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Abstract: We analyze mathematical models for COVID-19 with discrete time delays and vaccination.
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1. Introduction

A pandemic is an epidemic of an infectious disease occurring worldwide, or over a
very wide area, crossing international boundaries and usually affecting a large number of
people [1]. An infectious disease, also known as transmissible disease or communicable
disease, results from an infection caused by a large range of pathogens such as, for example,
bacteria and viruses. Several modes of transmission can be identified, such as droplet, fecal,
sexual and/or oral and vector-borne transmissions. Historically, communicable diseases
have killed millions of people around the world, for example, smallpox, plague, great
flu, polio, tuberculosis, HIV/AIDS, SARS, global H1N1 flu, cholera, measles, and ebola.
Following the World Health Organization (WHO), some of these infectious diseases remain
a threat for public health, such as cholera, measles, HIV, and tuberculosis [2–4].

In December 2019, a very dangerous SARS-CoV-2 virus quickly invaded the city of
Wuhan in China and, subsequently, 183 countries in the world [5,6]. WHO declared, on
30 January 2020, the COVID-19 infectious disease as a pandemic [7]. It is now known that
the spread of COVID-19 changes very rapidly; therefore, taking appropriate and timely
actions can influence the course of this pandemic.

Since the beginning of the COVID-19 pandemic, researchers proposed different and
complementary mathematical models that describe, approximately, the spread of SARS-
CoV-2 in different regions of the world and with alternative modeling techniques; see,
e.g., [8–14]. Although the literature dealing with models of COVID-19 is now huge, with
special issues [15], books [16], and review papers [17] on this topic, deterministic models of
COVID-19 with delay differential equations and vaccination are relatively scarce [18].

The introduction of time delays to mathematical epidemic models has been studied in
order to better understand and describe the transmission dynamics of infectious diseases;
see, e.g., [14,19–21]. Moreover, time delays may have an important effect on the stability of
the equilibrium points, leading, for example, to periodic solutions by Hopf bifurcation; see,
e.g., [22] and references cited therein.

As in other infectious diseases, the latent and incubation periods have an important
role in the spread of COVID-19. The latent period of an infectious disease is the time
interval between infection and becoming infectious, whether the incubation period is the
time interval between infection and the appearance of clinical symptoms [23–25]. Following
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the WHO, the incubation period for COVID-19 is between 2 and 10 days [26]. In [25], the
authors estimated the mean latent period to be 5.5 (95% CI: 5.1–5.9) days, shorter than
the mean incubation period (6.9 days). However, and differently from other infectious
diseases, asymptomatic infected individuals can transmit the infection and this imposes
more strict mitigation strategies; see, e.g., [27]. To describe and analyze this biological
phenomenon, we generalize here a compartmental mathematical model, first proposed
in [28], by considering a system of delayed differential equations with discrete time delays.

In recent years, several epidemic models have been presented, both stochastic and
deterministic ones; see e.g., [29,30]. In [28], a deterministic mathematical model is proposed
to analyze the spread of the COVID-19 epidemic, based on a dynamic mechanism that
incorporates the intrinsic impact of hidden latent and infectious cases on the entire process
of virus transmission. In [31], Zaitri et al. applied optimal control theory to a generalized
SEIR-type model, based on [28], with three controls, representing social distancing, preven-
tive means, and treatment measures to combat the spread of the COVID-19 pandemic. They
analyzed such optimal control problem with respect to real data transmission in Italy. Their
results show the appropriateness of the model, in particular with respect to the number of
quarantined/hospitalized (confirmed and infected) and recovered individuals. Alternative
approaches based on SIR-type models but that combine machine learning methods have
also been developed; see, e.g., [32,33].

In our paper, we modify the model analyzed in [28] in order to consider time delays,
birth and death rates. More precisely, we introduce a time delay that represents, mathe-
matically, the fact that the migration of individuals from susceptible to infected is subject
to delay. Secondly, we present a normalized version of the SEIR-type model, compute the
equilibrium points, the basic reproduction number, and we prove sufficient conditions
for the stability of the equilibrium points, for any positive time delay. Then, we extend
the previous model in order to consider vaccination and perform numerical simulations
taking into account the real data of the spread of COVID-19 in Italy from 18 October 2020,
to 17 January 2021. This allows us to compare our results with previous ones.

The paper is organized as follows: In Section 2, we propose a delayed SEIQRP mathe-
matical model for COVID-19. Considering the normalized model of the delayed SEIQRP
model, we prove sufficient conditions for the stability of the equilibrium points for any time
delay. Then, in Section 3, we propose a delayed mathematical model for COVID-19 with
vaccination. Analogously, we prove sufficient conditions for the stability of the equilibrium
points of the normalized seiqrpw with vaccination, for any time delay. Numerical simula-
tions and a discussion of the results are provided in Section 4, illustrating the stability of
both delayed models and their practical utility.

2. The Delayed SEIQRP Model

In this section, we propose a delayed mathematical model for COVID-19, which
generalizes the one proposed in [28]. As mentioned in Section 1, there are many different
models but, all of them, are approximations of the reality. For example, in [34] the possibility
to become susceptible again is ignored, although we know re-infection is possible and
occurs; while in [35] deaths are not taken into account.

