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Abstract: This paper is devoted to determining an optimal investment strategy for a defined-
contribution (DC) pension plan with deposit loan spread under the constant elasticity of variance
(CEV) model. As far as we know, few studies in the literature have taken loans into account
when using the CEV model in financial market contexts. The contribution of this paper is to
study the impact of deposit loan spread on DC pension investment strategy. By considering a
risk-free asset, a risky asset driven by CEV model, and a loan in the financial market, we first
set up the dynamic equation and the asset market model, which are instrumental in achieving
the expected utility of ultimate wealth at retirement. Second, the corresponding Hamilton–Jacobi–
Bellman (HJB) equation is derived by means of the dynamic programming principle. The explicit
expression for the optimal investment strategy is obtained using the Legendre transform method.
Finally, different parameters are selected to simulate the explicit solution, and the financial interpreta-
tion of the optimal investment strategy is provided. We find that the deposit loan spread has a great
impact on the investment strategy of DC pension plans.

Keywords: DC pension plan; deposit loan spread; CEV model; HJB equation; Legendre transform

1. Introduction

With the development of the global economy and society, pension planning is becom-
ing more important for the life of the elderly. In addition, the aging of the population is
accelerating rapidly, and pension planning has become a focus. The enterprise annuity
is divided into two basic modes: defined benefit (DB) plans and the defined contribution
(DC) plans. In DC pension plans, the longevity and financial risks are transferred from the
sponsor to the member; thus, DC pension plans play a role in social security which cannot
be ignored. Hence, asset allocation strategy is crucial to the distribution and deployment of
DC pension funds.

In recent years, many scholars have focused on the optimal investment performance.
Markowitz and Harry [1] put forward the optimal portfolio problem for the first time,
and provided a theoretical proof. Boulier et al. [2] studied the asset allocation problem
of DC-type enterprise funds where the interest rate obeys the the framework of Vasicek,
and obtained the analytical solution through the use of the Martingale method. Haber-
man and Vigna [3] obtained a formula for the the optimal investment allocation in a DC
pension scheme whose fund is invested in n assets. Gerrard et al. [4] concentrated on the
income drawdown option using the stochastic optimal control technology to find optimal
investment strategies after retirement. Baev and Bondarev [5] introduced O-U process
instead of GBM. In [6,7], the investment strategy of a DC scheme was obtained through
simulations using American and British data. Gao [8] examined the complete financial
market with stochastic evolution of interest rate, and used Legendre transform to solve
the optimal asset allocation strategy of a DC-type enterprise fund. In [9–11], the authors
studied the optimal investment strategy for a DC plan in a mean-variance framework. Teng
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et al. [12] used an interest rate which was subject to the O–U process. Guan and Liang [13]
studied the optimal allocation of a DC pension with a random interest rate and random
fluctuation framework in which the interest rate obeyed an affine interest rate structure.
Sun et al. [14] proposed the expected investment goal based on deficit and surplus. Bian
et al. [15] and Chen et al. [16] investigated the DC pension fund investment problem under
a Markovian regime-switching market consisting of one risk-free asset and multiple risky
assets. Optimal investment with transaction cost over an infinite horizon was developed by
Blake and Sass [17]. The dual control technique was employed to investigate the investment
problem constrained by short selling in [18]. Dong and Zheng [19] attempted to apply
S-shaped utility. Based on game theory and with the help of the filtering method and
stochastic control theory, Wang et al. [20] obtained the equilibrium investment scheme of
the mean variance criterion and the corresponding equilibrium value expression.

Several scholars have studied the DC pension problem under the random volatility
model. In [21], the CRRA utility function was introduced to deal with the investment
scheme in a random interest rate and volatility model. The optimal allocation scheme with
stochastic interest rate and stochastic volatility was characterised by Wang et al. [22]. In
Zhang et al. [23], a mean variance criterion under the Cox-Ingersoll-Ross (CIR) and stochas-
tic volatility model was adopted. Other scholars have studied the DC pension problem in
the context of inflation. Inflation risk and the optimal DC pension was considered in [24,25].
In [26], the authors studied a mean variance portfolio selection problem with stochastic
salary and inflation protection strategy for a DC pension plan. Tang et al. [27] made an
on-the-spot investigation of two different situations, namely, a random interest rate and
annuity inflation. In Guambe et al. [28], the authors further stated an investment problem
that included inflation and mortality risks. Wang et al. [29] studied a case where inflation
of index bonds and expected yields obeyed the mean regression model. The continuous
diffusion process and jump diffusion process were used to describe the price process of
inflation index bonds and stocks in [30], and a DC pension problem was studied. Other
scholars have studied DC pensions under the jump diffusion model. For example, a jump
diffusion model was demonstrated by [31,32].

