Novel Fractional Grey Prediction Model with the Change-Point Detection for Overseas Talent Mobility Prediction
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Contributions
2. GM(1,1) and FGM(1,1)
2.1. GM(1,1)
2.2. FGM(1,1)
3. The Proposed Grey Prediction Model
3.1. Change-Point Detection
3.2. Combining Change-Point Detection and FGM(1,1)
3.3. Validation of the CPD-FGM(1,1)
4. Experimental Research
4.1. Results for the Students Studying Abroad
4.2. Results for the Returned Students
4.3. Robustness of the Proposed Model
4.4. Prediction of the Students Studying Abroad and the Returned Students, from 2020 to 2025
5. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, D.; Zheng, W.; Lu, J.; Liu, X.; Wright, M. Forgotten or not? home country embeddedness and returnee entrepreneurship. J. World Bus. 2019, 54, 1–13. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Beijing, China, 2020.
- Dai, O.; Liu, X. Returnee entrepreneurs and firm performance in chinese high-technology industries. Int. Bus. Rev. 2009, 18, 373–386. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, J. Returnee policies in China: Does a strategy of alleviating the financing difficulty of returnee firms promote innovation? Technol. Forecast. Soc. Chang. 2021, 164, 120509. [Google Scholar] [CrossRef]
- Scott, A.J. Jobs or amenities? Destination choices of migrant engineers in the USA*: Migrant engineers. Pap. Reg. Sci. 2010, 89, 43–63. [Google Scholar] [CrossRef]
- Yi, L.; Wang, Y.; Upadhaya, B.; Zhao, S.; Yin, Y. Knowledge spillover, knowledge management capabilities, and innovation among returnee entrepreneurial firms in emerging markets: Does entrepreneurial ecosystem matter? J. Bus. Res. 2021, 130, 283–294. [Google Scholar] [CrossRef]
- Tzeng, C.-H. How foreign knowledge spillovers by returnee managers occur at domestic firms: An institutional theory perspective. Int. Bus. Rev. 2018, 27, 625–641. [Google Scholar] [CrossRef]
- Bai, W.; Johanson, M.; Martín Martín, O. Knowledge and internationalization of returnee entrepreneurial firms. Int. Bus. Rev. 2017, 26, 652–665. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chen, C.-J.; Lin, B.-W. The dual-edged role of returnee board members in new venture performance. J. Bus. Res. 2018, 90, 347–358. [Google Scholar] [CrossRef]
- Deng, J.-L. Control problems of Grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Dang, Y.G.; Wang, Z.X.; Qian, W.Y.; Xiong, P.P. Grey Prediction Techniques and Methods; Science Press: Beijing, China, 2016. [Google Scholar]
- Hu, Y.-C. Grey prediction with residual modification using functional-link net and its application to energy demand forecasting. Kybernetes 2017, 46, 349–363. [Google Scholar] [CrossRef]
- Wu, G.; Hu, Y.-C.; Chiu, Y.-J.; Tsao, S.-J. A new multivariate Grey prediction model for forecasting China’s regional energy consumption. Environ. Dev. Sustain. 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Feng, W.; Liu, W. Interval prediction of short-term traffic speed with limited data input: Application of Fuzzy-Grey combined prediction model. Expert Syst. Appl. 2022, 187, 115878. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, C.; Wen, J.; Xiao, X.; Chen, Z. A Grey convolutional neural network model for traffic flow prediction under traffic accidents. Neurocomputing 2022, 500, 761–775. [Google Scholar] [CrossRef]
- Chen, C.-I.; Chen, H.L.; Chen, S.-P. Forecasting of foreign exchange rates of Taiwan’s major trading partners by novel nonlinear Grey Bernoulli model NGBM(1,1). Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1194–1204. [Google Scholar] [CrossRef]
- Hu, Y.-C. A Multivariate Grey prediction model with Grey relational analysis for bankruptcy prediction problems. Soft Comput. 2020, 24, 4259–4268. [Google Scholar] [CrossRef]
- Li, B.; Zhang, S.; Li, W.; Zhang, Y. Application progress of Grey model technology in agricultural science. Grey Syst. Theory Appl. 2022. [Google Scholar] [CrossRef]
- Jiang, P.; Hu, Y.-C. Constructing interval models using neural networks with non-additive combinations of grey prediction models in tourism demand. Grey Syst. Theory Appl. 2022, in press. [Google Scholar] [CrossRef]