Our model considers six state variables: susceptible individuals, S(t); exposed individ-
uals, E(t); infected individuals, I(t); quarantined individuals, Q(t); recovered individuals,
R(t); and insusceptible/protected individuals, P(t). The total population is denoted by
N(t) and is given by

N(t) = S(t) + E(t) + I(t) + Q(t) + R(t) + P(t), for all t ∈ [0, T]. (1)

The following assumptions are made to describe the spread of COVID-19: b is the
birth rate, µ is the death rate, α is the protection rate, β the infection rate, γ the inverse of
the average latent time, δ the rate at which infectious people enter in quarantine, and λ the
recovery rate. The time delay τ ≥ 0 represents the incubation period, that is, the length of
time before the infected individuals become infectious.
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We introduce a discrete time delay that represents the transfer delay from the class of
susceptible individuals to the class of infected individuals, after the contact of a susceptible
individual with an infectious one. Precisely, the model we propose is given by the following
system of six nonlinear ordinary delayed differential equations:

Ṡ(t) = bN(t)− βS(t−τ)I(t−τ)
N(t) − (α + µ)S(t),

Ė(t) = βS(t−τ)I(t−τ)
N(t) − (γ + µ)E(t),

İ(t) = γE(t)− (δ + µ)I(t),

Q̇(t) = δI(t)− (λ + µ)Q(t),

Ṙ(t) = λQ(t)− µR(t),

Ṗ(t) = αS(t)− µP(t),

(2)

where the state variables are subject to the initial conditions S(θ) = S0, θ ∈ [−τ, 0],
E(0) = E0, I(θ) = I0, θ ∈ [−τ, 0], Q(0) = Q0, R(0) = R0, and P(0) = P0.

2.1. The Normalized seiqrp Delayed Model

In the situation where the total population size N(t) is not constant along time, it
is often convenient to consider the proportions of each compartment of individuals in
the population, namely s(t) = S(t)

N(t) , e(t) = E(t)
N(t) , i(t) = I(t)

N(t) , q(t) = Q(t)
N(t) , r(t) = R(t)

N(t) ,

and p(t) = P(t)
N(t) . According to equality (1), we have Ṅ(t) = (b− µ)N(t). Therefore, the

normalized seiqrp delayed model is given by

ṡ(t) = b− β s(t− τ) i(t− τ)− (α + b) s(t) ,

ė(t) = β s(t− τ) i(t− τ)− (γ + b) e(t) ,

i̇(t) = γ e(t)− (δ + b) i(t) ,

q̇(t) = δ i(t)− (λ + b) q(t) ,

ṙ(t) = λ q(t)− b r(t) ,

ṗ(t) = α s(t)− b p(t) .

(3)

The state variables for system (3) are subject to the following initial conditions: s(θ) =
S0

N(0)
,

θ ∈ [−τ, 0], e(0) =
E0

N(0)
, i(θ) =

I0

N(0)
, θ ∈ [−τ, 0], q(0) =

Q0

N(0)
, r(0) = R0

N(0) , and

p(0) =
P0

N(0)
, with s(t) + e(t) + i(t) + q(t) + r(t) + p(t) = 1.

In Section 2.2 we show that model (3) has two equilibrium points: the disease free and
the endemic equilibrium.

2.2. Equilibrium Points and the Basic Reproduction Number

The disease free equilibrium and the endemic equilibrium point are obtained by
solving the right hand side of equations in (3) equal to zero:
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b− β s(t− τ) i(t− τ)− (α + b) s(t) = 0 ,

β s(t− τ) i(t− τ)− (γ + b) e(t) = 0 ,

γ e(t)− (δ + b) i(t) = 0 ,

δ i(t)− (λ + b) q(t) = 0 ,

λ q(t)− b r(t) = 0 ,

α s(t)− b p(t) = 0 ,

from which the disease free equilibrium, Σ0, is given by

Σ0 = (s0, e0, i0, q0, r0, p0) =

(
b

α + b
, 0, 0, 0, 0,

α

α + b

)
, (4)

while the endemic equilibrium point, Σ+, is given by

Σ+ =
(
s+, e+, i+, q+, r+, p+

)
(5)

with

s+ =
(δ + b) (γ + b)

β γ
,

e+ =
β s+ i+

(γ + b)
,

i+ =
β γ b− (δ + b)(γ + b)(α + b)

β (δ + b) (γ + b)
,

q+ =
β γ b δ− δ (δ + b)(γ + b)(α + b)

β (λ + b) (δ + b) (γ + b)
,

r+ =
λ δ β γ b− λ δ (δ + b)(γ + b)(α + b)

b β (λ + b) (δ + b) (γ + b)
,

p+ =
α (δ + b) (γ + b)

b β γ
.

(6)

Following the method of van den Driessche [36], one easily compute the following
basic reproduction number:

R0 =
β γ b

(α + b)(δ + b)(γ + b)
. (7)

The reader interested in the details of the algorithm according to which the basic
reproduction number (7) is computed, is referred to the open access article [37].

2.3. Stability of the Normalized seiqrp Delayed Model

Now, we prove some sufficient conditions for the local asymptotic stability of the
disease free equilibrium, Σ0, and the endemic equilibrium point, Σ+, for any time delay
τ ≥ 0.

Consider the following coordinate transformation: x1(t) = s(t)− s̄, x2(t) = e(t)− ē,
x3(t) = i(t)− ī, x4(t) = q(t)− q̄, x5(t) = r(t)− r̄, and x6(t) = p(t)− p̄, where (s̄, r̄, ī, q̄, r̄, p̄)
denotes any equilibrium point of system (3). The linearized system of (3) takes the form

Ẋ(t) = A0 X(t) + A1 X(t− τ), (8)

where X = (x1, x2, x3, x4, x5, x6)
T ,
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A0 =



−α− b 0 0 0 0 0
0 −γ− b 0 0 0 0
0 γ −δ− b 0 0 0
0 0 δ −λ− b 0 0
0 0 0 λ −b 0
α 0 0 0 0 −b

,

and

A1 =



−β ī 0 −β s̄ 0 0 0
β ī 0 β s̄ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.

The characteristic equation of system (3), for any equilibrium point, is given by

∆(y) = |y Id6×6 − A0 − A1 e−τ y|. (9)

We are now in a position to prove our first two results.