Several scholars have extended geometric Brownian motion to the CEV Model. Jianwu
et al. [33] obtained an explicit solution by applying the CEV model. Gu et al. [34] considered
the optimal reinsurance and investment problem of Brownian motion with a risk pricing
process, and assets were described by the constant elastic variance model. Zhang and
Rong [35] further paid attention to the optimal allocation of a DC pension with a random
wage under the CEV model. Li et al. [36] used the game theory method to obtain the
value function corresponding to the CEV Model. The equivalent balance fee and maximum
technology were applied based on the CEV model in [37]. Ma et al. [38] used the least-
squares Monte Carlo method concerning the framework of CEV. He and Chen [39] were
interested in the stochastic interest rate, and added an asymptotic expansion method to
approximate the asymptotic solution subject to the extended CEV in He et al. [40]. The lie
symmetry method and group theory analysis received attention in Yong et al. [41], which
used the CEV model.

Most of the above literature involves the CIR model, Vasicek model, variance model,
or CEV model; however, few of them take loans based on the CEV model in financial
markets into account . As is known, it is more accurate to adopt the CEV model, as it
reflects the fluctuations in asset prices. What is more, with the upgrading and adjustment
of China’s industry, capital driven by economic development is expected to become the
main economic thrust; that is to say, the era of capital economy has arrived, and loan
financing is now the normal state. In real life, the loan interest rate is higher than the
deposit interest rate, and this difference has a noticeable impact on the investment of DC
pensions. Therefore, this paper is devoted to studying a DC pension plan with deposit
and loan spread under the CEV model. The goal is to maximize the expectation of the
terminal wealth under the utility framework before retirement. By adopting the theory of
stochastic control, the nonlinear HJB equation was achieved, in which it is hard to solve
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closed-form expressions. Then, we introduce the Legendre transform and separation of
variables. In this case, nonlinear partial differential equations (NPDE) are transformed into
linear partial differential equations. Finally, we derive the explicit expressions of the DC
pension and provide the related financial explanation.

The rest of this paper is laid out as follows. Section 2 characterizes the assumptions
of the model. Section 3 presents the definition of the value function and derives the corre-
sponding HJB equation using the dynamic programming principle. Section 4 completes
the closed-form solutions for the stochastic dynamic programming problem with Legen-
dre transform and the CRRA utility function. Section 5 presents a numerical simulation
analysis. FInally, Section 6 provides a summary and concludes the paper.

2. Model Hypothesis

We list the following assumptions for our model.
Consider a financial market which ignores transaction fees. We use a finite time horizon

and continuous time model. {Wt, t ≥ 0} represents the standard Brownian motion for a
complete probability space (Ω,F ,P), where P is the real-word probability and F = {Ft}
denotes the P-augmentation of the natural filtration produced by {Wt}t∈[0,T]. We assume
that all of the stochastic processes introduced below are well defined on the probability
space (Ω,F ,P) and adapted to the filtration {Ft}t∈[0,T].

Suppose that the financial market involves three tradeable assets: a bank account,
a stock, and a loan. We denote the price of the bank account at time t by Bt, such that

dBt = rBtdt, (1)

where r > 0 is a constant rate of interest.
By comparison with GBM, the CEV model is closer to the change in the stock price.

Here, we use St to express the price of the stock at time t, which is described by the CEV
model as follows:

dSt = µStdt + kSβ+1
t dWt, (2)

where µ (µ > r) is the expected instantaneous rate of return of the stock, k and β are constant
parameters, β satisfies the general condition β < 0, and kSβ

t is the instantaneous volatility.
Let R denote the lending rate, where 0 < r < R < µ, where Vt is the pension wealth at

time t and Lt, Xt, and Yt are the total amount of money of the loan, the risk-free asset, and
the risky asset, respectively, at time t.

