Arctan-Based Family of Distributions: Properties, Survival Regression, Bayesian Analysis and Applications
Abstract
:1. Introduction
2. Model Genesis
2.1. A New Extension of Uniform Distribution in Terms of Arctan Function
2.2. Arctan Odd Log Logistic G Family of Distributions
3. Properties
3.1. Quantile Function
3.2. Asymptotics
3.3. Probability Density and Cumulative Density Function Expansion Series
4. Two Sub-Models
4.1. Arctan Odd Log-Logistic Weibull Distribution
4.2. Arctan Odd Log-Logistic Normal Distribution
5. The ATOLLW Regression Model
5.1. Residual
5.2. Bayesian Inference of Regression Model
6. Simulation
- Generate 5000 samples of size n for the ATOLLN distribution by using the relation (8);
- Compute the maximum likelihood estimates of parameter vector for the one thousand samples, say , for ; ;
- Compute diagonal elements of inverse Fisher information matrix , ; , where j stands for -th elements of parameter vector ;
- Compute the average biases (AB), mean squared errors (MSR), coverage probabilities (CP) and average lengths (AW) given by:
7. Applications
- The normal distribution;
- The exponentiated normal (EN) distribution;
- The beta normal (BN) distribution [2] with density
- The gamma normal (GN) distribution [30] with density,
- The Kumaraswamy normal (KN) distribution [3] with density,
- The odd log-logistic normal (OLL-N) distribution (special case of OLLLN distribution when ) with density [31],
7.1. Failure Times Data
7.2. Windshield Device Data
7.3. Third Application: Regression Analysis
- age;
- previous surgery ( no; yes);
- transplant ( no; yes).
7.3.1. Parameter Estimation
7.3.2. Results of Residual Analysis
7.4. Bayesian Regression Analysis: Heart Transplant Data
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. Commun. Stat.-Theory Methods 2002, 31, 497–512. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; de Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2011, 81, 883–898. [Google Scholar] [CrossRef]
- Bourguignon, M.; Silva, R.B.; Cordeiro, G.M. The Weibull-G family of probability distributions. J. Data Sci. 2014, 12, 53–68. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Alizadeh, M.; Ortega, E.M. The exponentiated half-logistic family of distributions: Properties and applications. J. Probab. Stat. 2014, 2014, 864396. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Ortega, E.M.; Popovic, B.V.; Pescim, R.R. The Lomax generator of distributions: Properties, minification process and regression model. Appl. Math. Comput. 2014, 247, 465–486. [Google Scholar] [CrossRef]
- Faridi, M.; Khaledi, M.J. The polar-generalized normal distribution: Properties, Bayesian estimation and applications. Stat. Pap. 2022, 63, 571–603. [Google Scholar] [CrossRef]
- Gleaton, J.U.; Lynch, J.D. Properties of generalized log-logistic families of lifetime distributions. J. Probab. Stat. Sci. 2006, 4, 51–64. [Google Scholar]
- Alizadeh, M.; Emadi, M.; Doostparast, M.; Cordeiro, G.M.; Ortega, E.M.; Pescim, R.R. A new family of distributions: The Kumaraswamy odd log-logistic, properties and applications. Hacet. J. Math. Stat. 2015, 44, 1491–1512. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Alizadeh, M.; Tahir, M.H.; Mansoor, M.; Bourguignon, M.; Hamedani, G.G. The beta odd log-logistic generalized family of distributions. Hacet. J. Math. Stat. 2016, 45, 1175–1202. [Google Scholar] [CrossRef]