Theorem 1 (Stability of the disease free equilibrium of system (3)). If R0 < 1, then the disease
free equilibrium Σ0 is locally asymptotically stable for any time-delay τ ≥ 0. If R0 > 1, then the
disease free equilibrium Σ0 is unstable for any time-delay τ ≥ 0.

Proof. The characteristic equation of (3), at the disease free equilibrium Σ0, is given by

P(y, τ) = (y + b)2 (y + α + b) (y + λ + b) (y2 + Λ1 y + Λ2(y)) = 0, (10)

where Λ1 = δ + 2 b + γ and Λ2(y) = (δ + b) (γ + b)− β γ b
α + b

e−τ y.

Let R0 < 1. We divide the proof into the non-delayed and delayed cases.

(i) Let τ = 0. In this case, the Equation (10) becomes

P(y, 0) = (y + b)2 (y + α + b) (y + λ + b)
(

y2 + Λ1 y + (δ + b) (γ + b)− β γ b
α + b

)
= 0 . (11)

We need to prove that all roots of the characteristic Equation (11) have negative real
parts. It is easy to see that y1 = −b, y2 = −α − b and y3 = −λ − b are roots of
Equation (11) and all of them are real negative roots. Thus, we just need to analyze
the fourth term of (11), here denoted by P1, that is,

P1(y, 0) := y2 + Λ1 y + (δ + b) (γ + b)− β γ b
α + b

.

Using the Routh–Hurwitz criterion [38], we know that all roots of P1(y, 0) have neg-
ative real parts if, and only if, the coefficients of P1(y, 0) are strictly positive. In this
case, we have Λ1 = δ + 2 b + γ > 0 and

(δ + b) (γ + b)− β γ b
α + b

> 0 if and only if R0 =
β γ b

(δ + b)(γ + b)(α + b)
< 1.

Therefore, we have just proved that the disease free equilibrium, Σ0, is locally asymp-
totically stable for τ = 0, whenever R0 < 1.

(ii) Let τ > 0. In this case, we will use Rouché’s theorem [39,40] to prove that all roots
of the characteristic Equation (10) cannot intersect the imaginary axis, i.e., the char-
acteristic equation cannot have pure imaginary roots. Suppose the contrary, that is,
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suppose there exists w ∈ R such that y = w i is a solution of (10). Replacing y in the
fourth term of (10), we get that

−w2 + (δ + 2 b + γ)w i + (δ + b) (γ + b)− β γ b
α + b

(cos(τ w)− i sin(τ w)) = 0.

Then, 
−w2 + (δ + b) (γ + b) =

β γ b
α + b

cos(τ w),

(δ + 2 b + γ)w = − β γ b
α + b

sin(τ w) .

By adding up the squares of both equations, and using the fundamental trigonometric
formula, we obtain that

w4 +
(
(δ + b)2 + (γ + b)2

)
w2 + (δ + b)2 (γ + b)2 −

(
β γ b
α + b

)2
= 0,

which is equivalent to

w2 =
1
2

√(
(δ + b)2 − (γ + b)2

)2
+ 4

(
β γ b
α + b

)2
− 1

2

(
(δ + b)2 + (γ + b)2

)
. (12)

If R0 < 1, then (δ + b)2 (γ + b)2 −
(

β γ b
α + b

)2
> 0, and

(
(δ + b)2 + (γ + b)2

)2
− 4

(
(δ + b)2 (γ + b)2 −

(
β γ b
α + b

)2
)

<
(
(δ + b)2 + (γ + b)2

)2
,

so that √(
(δ + b)2 − (γ + b)2

)2
+ 4

(
β γ b
α + b

)2
< (δ + b)2 + (γ + b)2.

Hence, we have w2 < 0, which is a contradiction. Therefore, we have proved that
whenever R0 < 1, the characteristic Equation (10) cannot have pure imaginary roots
and the disease free equilibrium Σ0 is locally asymptotically stable, for any strictly
positive time-delay τ.

(iii) Suppose now that R0 > 1. We know that the characteristic Equation (10) has three real
negative roots y1 = −b, y2 = −α− b, and y3 = −λ− b. Thus, we need to check if the
remaining roots of

q(y) := y2 + Λ1 y + Λ2(y) (13)

have negative real parts. It is easy to see that q(0) = Λ2(0) < 0 because we are
assuming R0 > 1. On the other hand, lim

y→+∞
q(y) = +∞. Therefore, by continuity of

q(y), there is at least one positive root of the characteristic Equation (10). Hence, we
conclude that Σ0 is unstable when R0 > 1.

The proof is complete.

Theorem 2 (Stability of the endemic equilibrium point of system (3)). Let τ = 0. If R0 > 1,
then the endemic equilibrium point Σ+ is locally asymptotically stable. When τ > 0, the endemic
equilibrium point Σ+ is locally asymptotically stable if the basic reproduction number R0 satisfies
the following relations:

1 < R0 < min

(
3, 1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b

)
(14)
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and
M1R2

0 + M2R0 + M3 > 0, (15)

where

M1 = −(α + b)2
(
(δ + b)2 + (γ + b)2

)
,

M2 = 2 (α + b)2
(
(δ + γ + 2 b)2 − 3 (δ + b) (γ + b)

)
+ 2 (α + b) (δ + b) (γ + b) (δ + γ + 2 b),

M3 = 2 (α + b) (δ + b) (γ + b)(α− δ− γ− b).

Proof. The characteristic Equation (9), computed at the endemic equilibrium point Σ+, is
given by

P̃(y, τ) = (y + b)2 (y + λ + b) (y3 + ∆1(y) y2 + ∆2(y) y + ∆3(y)) = 0 , (16)

where ∆1(y) = L1 + L̄1 e−τ y, ∆2(y) = L2 + L̄2 e−τ y, and ∆3(y) = L3 + L̄3 e−τ y with

L1 = α + δ + γ + 3 b,

L̄1 =
β γ b− (δ + b)(γ + b)(α + b)

(δ + b) (γ + b)
,

L2 = (γ + 2 b + δ) (α + b) + (γ + b) (δ + b),

L̄2 = (γ + 2 b + δ) (α + b) (R0 − 1)− (γ + b) (δ + b),

L3 = (α + b) (γ + b) (δ + b),

L̄3 = β γ b− 2 (α + b) (γ + b) (δ + b).