Definition 1. (Admissible strategy) An investment loan is admissible if it meets the following
requirements:

(1) {Lt, Xt, Yt} is Ft-measurable on a complete probability space
(2)
∫ T

0 L2
t dt < +∞,

∫ T
0 X2

t dt < +∞,
∫ T

0 Y2
t dt < +∞, a.s. T < ∞

(3) For rational investors, with interest rates higher than the deposit rate it is impossible
to choose between deposits and loans; that is, LtXt = 0, with Lt ≥ 0, Xt ≥ 0 and t ∈ [0, T].
The strategies {Lt, Xt, Yt} take values in a control set Π.

Moreover, define the retirement moment and the contribution rate of the enterprise
annuity for T and c separately, where T and c are constants. Until retirement T, cLt is
supplied to the pension fund for each period. In order to simplify the model, the total
salary is set as one dollar, and only one insured person is studied.
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3. Model Formulation
3.1. Wealth Process

Let Vt = Xt + Yt − Lt + ct denote the pension wealth at time t ∈ [0, T]. The dynamics
of wealth have the following form:

dVt =
Xt

Bt
dBt +

Yt

St
dSt − RLtdt + cdt. (3)

Based on (1) and (2), we can rewrite (3) as

dVt = [rVt + (µ− r)Yt + (r− R)Lt − rct + c]dt + kSβYtdWt. (4)

3.2. The HJB Equation

Next, the goal is to maximize the expected discounted utility and ultimate wealth
over a limited retirement period, i.e., to seek the optimum investment project.

Applying the stochastic control theory, we define the value function as

H(t, s, v) = sup
{L,X,Y}∈Π

E[U(VT)|St = s, Vt = v], 0 < t < T,

where U(·) is an increasing concave utility function and satisfies the conditions U′(+∞) < 0
and U′(0) < +∞.

As described in [42] and per Itô’s formula and dynamic programming principle, we
have

sup
{L,X,Y}∈Π

{Ht+[rv + (µ− r)Y + (r− R)L− rct + c]Hv + µsHs (5)

+
1
2

k2s2βY2Hvv +
1
2

k2s2β+2Hss + k2s2β+1YHvs} = 0,

and its accompanying a terminal condition, H(T, s, v) = U(v).
According to v = Vt = Bt +Yt− Lt + ct and 0 < r < R < µ, if v > Yt + ct, the investor

rejects the loan, while if v ≤ Yt + ct, the investor chooses the loan and the total amount will
not exceed Yt + ct− v, that is, L∗t = Yt + ct− v = max{0, Yt + ct− v}.

From the above setting, the following two situations are discussed:
(1) In the case where v > Yt + ct, by substituting L∗t = 0 into (5) the corresponding

HJB equation can be rewritten as
sup
Y∈Π
{Ht + [rv + (µ− r)Y− rct + c]Hv + µsHs

+
1
2

k2s2βY2Hvv +
1
2

k2s2β+2Hss + k2s2β+1YHvs} = 0

H(T, s, v) = U(v).

(6)

(2) In the case where v ≤ Yt + ct, by substituting L∗t = Yt + ct− v into (5) the corre-
sponding HJB equation can be rewritten as

sup
Y∈Π
{Ht + [Rv + (µ− R)Y− Rct + c]Hv + µsHs

+
1
2

k2s2βY2Hvv +
1
2

k2s2β+2Hss + k2s2β+1YHvs} = 0

H(T, s, v) = U(v).

(7)

If we take the derivative of (6) with respect to Y, we have

Y∗1t =−
µ− r
k2s2β

Hv

Hvv
− s

Hvs

Hvv
. (8)
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Similarly, we can obtain the efficient investment strategy of problem (7) as follows:

Y∗2t =−
µ− R
k2s2β

Hv

Hvv
− s

Hvs

Hvv
. (9)

Using Y∗1t and Y∗2t in (6) and (7), we respectively derive

Ht+µsHs +
1
2

k2s2β+2Hss + (rv− rct + c)Hv −
(µ− r)2

2k2s2β

H2
v

Hvv
(10)

−1
2

k2s2β+2 H2
vs

Hvv
− s(µ− r)

Hv Hvs

Hvv
= 0,

and

Ht+µsHs +
1
2

k2s2β+2Hss + (Rv− Rct + c)Hv −
(µ− R)2

2k2s2β

H2
v

Hvv
(11)

−1
2

k2s2β+2 H2
vs

Hvv
− s(µ− R)

HvHvs

Hvv
= 0.