- Alizadeh, M.; Cordeiro, G.M.; Nascimento, A.D.; Lima, M.D.C.S.; Ortega, E.M. Odd-Burr generalized family of distributions with some applications. J. Stat. Comput. Simul. 2017, 87, 367–389. [Google Scholar] [CrossRef]
- Brito, E.; Cordeiro, G.M.; Yousof, H.M.; Alizadeh, M.; Silva, G.O. The Topp–Leone odd log-logistic family of distributions. J. Stat. Comput. Simul. 2017, 87, 3040–3058. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Alizadeh, M.; Ozel, G.; Hosseini, B.; Ortega, E.M.M.; Altun, E. The generalized odd log-logistic family of distributions: Properties, regression models and applications. J. Stat. Comput. Simul. 2017, 87, 908–932. [Google Scholar] [CrossRef]
- Haghbin, H.; Ozel, G.; Alizadeh, M.; Hamedani, G.G. A new generalized odd log-logistic family of distributions. Commun. Stat.-Theory Methods 2017, 46, 9897–9920. [Google Scholar] [CrossRef]
- Alizadeh, M.; MirMostafee, S.M.T.K.; Ortega, E.M.; Ramires, T.G.; Cordeiro, G.M. The odd log-logistic logarithmic generated family of distributions with applications in different areas. J. Stat. Distrib. Appl. 2017, 4, 1–25. [Google Scholar] [CrossRef]
- Chen, M.H.; Ibrahim, J.G.; Sinha, D. A new Bayesian model for survival data with a surviving fraction. J. Am. Stat. Assoc. 1999, 94, 909–919. [Google Scholar] [CrossRef]
- Gupta, R.D.; Kundu, D. Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions. Biom. J. J. Math. Methods Biosci. 2001, 43, 117–130. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K.; Friemer, M. The exponential Weibull family: A reanalysis of the bus-motor failure data. Technometrics 1995, 37, 436–445. [Google Scholar] [CrossRef]
- Nadarajah, S.; Kotz, S. The exponentiated type distribution. Acta Appl. Math. 2006, 92, 97–111. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Ortega, E.M.; Cordeiro, G.M.; Campelo, A.K.; Kattan, M.W.; Cancho, V.G. A power series beta Weibull regression model for predicting breast carcinoma. Stat. Med. 2015, 34, 1366–1388. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.N.D.; Ortega, E.M.; Cordeiro, G.M. The log-odd log-logistic Weibull regression model: Modelling, estimation, influence diagnostics and residual analysis. J. Stat. Comput. Simul. 2016, 86, 1516–1538. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Yousof, H.M.; Ramires, T.G.; Ortega, E.M. The Burr XII system of densities: Properties, regression model and applications. J. Stat. Comput. Simul. 2018, 88, 432–456. [Google Scholar] [CrossRef]
- Alizadeh, M.; Altun, E.; Cordeiro, G.M.; Rasekhi, M. The odd power cauchy family of distributions: Properties, regression models and applications. J. Stat. Comput. Simul. 2018, 88, 785–807. [Google Scholar] [CrossRef]
- Renjini, K.R.; Abdul Sathar, E.I.; Rajesh, G. Bayesian estimation of dynamic cumulative residual entropy for classical Pareto distribution. Am. J. Math. Manag. Sci. 2018, 37, 1–13. [Google Scholar] [CrossRef]
- Calabria, R.; Pulcini, G. Point estimation under asymmetric loss functions for left-truncated exponential samples. Commun. Stat.-Theory Methods 1996, 25, 585–600. [Google Scholar] [CrossRef]
- Chen, G.; Balakrishnan, N. A general purpose approximate goodness-of-fit test. J. Qual. Technol. 1995, 27, 154–161. [Google Scholar] [CrossRef]
