d2

1 + 4)

√
1 +

9α2(1− d2
1)

2(α2 + 2)(d2
1 + 2)

.

To find the maximum of the function Ψ1(d1) on the interval d1 ∈ [d∗∗1 , 1], let us
investigate the derivative of Ψ1(d1):

Ψ′1(d1) =
−d1

(α2 + 2)(d2
1 + 2)2

√
(α2 + 2)(d2

1 + 2)
(4− 7α2)d2

1 + 13α2 + 8
×{

4(d2
1 + 2)

(
1− α2d2

1

)[(
4− 7α2

)
d2

1 + 13α2 + 8
]
+
(

α2d4
1 − 2d2

1 + 4
)

27α2

}
.

Since for d1 ∈ [d∗∗1 , 1](
4− 7α2

)
d2

1 + 13α2 + 8 = α2(13− 7d2
1) + 4(d2

1 + 2) > 0

and (
α2d4

1 − 2d2
1 + 4

)
= 4− d2

1(2− α2d2
1) ≥ 4− (2− α2d2

1) = 2 + α2d2
1 > 0,

for α ∈ (0, 1] and d1 ∈ [d∗∗1 , 1]. Thus Ψ1(d1) is a decreasing function on the interval [d∗∗1 , 1].
This implies that∣∣∣∣γ1γ3 − γ2

2

∣∣∣∣ ≤ α2

144
Ψ1(d1) ≤

α2

144
Ψ1(d∗∗1 ) =

α2

144
Φ1(d∗∗1 ).

Summarizing parts from Cases 1–3, it follows the desired inequalities.
To show the sharpness for the case 0 < α ≤ 1

3 , consider the function

p1(z) =
1− z2

1 + z2 , (z ∈ U).

It is obvious that the function p1 is in P with c1 = c3 = 0 and c2 = −2. The
corresponding function f1 can be obtained from (16). Hence, by (17) we have a2 = a4 = 0
and a3 = − α

3 . From (18) we obtain ∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ = α2

36
,

for 0 < α ≤ 1
3 .

For the case 1
3 < α ≤ 1, consider the function

p2(z) =
1− z2

1− 2ξz + z2 , (z ∈ U)

where ξ is given in (20). From Lemma 1, it is obvious that the function p2 is in P . The
corresponding function f2 can be obtained from (16), having the following coefficients:
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a2 = αξ,

a3 =
1
3

α
(
(1 + 3α)ξ2 − 1

)
,

a4 =
1

18
αξ
(
(17α2 + 15α + 4)ξ2 − 15α− 3

)
.

Hence from (18) we obtain∣∣∣∣γ1γ3 − γ2
2

∣∣∣∣ = α2(13α2 + 18α + 17)
144(α2 + 6α + 4)

.

This completes the proof.

For α = 1 we obtain the bounds for the class K of convex functions given in [25].

Corollary 2. Let f (z) ∈ K. Then ∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
33

.

The inequality is sharp.

4. Discussion

In this work, we have obtained the sharp bounds for the second Hankel determinant
of logarithmic coefficients of strongly starlike functions and strongly convex functions.
Because of the importance of the logarithmic coefficients of univalent functions, our results
provide a basis for research on the Hankel determinant of the logarithmic coefficients of
the class of strongly starlike and strongly convex functions and other classes associated
with these classes. Furthermore, our results could also inspire further studies taking
other subclasses of S into consideration and/or obtaining the bounds for higher-order
Hankel determinants.
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