- Tang, X.; Xie, N.; Hu, A. Forecasting annual foreign tourist arrivals to China by incorporating firefly algorithm into fractional non-homogenous discrete Grey model. Kybernetes 2022, 51, 676–693. [Google Scholar] [CrossRef]
- Ceylan, Z. Short-term prediction of COVID-19 spread using Grey rolling model optimized by particle swarm optimization. Appl. Soft Comput. 2021, 109, 107592. [Google Scholar] [CrossRef]
- Seneviratna, D.M.K.N.; Rathnayaka, R.M.K.T. Hybrid Grey exponential smoothing approach for predicting transmission dynamics of the COVID-19 outbreak in Sri Lanka. Grey Syst. Theory Appl. 2022, in press. [Google Scholar] [CrossRef]
- Jiang, H.; Kong, P.; Hu, Y.-C.; Jiang, P. Forecasting China’s CO2 emissions by considering interaction of bilateral FDI using the improved Grey multivariable verhulst model. Environ. Dev. Sustain. 2021, 23, 225–240. [Google Scholar] [CrossRef]
- Wang, M.; Wu, L.; Guo, X. Application of Grey model in influencing factors analysis and trend prediction of carbon emission in Shanxi province. Environ. Monit. Assess. 2022, 194, 542. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Dang, Y.; Fang, Z.; Xie, N. Grey System Theory and Application; Science Press: Beijing, China, 2010. [Google Scholar]
- Hu, Y.-C.; Jiang, P.; Tsai, J.-F.; Yu, C.-Y. An optimized fractional Grey prediction model for carbon dioxide emissions forecasting. Int. J. Environ. Res. Public Health 2021, 18, 587. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Wang, R. A historic review of Grey forecasting models. J. Grey Syst. 2017, 29, 1–29. [Google Scholar]
- Julong, D. Introduction to Grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Akay, D.; Atak, M. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 2007, 32, 1670–1675. [Google Scholar] [CrossRef]
- Sun, X.; Sun, W.; Wang, J.; Zhang, Y.; Gao, Y. Using a Grey–Markov model optimized by Cuckoo search algorithm to forecast the annual foreign tourist arrivals to China. Tour. Manag. 2016, 52, 369–379. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Yao, L.; Yan, S.; Liu, D. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Chen, Y.; Lifeng, W.; Lianyi, L.; Kai, Z. Fractional hausdorff Grey model and its properties. Chaos Solitons Fractals 2020, 138, 109915. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, H.; Zhou, Q.; Wu, J.; Qin, S. China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model. Renew. Sustain. Energy Rev. 2016, 53, 1149–1167. [Google Scholar] [CrossRef]
- Yuan, C.; Zhu, Y.; Chen, D.; Liu, S.; Fang, Z. Using the GM(1,1) model cluster to forecast global oil consumption. Grey Syst. Theory Appl. 2017, 7, 286–296. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Q.; Wang, J.; Liu, M. A rolling Grey model optimized by particle swarm optimization in economic prediction: PSO-RGM in economic prediction. Comput. Intell. 2016, 32, 391–419. [Google Scholar] [CrossRef]
- Brodsky, E.; Darkhovsky, B.S. Nonparametric Methods in Change Point Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993; Volume 243. [Google Scholar]
- Liu, S.; Lin, Y. Grey Information: Theory and Practical Applications; Springer: London, UK, 2006. [Google Scholar]
- Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367. [Google Scholar] [CrossRef]
- Beaulieu, C.; Killick, R. Distinguishing trends and shifts from memory in climate data. J. Clim. 2018, 31, 9519–9543. [Google Scholar] [CrossRef]
- You, S.-H.; Jang, E.J.; Kim, M.-S.; Lee, M.-T.; Kang, Y.-J.; Lee, J.-E.; Eom, J.-H.; Jung, S.-Y. Change point analysis for detecting vaccine safety signals. Vaccines 2021, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Han, C.; Cui, Y.; Zhao, Y. COVID-19 and mobility in tourism cities: A statistical change-point detection approach. J. Hosp. Tour. Manag. 2021, 47, 256–261. [Google Scholar] [CrossRef]
- Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Killick, R.; Beaulieu, C.; Taylor, S.; Hullait, H. EnvCpt: Detection of Structural Changes in Climate and Environment Time Series. Available online: https://CRAN.R-project.org/package=EnvCpt (accessed on 2 July 2022).