- Contreras-Reyes, J.E.; Maleki, M.; Cortés, D.D. Skew-Reflected-Gompertz information quantifiers with application to sea surface temperature records. Mathematics 2019, 7, 403. [Google Scholar] [CrossRef]
- Hoseinzadeh, A.; Maleki, M.; Khodadadi, Z.; Contreras-Reyes, J.E. The Skew-Reflected-Gompertz distribution for analyzing symmetric and asymmetric data. J. Comput. Appl. Math. 2019, 349, 132–141. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Lee, C.; Famoye, F. T-normal family of distributions: A new approach to generalize the normal distribution. J. Stat. Distrib. Appl. 2014, 1, 1–18. [Google Scholar] [CrossRef]
- da Braga, A.S.; Cordeiro, G.M.; Ortega, E.M.; da Cruz, J.N. The odd log-logistic normal distribution: Theory and applications in analysis of experiments. J. Stat. Theory Pract. 2016, 10, 311–335. [Google Scholar] [CrossRef]
- Blischke, W.R.; Murthy, D.N.P. Reliability: Modeling, Prediction and Optimization, 1st ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models, 1st ed.; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Goel, M.K.; Khanna, P.; Kishore, J. Understanding survival analysis: Kaplan-Meier estimate. Int. J. Ayurveda Res. 2010, 1, 274. [Google Scholar] [PubMed]
- Kharazmi, O.; Hamedani, G.G.; Cordeiro, G.M. Log-mean distribution: Applications to medical data, survival regression, Bayesian and non-Bayesian discussion with MCMC algorithm. J. Appl. Stat. 2022, 1–26. [Google Scholar] [CrossRef]
- Baharith, L.A.; Al-Beladi, K.M.; Klakattawi, H.S. The Odds exponential-pareto IV distribution: Regression model and application. Entropy 2020, 22, 497. [Google Scholar] [CrossRef] [PubMed]
Loss Function | Bayes Estimator | Posterior Risk |
---|---|---|
Model | K-S | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
ATOLLN | 2.903 | 0.495 | −1.285 | 0.319 | 126.077 | 0.031 | 0.312 | 0.05 | 0.983 |
(0.200) | (0.162) | (0.630) | (0.161) | ||||||
OLL-N | 2.626 | 0.602 | 0.452 | 127.062 | 0.075 | 0.523 | 0.095 | 0.407 | |
(0.126) | (0.218) | (0.232) | |||||||
ATN | 2.615 | 1.121 | 0.467 | 128.111 | 0.087 | 0.585 | 0.089 | 0.510 | |
(0.476) | (0.114) | (2.011) | |||||||
Normal | 2.557 | 1.112 | 128.119 | 0.091 | 0.607 | 0.092 | 0.444 | ||
(0.121) | (0.086) | ||||||||
EN | 1.823 | 1.339 | 1.954 | 128.064 | 0.074 | 0.521 | 0.084 | 0.560 | |
(2.342) | (0.701) | (3.864) | |||||||
BN | 0.808 | 2.443 | 7.113 | 2.469 | 128.085 | 0.074 | 0.519 | 0.084 | 0.562 |
(7.144) | (8.149) | (48.513) | (14.595) | ||||||
GaN | 2.805 | 0.541 | 0.290 | 0.197 | 127.757 | 0.057 | 0.438 | 0.074 | 0.710 |
(1.057) | (0.264) | (0.381) | (0.215) | ||||||
KwN | 1.653 | 0.747 | 0.918 | 0.319 | 127.848 | 0.063 | 0.468 | 0.079 | 0.641 |
(1.063) | (0.534) | (1.013) | (0.518) | ||||||
ATOLLW | 0.288 | 7.080 | 1.993 | 0.341 | 126.95 | 0.088 | 0.672 | 0.067 | 0.84 |
(0.011) | (0.034) | (0.603) | (0.036) |
Model | K-S | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
ATOLLW | 0.241 | 6.068 | 5.210 | 0.156 | 29.95 | 0.023 | 0.174 | 0.071 | 0.999 |
(0.026) | (0.667) | (2.590) | (0.033) | ||||||
OLL-W | 0.685 | 0.636 | 1.315 | 32.47 | 0.052 | 0.368 | 0.102 | 0.948 | |
(0.302) | (0.665) | (1.524) | |||||||
ATW | 0.369 | 0.909 | 2.500 | 32.27 | 0.043 | 0.318 | 0.108 | 0.924 | |
(0.375) | (0.204) | (4.156) | |||||||
Weibull | 0.718 | 0.807 | 32.51 | 0.065 | 0.431 | 0.118 | 0.866 | ||
