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Abstract: We consider an equation with exponential nonlinearity under the Dirichlet boundary
condition. For a one- or two-dimensional domain, a global solution has been obtained. In this
paper, to extend the result to a higher dimensional case, we concentrate on the radial solutions in an
annulus. First, we construct a time-local solution with an abstract theory of differential equations.
Next, we show that decreasing energy exists in this problem. Finally, we establish a global solution
for the sufficiently small initial value and parameter by Sobolev embedding and Poincaré inequalities
together with some technical estimates. Moreover, when we take the smaller parameter, we prove
that the global solution tends to zero as time goes to infinity.
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1. Introduction

In [1,2], we considered the following parabolic equation:
ut = ∆u + λ(eu − 1) x ∈ Ω, t ∈ (0, Tu0),
u(x, t) = 0 x ∈ ∂Ω, t ∈ (0, Tu0),
u(x, 0) = u0(x) x ∈ Ω

(1)

and the corresponding elliptic equation:{
∆v + λ(ev − 1) = 0 x ∈ Ω,
v(x) = 0 x ∈ ∂Ω,

(2)

where λ > 0, Ω is a bounded domain in Rn with a smooth boundary ∂Ω for n ∈ N, and Tu0

denotes the maximal existing time of the local solution for an initial function u0. In [2], the
author established a unique global solution for a sufficiently small λ > 0 and u0 ∈ H1

0(Ω),
with n = 1, 2. In fact, we have following theorems:

Theorem 1 (Theorem 2 in [2]). Let Ω ⊂ R2 be a bounded domain with a smooth boundary ∂Ω.
For any λ > 0 and u0 ∈ H1

0(Ω) satisfying(
C2

TM +
2|Ω|

µ

)
λ2 + ‖u0‖2

H1
0
< 4π(log 4π − 1), (3)

there exists a unique global solution for (1) satisfying

u ∈ C
(
[0,+∞); H1

0(Ω)
)
∩ C1((0,+∞); L2(Ω)

)
,

where µ is the first eigenvalue of−∆ in Ω with the Dirichlet boundary condition, |Ω| is the measure
of Ω in Rn, and CTM > 0 is a constant which depends only on Ω coming from the Trudinger–Moser
inequality. Moreover, there is some λ1 > 0 such that for any λ < λ1, we have ‖u(·, t)‖H1

0
→ 0 as

t→ +∞.
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Theorem 2 (Theorem 3 in [2]). Let Ω = (0, 1). If we replace (3) with

2
(

e2eC2
S +

1
π2

)
λ2 + ‖u0‖2

H1
0
< e log 2,

then the conclusion of Theorem 1 is still true, where CS > 0 is an embedding constant which
depends only on Ω coming from H1

0(Ω) ⊂ C(Ω).

To prove the results, first of all, we derive the energy inequality from the Lyapunov
function. Next, we apply the Sobolev embedding theorem for n = 1 and the Trudinger–
Moser inequality for n = 2. Thus, it is not easy to extend this result for n ≥ 3. In this paper,
we assume that the domain is an annulus

Aa ≡
{

x ∈ Rn | a < |x| < 1
a

for 0 < a < 1 and n ≥ 2
}

and concentrate on the radial solutions u(r) = u(|x|) for r = |x|. Then, problems (1) and
(2) are reduced to

ut = urr +
n−1

r ur + λ(eu − 1) r ∈ (a, a−1), t ∈ (0, Tu0),
u(a, t) = u(a−1, t) = 0 t ∈ (0, Tu0),
u(r, 0) = u0(r) r ∈ (a, a−1)

(4)

and {
vrr +

n−1
r vr + λ(ev − 1) = 0 r ∈ (a, a−1),

v(a) = v(a−1) = 0,

respectively. In [3], the author considered the radial solutions of the Keller–Segel model
in an annulus. First, they derived an inequality similar to Lemma 6 in this paper. The
difference is the boundary condition. They imposed the Neumann boundary condition
in [3]. Next, they established a global solution by the Lyapunov function and the Sobolev
embedding theorem.

Note that any interval α < s < β for 0 < α < β is transformed into a < r < a−1

through the relations r = (αβ)−1/2s and a = α1/2β−1/2. Hence, the problem on any interval
is equivalent to that on (a, a−1). Henceforward, we denote I ≡ (a, a−1) and |I| = a−1 − a.
We denote the H1

0 space in relation to r withH = H1
0(a, a−1) that is equipped with

‖u‖H =

(∫
I
|ur|2 dr

) 1
2
.

