Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem
Abstract
:1. Introduction
Listing 1. MATLAB code for Figure 1. |
%bvp5cNeumann.m |
format long; |
a = 0; |
b = 1; |
k = 2; |
eps = 0.0002; |
ode = @(x,y) [y(2) ; (-k*y(1) + exp(x))/eps]; |
bc = @(ya,yb)[ya(2); yb(2)]; %Neumann BC |
solinit = bvpinit(linspace(a,b,50),[1 0]); |
sol = bvp5c(ode,bc,solinit); |
x = linspace(a,b); |
y = deval(sol,x); |
X=x’; Y=y(1,:)’; |
%[X Y] |
plot(x,Y,’linewidth’,1.5); |
hold on |
plot(x,exp(x)/k, ’--’); |
hold on |
grid on |
xlabel(’$t$’,’interpreter’,’latex’); |
ylabel(’$y_{\varepsilon}(t)$’,’interpreter’,’latex’); |
%print(’figure1’,’-deps’) |
2. Main Result
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, C.K.R.T. Geometric Singular Perturbation Theory. In Dynamical Systems, Part of the Lecture Notes in Mathematics; Springer: Heidelberg, Germany, 2006; Volume 1609, pp. 44–118. [Google Scholar]
- Fenichel, N. Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 1979, 31, 53–98. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, S. Normally Hyperbolic Invariant Manifolds in Dynamical Systems; Springer Science+Business Media: New York, NY, USA, 1994. [Google Scholar]
- Kuehn, C. Multiple Time Scale Dynamics; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar]
- Riley, J.W. Fenichel’s Theorems with Applications in Dynamical Systems; University of Louisville: Louisville, KY, USA, 2012. [Google Scholar]
- De Coster, C.; Habets, P. Two-Point Boundary Value Problems: Lower and Upper Solutions; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Chang, K.W.; Howes, F.A. Nonlinear Singular Perturbation Phenomena: Theory and Applications; Springer: New York, NY, USA, 1984. [Google Scholar]
- Vrabel, R. Upper and lower solutions for singularly perturbed semilinear Neumann’s problem. Math. Bohem. 1997, 122, 175–180. [Google Scholar] [CrossRef]
- Cabada, A.; Lopez-Somoza, L. Lower and Upper Solutions for Even Order Boundary Value Problems. Mathematics 2019, 7, 878. [Google Scholar] [CrossRef] [Green Version]
- Kokotovic, P.; Khalil, H.K.; O’Reilly, J. Singular Perturbation Methods in Control, Analysis and Design; Academic Press: London, UK, 1986. [Google Scholar]
- Vrabel, R. Singularly perturbed semilinear Neumann problem with non-normally hyperbolic critical manifold. Electron. J. Qual. Theory Differ. Equ. 2010, 9, 1–11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrabel, R. Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem. Axioms 2022, 11, 394. https://doi.org/10.3390/axioms11080394
Vrabel R. Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem. Axioms. 2022; 11(8):394. https://doi.org/10.3390/axioms11080394
Chicago/Turabian StyleVrabel, Robert. 2022. "Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem" Axioms 11, no. 8: 394. https://doi.org/10.3390/axioms11080394
APA StyleVrabel, R. (2022). Non-Resonant Non-Hyperbolic Singularly Perturbed Neumann Problem. Axioms, 11(8), 394. https://doi.org/10.3390/axioms11080394