Obviously, the stochastic control problem is transformed into an NPDE. Next, we
alternate the NPDE into the linear PDE based on dual transformation.

4. Verification Theorem

In this section, the verification theorem is established through the standard method
used by Halil Mete Soner in [42].

Theorem 1. Suppose H ∈ C1,2,2(Q) ∩ C(Q̄) is a solution to Equation (6) (Equation (7)) where
Q := (0, T)× (0, ∞)× (−∞, ∞); then:

• H(t, s, v) ≥ G(t, s, v; Y.) for any initial value (t, s, v) ∈ Q and control process Y., where
G(t, s, v; Y.) = E [U(VT)| St = s, Vt = v]

• If, for any initial value (t, s, v) ∈ Q, there exists Y∗. ∈ Π satisfying

Y∗. ∈ argmax{BY∗. ,r H} (argmax{BY∗. ,RH}),

then H(t, s, v) = G(t, s, v; Y∗.). Here, the operator BY,λ is defined as follows:

BY,λH = [λv + (µ− λ)Y− λct + c]Hv + µsHs +
1
2

k2s2βY2Hvv

+
1
2

k2s2β+2Hss + k2s2β+1YHvs.

Proof. We only prove that the theorem is valid when H is a solution to Equation (6), and we
can prove it in a similar way when H is a solution to Equation (7).

(1) Using Itô’s formula, we obtain

EH(T, sT , vT) = H(t, s, v) + E
∫ T

t

[ ∂

∂τ
H(τ, sτ , vτ) +BYτ ,r H(τ, sτ , vτ)

]
dτ.

Because H is a solution to Equation (6), we have

∂

∂τ
H(τ, sτ , vτ) +Bπτ ,r H(τ, sτ , vτ) ≤ 0.

Therefore,
H(t, s, v) ≥ EH(T, sT , vT).
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Due to the terminal condition, we have

H(t, s, v) ≥ G(t, s, v; Y.);

(2) Similarly,

EH(T, sT , v∗T) = H(t, s, v) + E
∫ T

t

[ ∂

∂τ
H(τ, sτ , v∗τ) +Bπ∗τ ,r H(τ, sτ , v∗τ)

]
dτ.

Because H is a solution to Equation (6), we have

∂

∂τ
H(τ, sτ , v∗τ) +Bπ∗τ ,r H(τ, sτ , v∗τ) = 0.

Thus,
EH(T, sT , v∗T) = H(t, s, v).

Due to the terminal condition, we have

H(t, s, v) = G(t, s, v; Y∗.).

5. Model Solution
5.1. Legendre Transform

Definition 2 (see [43]). Let f : Rn → R be a convex function; then, for z > 0, the Legendre
transform can be defined as follows:

L̂(z) = max
v
{ f (v)− zv},

where the function L̂(z) is called the Legendre dual of the function f (v).

A specific definition is proposed by

Ĥ(t, s, z) = sup
v>0
{H(t, s, v)− zv |0 < t < T},

where z > 0 denotes the dual variable of v.
The value of v with this optimum is denoted by g(t, s, z), such that

g(t, s, z) = inf
v>0
{v|H(t, s, v) ≥ zv + Ĥ(t, s, v)}, 0 < t < T.

From the above equation, we can obtain

Ĥ(t, s, z) = H(t, s, g)− zg, (12)

where g(t, s, z) = v and Hv = z.
The function Ĥ is related to g by

g = −Ĥz. (13)

By differentiating (12), we achieve

Hv = z, Ht = Ĥt, Hs = Ĥs, Hvv = − 1
Ĥzz

, Hss = Ĥss −
Ĥ2

sz

Ĥzz
, Hsv = − Ĥsz

Ĥzz
. (14)
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At the terminal time, T, we define

Û(z) = sup
v>0
{U(v)− zv}, (15)

G(z) = inf
v>0
{U(v) ≥ zv + Û(z)}.