(0.196) | (0.129) | ||||||||
EW | 41.358 | 0.298 | 10.443 | 31.83 | 0.023 | 0.211 | 0.096 | 0.967 | |
(277.983) | (0.279) | (30.099) | |||||||
kwW | 888.601 | 0.414 | 281.499 | 0.088 | 30.97 | 0.024 | 0.226 | 0.103 | 0.945 |
(0.017) | (0.001) | (0.035) | (0.018) | ||||||
BW | 41.899 | 0.625 | 5.919 | 0.104 | 31.35 | 0.021 | 0.192 | 0.097 | 0.964 |
(0.084) | (0.020) | (3.737) | (0.025) | ||||||
GaW | 452.763 | 0.449 | 5.504 | 2.909 | 31.67 | 0.041 | 0.297 | 0.101 | 0.952 |
(0.240) | (0.002) | (1.684) | (0.814) | ||||||
ATOLLN | 3.051 | 0.435 | 4.636 | 0.103 | 38.34 | 0.190 | 1.117 | 0.201 | 0.270 |
(0.003) | (0.002) | (0.201) | (0.270) |
Model | |||||||
---|---|---|---|---|---|---|---|
Arctan-Weibull | 9.3779 | −0.0689 | 1.3418 | 2.2273 | 0.2034 | 12.8680 | 0.1687 |
LBXII-W | 4.519 | −0.055 | 1.747 | 2.571 | 2.638 | 3.666 | 0.175 |
[<0.001] | [<0.001] | ||||||
LOLLW | 8.744 | −0.076 | 1.405 | 2.591 | 6.203 | 4.628 | |
[<0.001] | [<0.001] | [<0.001] | |||||
log-Weibull | 7.972 | −0.092 | 1.214 | 2.537 | 1.465 | ||
[<0.001] | [<0.001] | [<0.001] | |||||
LLMW | 6.617 | −0.091 | 1.640 | 2.591 | 2.618 | 1.169 | 0.013 |
LEP | 5.1321 | −0.0923 | 1.214127 | 2.537713 | 1.4655 | 0.1439 | |
[<0.001] | [<0.061] | [<0.001] | |||||
Loss Function | |||||||
---|---|---|---|---|---|---|---|
SELF | 4.7244 | −0.0122 | 1.0151 | 1.6356 | 1.1790 | 0.6499 | 0.8541 |
WSELF | 4.5712 | −0.0141 | 0.7837 | 1.5591 | 1.1658 | 0.0818 | 0.8357 |
MSELF | 4.3337 | −0.0013 | 0.00289 | 1.4721 | 1.1537 | 0.0015 | 0.8174 |
PLF | 4.7768 | 0.0235 | 1.1968 | 1.6692 | 1.1862 | 0.9872 | 0.8637 |
KLF | 4.6472 | 0.0131 | 0.8919 | 1.5969 | 1.1724 | 0.2307 | 0.8449 |
LINEXLF (c = 1) | 4.3559 | −0.0124 | 0.8571 | 1.5794 | 1.1709 | 0.4785 | 0.8462 |
LINEXLF (c = −1) | 4.9239 | −0.0120 | 1.3049 | 1.6903 | 1.1879 | 1.1870 | 0.8627 |
GELF (c = 1) | 4.5712 | −0.0141 | 0.7838 | 1.5590 | 1.1658 | 0.0818 | 0.8357 |
GELF (c = −1) | 4.7244 | −0.0122 | 1.0151 | 1.6356 | 1.1790 | 0.6499 | 0.8541 |
Credible Interval | HPD Interval | |
---|---|---|
(4.4197, 5.1520) | (3.5680, 6.3040) | |
(−0.0237, −0.0049) | (−0.0523, 0.0186) | |
(0.6154, 1.2680) | (−0.0832, 2.3680) | |
(1.4050, 1.8661) | (0.9674, 2.2480) | |
(1.0900, 1.2470) | (0.9403, 1.4330) | |
(0.1778, 0.8085) | (0.0004, 2.2740) | |
(0.7799, 0.9169) | (0.6169, 1.1350) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharazmi, O.; Alizadeh, M.; Contreras-Reyes, J.E.; Haghbin, H. Arctan-Based Family of Distributions: Properties, Survival Regression, Bayesian Analysis and Applications. Axioms 2022, 11, 399. https://doi.org/10.3390/axioms11080399
Kharazmi O, Alizadeh M, Contreras-Reyes JE, Haghbin H. Arctan-Based Family of Distributions: Properties, Survival Regression, Bayesian Analysis and Applications. Axioms. 2022; 11(8):399. https://doi.org/10.3390/axioms11080399
Chicago/Turabian StyleKharazmi, Omid, Morad Alizadeh, Javier E. Contreras-Reyes, and Hossein Haghbin. 2022. "Arctan-Based Family of Distributions: Properties, Survival Regression, Bayesian Analysis and Applications" Axioms 11, no. 8: 399. https://doi.org/10.3390/axioms11080399
APA StyleKharazmi, O., Alizadeh, M., Contreras-Reyes, J. E., & Haghbin, H. (2022). Arctan-Based Family of Distributions: Properties, Survival Regression, Bayesian Analysis and Applications. Axioms, 11(8), 399. https://doi.org/10.3390/axioms11080399