(i) Let τ = 0. In this case, the Equation (16) becomes

P̃(y, 0) = (y + b)2 (y + λ + b) (y3 + ∆̃1 y2 + ∆̃2 y + ∆̃3) = 0, (17)

where ∆̃1 = L1 + L̄1, ∆̃2 = L2 + L̄2 and ∆̃3 = L3 + L̄3. We need to prove that all the
roots of the characteristic Equation (17) have negative real parts. It is easy to see that
y1 = −b and y2 = −λ− b are roots of (17) and both are real negative roots. Thus, we
just need to consider the third term of the above equation. Let

P̃3(y, 0) := y3 + ∆̃1 y2 + ∆̃2 y + ∆̃3 = 0 . (18)

Using the Routh–Hurwitz criterion [38], we know that all roots of P̃3(y, 0) have neg-
ative real parts if, and only if, the coefficients of P̃3(y, 0) are strictly positive and
∆̃∗ = ∆̃1 ∆̃2 − ∆̃3 > 0. If R0 > 1, then

∆̃1 = α + δ + γ + 3 b + (α + b) (R0 − 1) > 0,

∆̃2 = (δ + γ + 2 b) (α + b) R0 > 0,

∆̃3 = (α + b) (δ + b) (γ + b) (R0 − 1) > 0,

∆̃∗ = (α + b) (α + b) (δ + γ + 2 b) R2
0

+ (α + b) (δ2 + 3 b (δ + b) + γ (δ + γ + 3 b)) R0

+ (α + b) (δ + b) (γ + b) > 0.

(ii) Let τ > 0. Using Rouché’s theorem, we prove that all the roots of the characteristic
Equation (16) cannot intersect the imaginary axis, i.e., the characteristic equation
cannot have pure imaginary roots. Suppose the opposite, that is, assume there exists
w ∈ R such that y = w i is a solution of (16). Replacing y into the third term of (16),
we get that
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−w3 i− L1 w2 + L2 w i + L3 + (−L̄1 w2 + L̄2 w i + L̄3) (cos(τ w)− i sin(τ w)) = 0.

Then, −L1 w2 + L3 = (L̄1 w2 − L̄3) cos(τ w)− L̄2 w sin(τ w),

−w3 + L2 w = −L̄2 w cos(τ w)− (L̄1 w2 − L̄3) sin(τ w) .

By adding up the squares of both equations, and using the fundamental trigonometric
formula, we obtain that

w6 + K1 w4 + K2 w2 + K3 = 0,

where

K1 = L2
1 − L̄2

1 − 2 L2,

K2 = 2 L̄1 L̄3 − 2 L1 L3 + L2
2 − L̄2

2,

K3 = L2
3 − L̄2

3.

Assume that the basic reproduction number R0 satisfies relations (14) and (15) with
the following condition:

min

(
3, 1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b

)
= 1+

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b
. (19)

Then,
K1 = (δ + b)2 + (γ + b)2 + (α + b)2

(
1− (R0 − 1)2

)
> 0.

In contrast, if R0 satisfies relations (14) and (15) with the condition

min

(
3, 1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b

)
= 3 , (20)

then we have

1 < R0 < 3 < 1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b
,

which is equivalent to

0 < R0 − 1 < 2 <

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b
,

1−
(
(α + b)2 + (δ + b)2 + (γ + b)2

(α + b)2

)
< 1− (R0 − 1)2 < 1,

− (δ + b)2 − (γ + b)2 < (α + b)2
(

1− (R0 − 1)2
)
< (α + b)2.

Thus,
K1 > 0.

Under the assumption that the basic reproduction number R0 satisfies relations (14)
and (15), we have

K2 = M1R2
0 + M2R0 + M3 > 0 .

Therefore, if we assume that the basic reproduction number R0 satisfies relations (14)
and (15) with condition (20), then

K3 = (α + b)2 (δ + b)2 (γ + b)2
(

1− (R0 − 2)2
)
> 0;
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if R0 satisfies relations (14) and (15) with condition (19), then we have

1 < R0 < 1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b
< 3,

which is equivalent to

−1 < R0 − 2 < −1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b
< 1,

and also equivalent to
1− (R0 − 2)2 > 0.

Thus,
K3 > 0 .

We conclude that the left hand-side of equation (16) is strictly positive, which implies
that this equation is not possible. Therefore, (17) does not have imaginary roots, which
implies that Σ+ is locally asymptotically stable for any time delay τ > 0.

The proof is complete.

It should be noted that Theorem 2 is not trivial, and it is not easy to give a biologi-
cal/medical interpretation to the relations (14) and (15).

3. The Delayed SEIQRPW Model with Vaccination

Let us introduce in model (2) a constant u and an extra variable W(t), t ∈ [0, t f ],
representing the fraction of susceptible individuals that are vaccinated and the number of
vaccines used, respectively, with

Ẇ(t) = u S(t), (21)

subject to the initial condition W(0) = 0. Note that (21) is just the production rate of vaccinated.
The model with vaccination is given by the following system of seven nonlinear

delayed differential equations:

Ṡ(t) = bN(t)− β S(t−τ) I(t−τ)
N(t) − (α + u + µ) S(t) ,

Ė(t) = β S(t−τ) I(t−τ)
N(t) − (γ + µ)E(t) ,

İ(t) = γE(t)− (δ + µ)I(t) ,

Q̇(t) = δI(t)− (λ + µ)Q(t) ,

Ṙ(t) = λQ(t)− µR(t) ,

Ṗ(t) = αS(t)− µP(t) ,

Ẇ(t) = u S(t)− µW(t) ,

(22)

where the total population N(t) is given by

N(t) = S(t) + E(t) + I(t) + Q(t) + R(t) + P(t) + W(t) , ∀ t ∈ [0, T] . (23)

The state variables are subject to the following initial conditions: S(θ) = S0, θ ∈ [−τ, 0],
E(0) = E0, I(θ) = I0, θ ∈ [−τ, 0], Q(0) = Q0, R(0) = R0, P(0) = P0, and W(0) = 0.