In addition, there exists G(z) = (U′)−1(z).
Using (14) in (10), we derive

Ĥt+µsĤs +
1
2

k2s2β+2Ĥss + (rv− rct + c)z (16)

+
(µ− r)2z2Ĥzz

2k2s2β
− s(µ− r)zĤsz = 0.

Differentiating both sides of (16) with respect to z, we obtain

Ĥtz+µsĤsz +
1
2

k2s2β+2Ĥssz + (rv− rct + c) + rzgz +
(µ− r)2zĤzz

k2s2β
(17)

+
(µ− r)2z2Ĥzzz

2k2s2β
− s(µ− r)Ĥsz − s(µ− r)zĤszz = 0.

Due to (13), we have

v = g =− Ĥz, Ĥtz = −gt, Ĥsz = −gs, Ĥzz = −gz, (18)

Ĥssz =− gss, Ĥszz = −gsz, Ĥzzz = −gzz.

We recover (17) using (18), then obtain the following partial differential equation:

gt+µsgs +
1
2

k2s2β+2gss − (rg− rct + c)− rzgz +
(µ− r)2zgz

k2s2β
(19)

+
(µ− r)2z2gzz

2k2s2β
− s(µ− r)gs − s(µ− r)zgsz = 0.

Through dual transformation, (10) has now been transformed into a linear PDE.
Moreover, we obtain the optimal portfolio selection, Y∗1t:

Y∗1t = −
µ− r
k2s2β

zgz + sgs. (20)

5.2. The Solution under the Logarithmic Utility Function

Theorem 2. If the price of the risk-free asset, the price of the risky asset, and the wealth process
follow (1)–(3), respectively, the optimal portfolio of the enterprise annuity is

Y∗t =



(µ− R)[v− ct + cTeR(t−T)]

k2s2β
, v ≤ ct +

(µ− R)[v− ct + cTeR(t−T)]

k2s2β

v− ct,
(µ− R)[v− ct + cTeR(t−T)]

k2s2β
+ ct < v <

(µ− r)[v− ct + cTer(t−T)]

k2s2β
+ ct

(µ− r)[v− ct + cTer(t−T)]

k2s2β
. v ≥ ct +

(µ− r)[v− ct + cTer(t−T)]

k2s2β

(21)

Proof. In light of the logarithmic utility function, the following definition is provided:

U(v) = lnv. x > 0.
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Depending on the form of the logarithmic utility function, we have

g(T, s, z) =
1
z

.

In response to (19), we construct its corresponding solution:

g(t, s, z) =
1
z

f (st) + ϕ(t). (22)

In the meantime, we quote the boundary conditions by f (sT) = 1 and ϕ(T) = 0.
Taking the partial derivative of (22), we have

gt =ϕt, gs =
1
z

fs, gz = −
1
z2 f , (23)

gss =
1
z

fss, gsz = −
1
z2 fs, gzz =

2
z3 f .

Substituting (23) back into (19), we obtain

ϕt + µs
1
z

fs +
k2s2β+2

2
1
z

fss + rct− c− rϕ = 0. (24)

By observation, (24) can be decomposed into two equations, which eliminates the
dependence on s. Furthermore, as the boundary conditions are f (sT) = 1 and ϕ(T) = 0,
we have  µs fs +

k2s2β+2

2
fss = 0,

f (sT) = 1.
(25)

and {
ϕt − rϕ + rct− c = 0,

ϕ(T) = 0.
(26)

By solving these ordinary differential equations, we derive the solution to (25)

f (st) = 1.

The corresponding solution of (26) is provided by

ϕ(t) = ct− cTer(t−T).

Consequently,

g =
1
z
+ ct− cTer(t−T). (27)

Due to g(t, s, z) = v, we derive

1
z
= v− ct + cTer(t−T). (28)

Finally, the optimal strategy Y∗1t can be rewritten as

Y∗1t =−
µ− r
k2s2β

zgz + sgs (29)

=
µ− r
k2s2βz

=
(µ− r)[v− ct + cTer(t−T)]

k2s2β
.
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From the equivalence of r and R, we can obtain another optimal investment strategy,
Y∗2t:

Y∗2t =
(µ− R)[v− ct + cTeR(t−T)]

k2s2β
. (30)

The above results are discussed as follows.