Nowadays, it seems that there are not enough studies that concern (1) and (2). If Ω is
a unit ball, the authors of [1] studied the bifurcation diagram of the positive solution of (2)
and computed the bound for the Morse index globally, not locally, around a bifurcation
point. If the solution was positive and radially symmetric, they established the existence
of a singular solution, the multiple existence of the regular solution, and the bound for its
Morse index. In [2], they dealt with the bifurcation diagram of the solution for (2), which
was not always positive, for n = 1, and proved that nontrivial solutions bifurcate from
trivial solutions and compute the Morse index locally around each bifurcation point. They
found blow-up criteria and proved the existence of a global solution for (1) for a sufficiently
small initial value and parameter. The aim of this paper is therefore to make a few remarks
regarding the solution for (1) for a higher dimensional case. We introduce the main theorem
on the global existence of the solution for (4) for a small initial value and parameter. We also
construct the global solution with the Lyapunov function. We present similar statements to
Theorems 1 and 2.
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Theorem 3. Let n ∈ N and n ≥ 2. For any λ > 0 and u0 ∈ H satisfying

1
n2

{(
1
a

)n
− an

}2(
e2|I|e + |I|

)
λ2 + ‖u0‖2

H < 2ea2(n−1) log 2, (5)

there exists a unique global solution for (4) that satisfies

u ∈ C
(
(0,+∞);H∩ H2(I)

)
∩ C

(
[0,+∞);H

)
∩ C1((0,+∞); L2(I)

)
.

Moreover, there is some λ1 > 0 such that for any λ ∈ (0, λ1) and u0 ∈ H satisfying (5),
we have

‖u(·, t)‖H → 0

as t→ +∞.

We would now like to remark on the corresponding nonlocal problems. In [4,5], the
nonlocal problems corresponding to (1) and (2) were formulated as

ut = ∆u + λ
2

(
eu∫

J eu dx − 1
)

x ∈ J ≡ (0, 1), t > 0,

ux(0, t) = ux(1, t) = 0 t > 0,
u(x, 0) = u0(x) x ∈ J,∫

J u(x, t) dx = 0 t > 0

(6)

and 
∆v + λ

2

(
ev∫

J ev dx − 1
)
= 0 x ∈ J,

vx(0) = vx(1) = 0,∫
J v(x) dx = 0,

(7)

respectively. To introduce the result, we thus define

X =

{
u ∈ H1(J) |

∫
J

u dx = 0
}

and
H2

N(J) =
{

u ∈ H2(J) | ux(0) = ux(1) = 0
}

,

respectively. In a one-dimensional case, the situation in (6) seems to be different from
that in (1). Owing to a nonlocal term, and with the use of the Lyapunov function and the
Sobolev embedding theorem, we can derive a uniform estimate of the norm of u in H1(J)
independently for λ > 0. It is an open problem to obtain an a priori estimate for n ≥ 2.
Then, we can prove that (6) admits a unique global solution in X.

Theorem 4 (Theorem 3 in [4]). For u0 ∈ X, (6) admits a unique global solution u = u(x, t),
such that

u ∈ C([0,+∞); X), ut ∈ L2
(
(0,+∞); L2(J)

)
.

For any T > 0, we have
u ∈ L2

(
(0, T); H2

N(J)
)

.

Finally, we would like to remark on a bifurcation diagram of the solution set of (2)
and (7). First, we note that v(x) = 0 is always a solution for all λ > 0. Then, we argue for the
bifurcation problem with the use of the abstract theory in [6]. However, it is complicated to
investigate an eigenvalue problem for a general domain Ω. Hence, in [1,2,4,5], the authors
obtained the results of the elliptic properties such as the structure of the solution set and
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the monotonicity of the Morse index for a one-dimensional or radial case. In fact, there
exists λm with

0 < λ1 < λ2 < · · · < λm < · · · ↑ +∞

such that two continua S±m of a solution for (2) and (7) bifurcate from (λ, v) = (λm, 0).
Moreover, we can compute the Morse index on a trivial solution (λ, v) = (λ, 0) for any
λ > 0 and (λ, v) ∈ S±m that are sufficiently close to (λm, 0). For details, see Proposition 2 in
[2] and Theorem 2 in [4], respectively.

This paper is composed of 3 sections. In Section 2, we recall the definitions, notations,
and known results. In Section 3, we first transform (4) in order to construct a local solution.
Next, using the Lyapunov function and the Sobolev embedding theorem, we obtain the
necessary estimate of the result of the proof of the global existence for Theorem 3.