Note that in model (22) we do not vaccinate the insusceptible/protected individ-
uals P(t), assumed protected through precautionary measures with a protection rate α.
Moreover, the fraction of susceptible individuals that are vaccinated is u.
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3.1. Normalized seiqrpw Delayed Model with Vaccination

Analogously to Section 2, we consider the proportions of each compartment of individ-
uals in the population, namely s(t) = S(t)

N(t) , e(t) = E(t)
N(t) , i(t) = I(t)

N(t) , q(t) = Q(t)
N(t) , r(t) = R(t)

N(t) ,

p(t) = P(t)
N(t) , and w(t) = W(t)

N(t) . According to Equation (23), we have Ṅ(t) = (b− µ)N(t).
Therefore, the normalized seiqrpw delayed model is given by

ṡ(t) = b− β s(t− τ) i(t− τ)− (α + u + b) s(t),

ė(t) = β s(t− τ) i(t− τ)− (γ + b) e(t),

i̇(t) = γ e(t)− (δ + b) i(t),

q̇(t) = δ i(t)− (λ + b) q(t),

ṙ(t) = λ q(t)− b r(t),

ṗ(t) = α s(t)− b p(t),

ẇ(t) = u s(t)− b w(t) .

(24)

The state variables for system (24) are subject to the following initial conditions:

s(θ) =
S0

N(0)
, θ ∈ [−τ, 0], e(0) =

E0

N(0)
, i(θ) =

I0

N(0)
, θ ∈ [−τ, 0], q(0) =

Q0

N(0)
,

r(0) = R0
N(0) , p(0) =

P0

N(0)
, and w(0) = 0, with s(t) + e(t) + i(t) + q(t) + r(t) + p(t) +

w(t) = 1.

3.2. Equilibrium Points and the Basic Reproduction Number

The disease free and the endemic equilibrium points of model (24) can be obtained by
equating the right-hand side of Equation (24) to zero, hence satisfying

b− β s(t− τ) i(t− τ)− (α + u + b) s(t) = 0 ,

β s(t− τ) i(t− τ)− (γ + b) e(t) = 0 ,

γe(t)− (δ + b)i(t) = 0 ,

δi(t)− (λ + b)q(t) = 0 ,

λ q(t)− b r(t) = 0 ,

αs(t)− bp(t) = 0 ,

u s(t)− b w(t) = 0 .

The disease free equilibrium of model (24), Σ1, is given by

Σ1 = (s0, e0, i0, q0, r0, p0, w0) =

(
b

α + u + b
, 0, 0, 0, 0,

α

α + u + b
,

u
α + u + b

)
, (25)

while the endemic equilibrium point for system (24), Σ+
V , is given by

Σ+
V = (s∗, e∗, i∗, q∗, r∗, p∗, w∗) , (26)

where
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s∗ =
(δ + b) (γ + b)

β γ
,

e∗ =
β s+ i+

(γ + b)
,

i∗ =
β γ b− (δ + b)(γ + b)(α + u + b)

β (δ + b) (γ + b)
,

q∗ =
β γ b δ− δ (δ + b)(γ + b)(α + u + b)

β (λ + b) (δ + b) (γ + b)
,

r∗ =
λ δ β γ b− λ δ (δ + b)(γ + b)(α + u + b)

b β (λ + b) (δ + b) (γ + b)
,

p∗ =
α (δ + b) (γ + b)

b β γ
,

w∗ =
u (δ + b) (γ + b)

b β γ
.

Following the method from van den Driessche [36], we obtain the following basic
reproduction number, denoted by R̃0:

R̃0 =
β γ b

(α + u + b)(δ + b)(γ + b)
. (27)

3.3. Stability of the Normalized seiqrpw Delayed Model with Vaccination

Consider the following coordinate transformation: x1(t) = s(t)− s̄, x2(t) = e(t)− ē,
x3(t) = i(t)− ī, x4(t) = q(t)− q̄, x5(t) = r(t)− r̄, x6(t) = p(t)− p̄, and x7(t) = w(t)− w̄,
where (s̄, r̄, ī, q̄, r̄, p̄, w̄) denotes an equilibrium point of system (24). The linearized system
of (24) takes the form

Ẋ(t) = Ã0 X(t) + Ã1 X(t− τ), (28)

where X = (x1, x2, x3, x4, x5, x6, x7)
T ,

Ã0 =



−α− u− b 0 0 0 0 0 0
0 −γ− b 0 0 0 0 0
0 γ −δ− b 0 0 0 0
0 0 δ −λ− b 0 0 0
0 0 0 λ −b 0 0
α 0 0 0 0 −b 0
u 0 0 0 0 0 −b


,

Ã1 =



−β ī 0 −β s̄ 0 0 0 0
β ī 0 β s̄ 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

The characteristic equation of system (24) is given by

Γ̃(y) = |y Id7×7 − Ã0 − Ã1 e−τ y|. (29)

We are also able to prove stability results for the normalized seiqrpw delayed model
with vaccination.
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Theorem 3 (Stability of the disease free equilibrium of system (24)). If R̃0 < 1, then the
disease free equilibrium Σ1 is locally asymptotically stable for any time-delay τ ≥ 0. If R̃0 > 1,
then the disease free equilibrium is unstable for any time-delay τ ≥ 0.