(1) If v ≥ (µ− r)[v− ct + cTer(t−T)]

k2s2β
+ ct, then

Y∗1t =
(µ− r)[v− ct + cTer(t−T)]

k2s2β
;

(2) If v ≤ (µ− R)[v− ct + cTeR(t−T)]

k2s2β
+ ct, then

Y∗2t =
(µ− R)[v− ct + cTeR(t−T)]

k2s2β
;

(3) If
(µ− r)[v− ct + cTer(t−T)]

k2s2β
+ ct > v >

(µ− R)[v− ct + cTeR(t−T)]

k2s2β
+ ct , we

proceed with two cases.

(i) When Yt + ct ∈
[ (µ− R)[v− ct + cTeR(t−T)]

k2s2β
+ ct, v

]
, as L∗t = Yt + ct − v =

max{0, Yt + ct − v}, then L∗t = 0. This means that the investor refuses to lend in this
case. Let the left bracket of (6) be φ1(Y); because φ1(Y) increases with respect to Y in[ (µ− R)[v− ct + cTeR(t−T)]

k2s2β
, v − ct

]
, it is apparent that φ1(Y) attains its maximum at

Y∗t = v− ct.

(ii) When Yt + ct ∈
[
v,

(µ− r)[v− ct + cTer(t−T)]

k2s2β
+ ct

]
, because L∗t = Yt + ct −

v = max{0, Yt + ct − v}, we can see that L∗t = v − ct. We denote the left bracket
of (7) by φ2(Y). Considering that φ2(Y) decreases with respect to Y in the interval[
v− ct,

(µ− r)[v− ct + cTeR(t−T)]

k2s2β

]
, we can see that φ2(Y) reaches the maximum at Y∗t =

v− ct. Hence, in the interval
[ (µ− R)[v− ct + cTeR(t−T)]

k2s2β
,
(µ− r)[v− ct + cTer(t−T)]

k2s2β

]
, it

is apparent that Y∗(t) = v− ct.
Finally, the optimal investment strategy Y∗t can be expressed as

Y∗t =



(µ− R)[v− ct + cTeR(t−T)]

k2s2β
, v ≤ ct +

(µ− R)[v− ct + cTeR(t−T)]

k2s2β

v− ct,
(µ− R)[v− ct + cTeR(t−T)]

k2s2β
+ ct < v <

(µ− r)[v− ct + cTer(t−T)]

k2s2β
+ ct

(µ− r)[v− ct + cTer(t−T)]

k2s2β
. v ≥ ct +

(µ− r)[v− ct + cTer(t−T)]

k2s2β

Theorem 3. If the price of the risk-free asset, the price of the risky asset, and the wealth process
follow (1)–(3), respectively, the expected maximum utility of the enterprise annuity for problems
(10) and (11) is as follows:

(1) In the case of v ≥ Yt + ct,

H1 = ln(v− ct + cTer(t−T)).
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(2) In the case of v < Yt + ct,

H2 = ln(v− ct + cTeR(t−T)).

Proof. We first prove the former case. Combining (27) with −Ĥz(t, s, v) = g, we have

Ĥz = −
1
z
− ct + cTer(t−T). (31)

From (31), integrating yields

Ĥ = −lnz +−ctz + czTer(t−T) + m,

where m is a constant.
Taking into account Ĥ = H − zg and the terminal condition m = −1, we obtain

H1 = ln(v− ct + cTer(t−T)).

By the same token, we derive

H2 = ln(v− ct + cTeR(t−T)).

6. Numerical Analysis

Based on simulation results, we provide economic explanations for the above and
discuss the behavioral features related to loss aversion and contribution rate. We take the
initial time t = 5, and assume the investor retires at T = 20. In the financial market, the
other parameters used are r = 0.03, R = 0.05, σ1 = 0.005 and c = 0.2.

In Figures 1 and 2, the volatility, kSβ
t, in the optimal investment strategy Y∗t is taken

into account. Assume that the wealth value is 5, 100 at time t, and the volatility kSβ
t varies

at [0.05, 0.25]. If v = 5, then v ≤ ct+ (µ−R)[v−ct+cTeR(t−T) ]

k2s2β . If kSβ
t varies in the range [0.3, 0.5]

and v = 100, then v ≥ ct + (µ−r)[v−ct+cTer(t−T) ]

k2s2β .