2. Preliminary

We recall the definitions, notations, and known results. By defining the norm of H
with ‖u‖H = ‖ur‖2 for u ∈ H, where ‖ · ‖p is the standard Lp norm over I defined by

‖u‖p =

(∫
I
|u(r)|p dr

) 1
p

for p ∈ [1,+∞) and
‖u‖∞ = ess sup

r∈I
|u(r)|,

we then introduce the Sobolev embedding and Poincaré inequalities.

Lemma 1. We have the following inequalities:

‖u‖∞ ≤
√
|I|
2
‖u‖H for u ∈ H,

‖u‖2 ≤
|I|√

2
‖u‖H for u ∈ H.

Lemma 2. We have the following inequality:

∫
I

u2
r rn−1 dr ≤ |I|2

2an−1

∫
I

{(
urrn−1

)
r

}2
dr for u ∈ H ∩ H2(I).

Proof. For a constant function, the conclusion is obvious. Assume that u is not a constant
function. By Lemma 1, we have∫

I
u2

r rn−1 dr = −
∫

I
u
(

urrn−1
)

r
dr

≤
√∫

I
u2 dr

√∫
I
{(urrn−1)r}

2 dr

≤ |I|√
2

√∫
I

u2
r dr
√∫

I
{(urrn−1)r}

2 dr

≤ |I|√
2an−1

√∫
I

u2
r rn−1 dr

√∫
I
{(urrn−1)r}

2 dr,

which completes the proof of the lemma.
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Next, we introduce a technical lemma that plays an important role in deriving the
necessary estimate for the global existence of the solution.

Lemma 3 (Lemma 6 in [2]). Let A, B, α > 0. Assume that Aαe < 1 holds. We define

f (t) = Aeαt + B− t

for t ≥ 0. If

B < − 1
α

log Aαe (8)

holds, then there exist t1 ∈ (0, t0) and t2 ∈ (t0,+∞) such that f (t) ≥ 0 is equivalent to 0 ≤ t ≤ t1
or t ≥ t2, where t0, t1 and t2 satisfy t0 = −(1/α) log Aα and f ′(t0) = f (t1) = f (t2) = 0.

3. Global Solution

First of all, we transform (4) through the relation

w(r, t) = r
1
2 (n−1)u(r, t)

and obtain 
wt = wrr − ρ(r)w + λσ(r)

(
eσ−1(r)w − 1

)
r ∈ I, t ∈ (0, Tu0),

w(a, t) = w(a−1, t) = 0 t ∈ (0, Tu0),
w(r, 0) = w0(r) ≡ σ(r)u0(r) r ∈ I,

(9)

where

ρ = ρ(r) =
(n− 1)(n− 3)

4r2 and σ = σ(r) = r
1
2 (n−1).

For w0 ∈ H, we transform (9) into the integral equation

w(t) = e−Atw0 +
∫ t

0
e−A(t−s)

{
− ρ(r)w(s) + λσ(r)

(
eσ−1(r)w(s) − 1

)}
ds,

where we extend A ≡ −d2/dr2 to be a self-adjoint positive operator in L2(I) with the
domain D(A) = H∩ H2(I) and write the semi-group generated by A as e−At. We prove
the local existence and uniqueness of the solution by the theories of an abstract evolution
equation according to Theorem 4.1 in [7]. Thus, by omitting the details, we can establish a
time-local solution w = w(r, t). Hence, we have the following time-local solution:

u ∈ C
(
(0, Tu0);H∩ H2(I)

)
∩ C

(
[0, Tu0);H

)
∩ C1((0, Tu0); L2(I)

)
.

We then introduce a decreasing energy, which plays an important role in deriving the
necessary estimate for the global solution.

Lemma 4. For u0 ∈ H and t ∈ [0, Tu0),

Lλ(u(t)) ≡
1
2

∫
I
(ur)

2rn−1 dr− λ
∫

I
(eu − u)rn−1 dr

is a decreasing energy in t ∈ [0, Tu0) for (4).

Proof. The conclusion follows from

d
dt

Lλ(u(t)) = −
∫

I
(ut)

2rn−1 dr ≤ 0.
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Proof of Theorem 3. By Lemma 4, we have

Lλ(u(t)) ≤ Lλ(u0)

for all t ∈ [0, Tu0), which yields

1
2

∫
I
(ur)

2rn−1 dr ≤ λ
∫

I
eurn−1 dr− λ

∫
I

urn−1 dr + Lλ(u0). (10)

We then estimate each term of (10) in the following way:

Lemma 5 (Estimate of (10)). We have

an−1‖u‖2
H ≤

∫
I
(ur)

2rn−1 dr.

Lemma 6 (Estimate of (10)). Let

k =
√

2|I|e and l =
(

1
a

)n
− an.