Proof. The characteristic Equation (29) at the disease free equilibrium, Σ1, is given by

P∗(y, τ) = (y + b)3 (y + α + u + b) (y + λ + b) (y2 + Γ1 y + Γ2(y)) = 0, (30)

where Γ1 = δ + 2 b + γ and Γ2(y) = (δ + b) (γ + b)− β γ b
α + u + b

e−τ y.

(i) Let τ = 0. In this case, the Equation (30) becomes

P∗(y, 0) = (y + b)3 (y + α + u + b) (y + λ + b)(
y2 + Γ1 y + (δ + b) (γ + b)− β γ b

α + u + b

)
= 0 . (31)

We need to prove that all roots of the characteristic Equation (31) have negative real
parts. It is easy to see that y1 = −b, y2 = −α− u− b and y3 = −λ− b are roots of
Equation (31) and the three are real and negative. Thus, we just need to consider the
fourth term of Equation (31). Let

P∗3 (y, 0) := y2 + Γ1 y + (δ + b) (γ + b)− β γ b
α + u + b

.

Using the Routh–Hurwitz criterion [38], we know that all roots of P∗3 (y, 0) have
negative real parts if, and only if, the coefficients of P∗3 (y, 0) are strictly positive. In
this case, Γ1 = δ + 2 b + γ > 0 and

(δ + b) (γ + b)− β γ b
α + u + b

> 0 if, and only if, R̃0 =
β γ b

(α + u + b) (δ + b) (γ + b)
< 1.

Therefore, we have proved that the disease free equilibrium, Σ1, is locally asymptoti-
cally stable for τ = 0, whenever R̃0 < 1.

(ii) Let τ > 0. Using Rouché’s theorem, we prove that all roots of the characteristic
Equation (30) cannot have pure imaginary roots. Suppose the contrary, i.e., that there
exists w ∈ R such that y = w i is a solution of (30). Replacing y in the fourth term
of (30), we get

−w2 + (δ + 2 b + γ)w i + (δ + b) (γ + b)− β γ b
α + u + b

(cos(τ w)− i sin(τ w)) = 0 .

Then, 
−w2 + (δ + b) (γ + b) =

β γ b
α + u + b

cos(τ w),

(δ + 2 b + γ)w = − β γ b
α + u + b

sin(τ w) .

By adding up the squares of both equations and using the fundamental trigonometric
formula, one has

w4 +
(
(δ + b)2 + (γ + b)2

)
w2 + (δ + b)2 (γ + b)2 −

(
β γ b

α + u + b

)2
= 0,

which is equivalent to

w2 =
1
2

√(
(δ + b)2 − (γ + b)2

)2
+ 4

(
β γ b

α + u + b

)2
− 1

2

(
(δ + b)2 + (γ + b)2

)
. (32)
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If R̃0 < 1, then (δ + b)2 (γ + b)2 −
(

β γ b
α + u + b

)2
> 0, and

(
(δ + b)2 + (γ + b)2

)2
− 4

(
(δ + b)2 (γ + b)2 −

(
β γ b

α + u + b

)2
)

<
(
(δ + b)2 + (γ + b)2

)2
,

so that √(
(δ + b)2 − (γ + b)2

)2
+ 4

(
β γ b

α + u + b

)2
< (δ + b)2 + (γ + b)2.

Hence, we have w2 < 0, which is a contradiction. Therefore, we have proved that if
R̃0 < 1, then the characteristic Equation (30) cannot have pure imaginary roots and
the disease free equilibrium Σ1 is locally asymptotically stable, for any strictly positive
time delay τ.

(iii) Suppose now that R̃0 > 1. We know that the characteristic Equation (30) has three real
negative roots y1 = −b, y2 = −α− u− b and y3 = −λ− b. Thus, we need to check if
the remaining roots of

q∗(y) := y2 + Γ1 y + Γ2(y) (33)

have negative real parts. It is easy to see that q(0) = Γ2(0) < 0, because we are
assuming R̃0 > 1. On the other hand, lim

y→+∞
q∗(y) = +∞. Therefore, by continuity of

q∗(y), there is at least one positive root of the characteristic Equation (30). Hence, we
conclude that Σ1 is unstable, for any τ ≥ 0.

The proof is complete.

Theorem 4 (Stability of the endemic equilibrium point of system (24)). Let τ = 0. If R̃0 > 1,
then the endemic equilibrium point Σ+

V is locally asymptotically stable. When τ > 0, the endemic
equilibrium point Σ+

V is locally asymptotically stable if the basic reproduction number R̃0 satisfies
the following relations:

1 < R̃0 < min

(
3, 1 +

√
(α + u + b)2 + (δ + b)2 + (γ + b)2

α + u + b

)
(34)

and
M∗1 R̃2

0 + M∗2 R̃0 + M∗3 > 0 , (35)

where

M∗1 = −(α + u + b)2
(
(δ + b)2 + (γ + b)2

)
,

M∗2 = 2 (α + u + b)2
(
(δ + γ + 2 b)2 − 3 (δ + b) (γ + b)

)
+ 2 (α + u + b) (δ + b) (γ + b) (δ + γ + 2 b),

M∗3 = 2 (α + u + b) (δ + b) (γ + b)(α + u− δ− γ− b).