0.05 0.1 0.15 0.2 0.25
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20
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80

100

120

140

160

180

Y
*

Figure 1. Influence of kSβ
t on Y∗t when v = 5.
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Figure 2. Influence of kSβ
t on Y∗t when v = 100.

Figures 1 and 2 demonstrate how kSβ
t affects the optimal investment strategy Y∗t

for investing in the risky asset. Evidently, the increase of kSβ
t causes the reduction of Y∗t ,

which signifies that investors provide fewer funds to the risky asset when the stock price
fluctuation increases. From a financial perspective, this can be interpreted as the stock price
fluctuation enhancing the uncertainty in the market. At the same time, the risky asset faces
the possibility of depreciation. In response to this situation, investors do not dare to engage
in radical adventure, and instead prefer conservative investments.

Figure 3 reveals the effect of the initial wealth v on Y∗t . Note that the instantaneous
volatility is fixed as kSβ

t = 0.4. From Figure 3, we can observe that there is a positive
proportional relationship between the initial wealth value and the amount invested in
the risky asset. That is to say, with the increase in the initial value of wealth, the in-
vestment of enterprise annuity managers in the risky asset generally tends to increase.
This is because the wealth of an enterprise employee is closely related to his ability to take
risks. When the manager’s wealth value is more abundant, they have a stronger ability to
resist risk. The final result is that managers invest a large proportion of their funds in the
risky assets in order to obtain larger and more satisfactory returns. Figure 4 shows the case
in which the deposit interest rate is equal to the loan interest rate. Compared with Figure 3,
it is clear that the difference between the deposit interest rate and loan interest rate has a
significant impact on how managers invest.

0 5 10 15 20 25 30

v

0

2

4

6

8

10

12

14

Y
*

Figure 3. Influence of v on Y∗t when R > r.
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Figure 4. Influence of v on Y∗t when R = r.

Figure 5 shows the effects of the elasticity coefficient β and the expected instantaneous
rate of return of the stock µ on the optimal investment strategy. It can be seen from Figure 5
that the constant variance elasticity coefficient and the amount invested in the risky asset are
negatively correlated, which tells us that when the value of the constant variance elasticity
coefficient becomes larger, experienced enterprise annuity managers consciously reduce the
proportion of their investment in the risky asset. In addition, when the constant variance
elasticity coefficient of the risky asset is set to a fixed value, it is found by comparison that
the stock return has a certain influence on the investment ratio invested in the risky asset,
and there is a positive correlation between the two. The financial background explanation
is clearly apparent; the higher the expected return of the stock, the more managers tend to
invest in the risky asset.

-1.9 -1.85 -1.8 -1.75 -1.7 -1.65 -1.6 -1.55 -1.5 -1.45 -1.4

5

10

15

20

25

Y
*

=0.12

=0.10

=0.08

Figure 5. Influence of β and µ on Y∗t .

Figure 6 shows that the loan interest rate is negatively correlated with the proportion
of investment in the risky asset; that is, as the lending rate R increases, the proportion of
wealth invested in the stock becomes larger. Analyzed from a financial perspective, this
means that when the loan interest rate is too high, injecting too much capital into the risky
asset is very likely to cause great damage to investors’ interests. In order to prevent greater
economic losses, business managers are reluctant to take excessive risks, and instead take
conservative measures.
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Figure 6. Influence of R on Y∗t .

7. Conclusions

As far as we know, few studies in the literature have taken loans into account on the
basis of the CEV model in the financial market. Here, with the help of stochastic control
theory, we derive the HJB equation. The closed form of the optimal asset allocation strategy
is obtained by Legendre transform. Finally, different parameters are selected to simulate
the explicit solution, and a financial interpretation of the optimal investment strategy is
provided. We find that the deposit loan spread has a great impact on the investment
strategy of DC pension plans.

Our future research work will extend this study in the following two aspects. First,
we will extend the CEV model to a more general model, the dynamic elasticity of variance
(DEV) model. Second, we will extend this work to different utility functions.
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