We have

λ
∫

I
eurn−1 dr ≤ 1

2
an−1e

|I|
2k2 ‖u‖

2
H +

l2ek2

2an−1n2 λ2.

Proof. We have

λ
∫

I
eurn−1 dr ≤ λek· 1k ‖u‖∞

∫
I

rn−1 dr

≤ l
n

λe
1
2 k2+ 1

2k2 ‖u‖
2
∞

≤ l
n

λe
1
2 k2

e
|I|

4k2 ‖u‖
2
H

=
√

an−1e
|I|

4k2 ‖u‖
2
H · 1√

an−1
λe

1
2 k2 l

n

≤ 1
2

an−1e
|I|

2k2 ‖u‖
2
H +

l2ek2

2an−1n2 λ2

according to Young’s inequality and Lemma 1.

Lemma 7 (Estimate of (10)). We have∣∣∣∣λ ∫I
urn−1 dr

∣∣∣∣ ≤ 1
4

an−1‖u‖2
H +

l2|I|
2an−1n2 λ2.
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Proof. We have ∣∣∣∣λ ∫I
urn−1 dr

∣∣∣∣ ≤ λ‖u‖∞
l
n

≤ λ

√
|I|
2
‖u‖H

l
n

=

√
1
2

an−1‖u‖H ·
√
|I|

an−1
l
n

λ

≤ 1
4

an−1‖u‖2
H +

l2|I|
2an−1n2 λ2

according to Young’s inequality and Lemma 1.

Lemma 8 (Estimate of (10)). We have

Lλ(u0) ≤
1

2an−1 ‖u0‖2
H.

Proof. The lemma follows from r ≤ a−1 and ep − p > 0 for p ∈ R.

We now go back to the proof of the theorem. Substituting the results of Lemmas 5, 6, 7, and 8
into (10), we have

‖u‖2
H ≤ 2e

|I|
2k2 ‖u‖

2
H +

2l2

a2(n−1)n2

(
ek2

+ |I|
)

λ2 +
2

a2(n−1)
‖u0‖2

H.

Hence, we have

‖u‖2
H ≤ Aeα‖u‖2

H + B,

where

A = 2, α =
|I|
2k2 =

1
4e

and

B =
2l2

a2(n−1)n2

(
ek2

+ |I|
)

λ2 +
2

a2(n−1)
‖u0‖2

H.

We note that
Aαe =

1
2
< 1

and that (5) is equivalent to (8). Hence, we can apply Lemma 3 to f (‖u‖2
H) ≥ 0. Since

‖u0‖2
H <

a2(n−1)

2
B < − 1

2α
log Aαe =

1
2

(
t0 −

1
α

)
< t0

holds, we have
‖u(t)‖2

H ≤ t1

as long as the local solution exists. Hence, a global solution exists inH.
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Finally, we deal with the convergence problem. According to Lemmas 1 and 2, we have

1
2

d
dt

∫
I

u2
r rn−1 dr

= −
∫

I
ut

(
rn−1ur

)
r

dr

= −
∫

I

{(
rn−1ur

)
r
+ λrn−1(eu − 1)

} 1
rn−1

(
rn−1ur

)
r

dr

= −
∫

I

{(
rn−1ur

)
r

}2 1
rn−1 dr− λ

∫
I

{(
rn−1ur

)
r
(eu − 1)

}
dr

≤ −an−1
∫

I

{(
rn−1ur

)
r

}2
dr + λ

∫
I

rn−1euu2
r dr

≤
(

λe
√
|I|
2 ‖u‖H − 2a2n−2

|I|2

) ∫
I

u2
r rn−1 dr

≤
(

λe
√
|I|
2 t1 − 2a2n−2

|I|2

) ∫
I

u2
r rn−1 dr

owing to ‖u‖H ≤
√

t1. Thus, let

λ1 ≡
2a2n−2

|I|2
e−
√
|I|
2 t1 .

If λ < λ1, we have∫
I

u2
r rn−1 dr ≤ exp

{
−2e

√
|I|
2 t1(λ1 − λ)t

} ∫
I
{(u0)r}

2rn−1 dr → 0

as t→ +∞, which completes the proof of the theorem.

Remark 1. In [8], the authors extended the Trudinger–Moser inequality to the case of radially
symmetric functions. Similarly in [3], the Trudinger–Moser inequality was formulated for radially
symmetric functions in an annulus. The advantage of these is that the inequality holds for any
constant because an interval does not contain 0. In our paper, we proved Lemma 6 in a manner
similar to the inequality in [3]. As a result, the global existence of radially symmetric solutions was
proved. The method may be applied to the global existence of radially symmetric solutions for (6)
with n ≥ 2.
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