(36)

Proof. The characteristic Equation (29), computed at the endemic equilibrium Σ+
V , is

given by

P̃∗(y, τ) = (y + b)3 (y + λ + b) (y3 + Ω1(y) y2 + Ω2(y) y + Ω3(y)) = 0 , (37)

where Ω1(y) = L∗1 + L̄∗1 e−τ y, Ω2(y) = L∗2 + L̄∗2 e−τ y, and Ω3(y) = L∗3 + L̄∗3 e−τ y with
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L∗1 = α + u + δ + γ + 3 b,

L̄∗1 =
β γ b− (δ + b)(γ + b)(α + u + b)

(δ + b) (γ + b)
,

L∗2 = (γ + 2 b + δ) (α + u + b) + (γ + b) (δ + b),

L̄∗2 = (γ + 2 b + δ) (α + u + b) (R̃0 − 1)− (γ + b) (δ + b),

L∗3 = (α + u + b) (γ + b) (δ + b),

L̄∗3 = β γ b− 2 (α + u + b) (γ + b) (δ + b).

(i) Let τ = 0. In this case, Equation (37) becomes

P̃∗(y, 0) = (y + b)3 (y + λ + b)
(

y3 + Ω̃1 y2 + Ω̃2 y + Ω̃3

)
= 0 , (38)

where Ω̃1 = L∗1 + L̄∗1 , Ω̃2 = L∗2 + L̄∗2 and Ω̃3 = L∗3 + L̄∗3 . Looking at the roots of the
characteristic Equation (38), it is easy to see that y1 = −b and y2 = −λ− b are real
negative roots of (38). Considering the third term of the above equation, let

P̃∗3 (y, 0) := y3 + Ω̃1 y2 + Ω̃2 y + Ω̃3 = 0 . (39)

Using the Routh–Hurwitz criterion [38], we know that all roots of P̃∗3 (y, 0) have
negative real parts if, and only if, the coefficients of P̃∗3 (y, 0) are strictly positive and

Ω̃∗ = Ω̃1 Ω̃2 − Ω̃3 > 0.

If R̃0 > 1, then

Ω̃1 = α + u + δ + γ + 3 b + (α + u + b) (R̃0 − 1) > 0,

Ω̃2 = (δ + γ + 2 b) (α + u + b) R̃0 > 0,

Ω̃3 = (α + u + b) (δ + b) (γ + b) (R̃0 − 1) > 0,

Ω̃∗ = (α + u + b) (δ + γ + 2 b) R̃2
0 + (α + u + b) (δ2 + 3 b (δ + b) + γ (δ + γ + 3 b)) R̃0

+ (α + u + b) (δ + b) (γ + b) > 0.

(ii) Let τ > 0. By Rouché’s theorem, we prove that all roots of the characteristic Equation (37)
cannot intersect the imaginary axis, i.e., the characteristic equation cannot have pure
imaginary roots. Suppose the opposite, i.e., that there exists w ∈ R such that y = w i is
a solution of (37). Replacing y in the third term of (37), we get

−w3 i− L∗1 w2 + L∗2 w i + L∗3 + (−L̄∗1 w2 + L̄∗2 w i + L̄∗3) (cos(τ w)− i sin(τ w)) = 0.

Then, −L∗1 w2 + L∗3 = (L̄∗1 w2 − L̄∗3) cos(τ w)− L̄∗2 w sin(τ w) ,

−w3 + L∗2 w = −L̄∗2 w cos(τ w)− (L̄∗1 w2 − L̄∗3) sin(τ w) .

By adding up the squares of both equations and using the fundamental trigonometric
formula, we obtain that

w6 + K∗1 w4 + K∗2 w2 + K∗3 = 0,

where

K∗1 = (L∗1)
2 − (L̄∗1)

2 − 2 L∗2 ,

K∗2 = 2 L̄∗1 L̄∗3 − 2 L∗1 L∗3 + (L∗2)
2 − (L̄∗2)

2,

K∗3 = (L∗3)
2 − (L̄∗3)

2.
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Assume that the basic reproduction number R̃0 satisfies relations (34) and (35) with
the condition

min

(
3, 1 +

√
(α + u + b)2 + (δ + b)2 + (γ + b)2

α + b

)

= 1 +

√
(α + u + b)2 + (δ + b)2 + (γ + b)2

α + u + b
. (40)

Then,
K∗1 = (δ + b)2 + (γ + b)2 + (α + u + b)2

(
1−

(
R̃0 − 1

)2
)
> 0.

In contrast, if R̃0 satisfies relations (34) and (35) under the condition

min

(
3, 1 +

√
(α + u + b)2 + (δ + b)2 + (γ + b)2

α + u + b

)
= 3, (41)

then we have

1 < R̃0 < 3 < 1 +

√
(α + u + b)2 + (δ + b)2 + (γ + b)2

α + u + b
,

which is equivalent to

0 < R̃0 − 1 < 2 <

√
(α + u + b)2 + (δ + b)2 + (γ + b)2

α + u + b
,

1−
(
(α + u + b)2 + (δ + b)2 + (γ + b)2

(α + u + b)2

)
< 1− (R̃0 − 1)2 < 1,

− (δ + b)2 − (γ + b)2 < (α + u + b)2
(

1− (R̃0 − 1)2
)
< (α + u + b)2.

Thus,
K∗1 > 0.

Under the assumption that the basic reproduction number R̃0 satisfies relations (34)
and (35), we have

K∗2 = M∗1 R̃2
0 + M∗2 R̃0 + M∗3 > 0 . (42)

Therefore, if we assume that the basic reproduction number R̃0 satisfies relations (34)
and (35) with condition (41), then

K∗3 = (α + u + b)2 (δ + b)2 (γ + b)2
(

1−
(

R̃0 − 2
)2
)
> 0; (43)

if R̃0 satisfies (34) and (35) with condition (40), then we have

1 < R̃0 < 1 +

√
(α + u + b)2 + (δ + b)2 + (γ + b)2

α + u + b
< 3 ,

which is equivalent to

−1 < R̃0 − 2 < −1 +

√
(α + u + b)2 + (δ + b)2 + (γ + b)2

α + u + b
< 1,

and also equivalent to
1−

(
R̃0 − 2

)2
> 0 .

Thus,
K∗3 > 0.
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We have just proved that the left hand-side of Equation (37) is strictly positive, which
implies that this equation is not possible. Therefore, (38) does not have imaginary
roots, and Σ+

V is locally asymptotically stable, for any time delay τ > 0, whenever R̃0
satisfies conditions (34) and (35).

The proof is complete.

It should be noted that Theorem 3 is not trivial, and it is not easy to give a biologi-
cal/medical interpretation to the relations (34) and (35).

4. Numerical Simulations and Discussion

In this section we investigate, numerically, the local stability of the normalized seiqrp
and seiqrpw models, illustrating our results from Sections 2 and 3. All numerical computa-
tions were performed in the numeric computing environment MATLAB R2019b using the
medium order method and numerical interpolation [41].

4.1. Local Stability of the Delayed seiqrp Model

Consider the normalized delayed seiqrp model (3), proposed in Section 2. Take the
initial conditions

(s0, e0, i0, q0, r0, p0) = (0.7, 0.05, 0.05, 0.1, 0.05, 0.05)

and the parameter values as given in Table 1.

Table 1. Parameter values used in the simulations of Section 4.1.

Parameter Value Units Ref

b 1 Assumed
µ 1 Assumed
δ 1 Assumed
α 1 day−1 Assumed
β 12 day−1 Assumed
γ 1 day−1 Assumed
λ 1 day−1 Assumed
t f 30 day Assumed

In Figure 1, we present the numerical solutions to the delayed model (3) in the time
interval [0, 30] days.

Considering the parameter values from Table 1, we have the following value for the
basic reproduction number R0 of Section 2: R0 = 1.5. From Theorem 2, R0 = 1.5 satisfies
the conditions (14) and (15), so the endemic equilibrium point EE = ( 1

3 , 1
6 , 1

12 , 1
24 , 1

24 , 1
3 ) of

system (3) is locally asymptotically stable for any time delay τ ≥ 0.
In Figure 2, we observe the effect of the time delays: τ = 0, . . . , 6 on the classes e of

exposed and i of infectious. The presence of waves is due to the presence of the time delay
and is related to the emergence of the COVID-19 waves. For the study of multiple epidemic
waves in the context of COVID-19, we refer the interested reader to [42].

4.2. Delayed seiqrpw Model with Vaccination: COVID-19 in Italy

Now, we study, numerically, the stability of the spread of the epidemic of COVID-19
in Italy for the period of three months starting from 18 October 2020, using the delayed
model (24) that we proposed in Section 3. The preliminary conditions and real data were
taken and computed from the database https://raw.githubusercontent.com/pcm-dpc/
COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv (accessed on 14 August 2021).
We consider the initial conditions

(s0, e0, i0, q0, r0, p0, w0) =
1
N
(59.769.273, 403.601, 8.837, 44.098, 254.058, 133, 0)

https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv
https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv
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with N = 60.480.000 [43], and the parameter values as given in Table 2, which are obtained
using the nonlinear least-squares solver [44]. The reader interested in the details of the
nonlinear least-squares solver, according to which the parameters of the delayed model (24)
are computed, is referred to the open access article [44].

Figure 1. Dynamics of model (3) with τ = 3 days. Parameter values as in Table 1.
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Figure 2. Dynamics of model (3) with τ ∈ [0, 6] days. Parameter values as in Table 1.

Table 2. Parameter values used in the simulations of Section 4.2, modeling the spread of the epidemic
of COVID-19 in Italy for the period of three months starting 18 October 2020.

Parameter Value Units Ref.

b 7.391‰ [43]
µ 10.658‰ [43]
α 1.1775 day−1 [44]
β 3.97 day−1 [44]
γ 0.0048 day−1 [44]
λ 0.0182256 day−1 [44]
δ 0.1432 [44]
t f 90 day Assumed

In Figures 3 and 4, we present numerical solutions to the delayed model (24) in the
time interval t ∈ [0, 90] days, t = 0 representing 18 October 2020, and considering two cases:
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• Case 1: τ = 0 days (without delay), with different percentages of susceptible individu-
als being vaccinated — u = 0%, u = 20%, u = 40% and u = 60% (Figure 3).

• Case 2: u = 20% (fixed), with different delays — τ = 0 days, τ = 3 days, and τ = 6
days (Figure 4).

Figure 3. Predictions for Italy from the delayed model (24) with τ = 0 and u ∈ {0%, 20%, 40%, 60%},
between 18 October 2020, and 19 January 2021.

Considering the parameter values from Table 2, and u = 0, u = 20%, u = 40%,
u = 60%, we have the following values for the basic reproduction number R̃0 of Section 3:
R̃0 = 0.0647, R̃0 = 0.0554, R̃0 = 0.0484, and R̃0 = 0.043, respectively. From Theorem 3, the
disease free equilibrium Σ1 of system (24) is locally asymptotically stable for the time delay
τ = 0. From Theorem 4, the endemic equilibrium point Σ+

V of system (24) is unstable for
the time delay τ = 0.

In conclusion, there is an inverse proportional relationship between the fraction u
of susceptible individuals that are vaccinated and the number of exposed, infected, and
recovered individuals: the greater the fraction of susceptible individuals that are vaccinated,
the smaller the number of exposed, infected, and recovered individuals would be, and
vice versa (see Figure 3). Moreover, there is a directly proportional relationship between
the transfer time delay τ from the class of susceptible individuals to the class of infected
individuals and the number of exposed, infected, and recovered individuals: the greater
the time delay, the greater the number of exposed, infected, and recovered individuals
would be, and vice versa (see Figure 4).
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Figure 4. Predictions for Italy from the delayed model (24) with u = 20% and τ ∈ {0, 3, 6} days,
between 18 October 2020, and 19 January 2021.
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