- Wu, L.; Gao, X.; Xiao, Y.; Yang, Y.; Chen, X. Using a novel multi-variable Grey model to forecast the electricity consumption of Shandong province in China. Energy 2018, 157, 327–335. [Google Scholar] [CrossRef]
- Ding, S.; Li, R. A new multivariable Grey convolution model based on Simpson’s rule and its applications. Complexity 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Ding, S.; Li, R.; Wu, S. A novel composite forecasting framework by adaptive data preprocessing and optimized nonlinear Grey Bernoulli model for new energy vehicles sales. Commun. Nonlinear Sci. Numer. Simul. 2021, 99, 105847. [Google Scholar] [CrossRef]
- Faris, H.; Aljarah, I.; Mirjalili, S.; Castillo, P.A.; Merelo, J.J. EvoloPy: An open-source nature-inspired optimization framework in Python. In Proceedings of the the 8th International Joint Conference on Computational Intelligence, Porto, Portugal, 9–11 November 2006; SCITEPRESS-Science and Technology Publications: Porto, Portugal, 2016; pp. 171–177. [Google Scholar]
- Yuan, C.; Liu, S.; Fang, Z. Comparison of China’s primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model. Energy 2016, 100, 384–390. [Google Scholar] [CrossRef]
- Wu, L.; Li, N.; Yang, Y. Prediction of air quality indicators for the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2018, 196, 682–687. [Google Scholar] [CrossRef]
- Hu, Y.-C.; Wu, G.; Jiang, P. Tourism demand forecasting using nonadditive forecast combinations. J. Hosp. Tour. Res. 2021, 109634802110478. [Google Scholar] [CrossRef]
MAPE (100%) | Accuracy |
---|---|
0–10 | High |
10–20 | Good |
20–50 | Reasonable |
>50 | Inaccurate |
Year | Raw Data | ARIMA | GM(1,1) | FGM(1,1) | SFGM(1,1) | CPD-GM(1,1) | CPD-FGM(1,1) |
---|---|---|---|---|---|---|---|
2000 | 38,989 | 38,972 | 38,989 | 38,989 | |||
2001 | 83,973 | 83,925 | 84,348 | 83,973 | |||
2002 | 125,179 | 128,957 | 96,053 | 95,875 | |||
2003 | 117,307 | 166,385 | 109,382 | 109,304 | |||
2004 | 114,682 | 109,435 | 124,561 | 124,547 | |||
2005 | 118,515 | 112,057 | 141,846 | 141,878 | |||
2006 | 134,000 | 122,348 | 161,530 | 161,593 | 134,000 | 134,000 | |
2007 | 144,000 | 149,485 | 183,945 | 184,028 | 190,191 | 165,328 | |
2008 | 179,800 | 154,000 | 209,471 | 209,563 | 215,680 | 204,846 | |
2009 | 229,300 | 215,600 | 238,538 | 238,628 | 244,584 | 245,289 | |
2010 | 284,700 | 278,800 | 271,640 | 271,714 | 284,700 | 277,362 | 286,242 |
2011 | 339,700 | 340,100 | 309,335 | 309,378 | 339,700 | 314,533 | 327,855 |
2012 | 399,600 | 394,700 | 352,261 | 352,255 | 386,931 | 356,685 | 370,340 |
2013 | 413,900 | 459,500 | 401,143 | 401,067 | 430,227 | 404,486 | 413,900 |
2014 | 459,800 | 428,200 | 456,809 | 456,637 | 470,588 | 458,693 | 458,718 |
2015 | 523,700 | 505,700 | 520,200 | 519,901 | 508,452 | 520,165 | 504,962 |
2016 | 544,500 | 587,600 | 592,387 | 591,925 | 544,079 | 589,874 | 552,790 |
MAPE | 7.09 | 9.77 | 9.77 | 1.78 | 8.27 | 4.76 | |
2017 | 608,400 | 565,300 | 674,591 | 673,922 | 577,654 | 668,926 | 602,351 |
2018 | 662,100 | 586,100 | 768,203 | 767,273 | 609,323 | 758,572 | 653,791 |
2019 | 703,500 | 606,900 | 874,805 | 873,550 | 639,211 | 860,232 | 707,252 |
MAPE | 10.76 | 17.09 | 16.94 | 7.39 | 15.60 | 0.93 |
Year | Raw Data | ARIMA | GM(1,1) | FGM(1,1) | SFGM(1,1) | CPD-GM(1,1) | CPD-FGM(1,1) |
---|---|---|---|---|---|---|---|
2000 | 9121 | 9116.921 | 9121 | 9121 | |||
2001 | 12,243 | 12,248.26 | 34,537.3 | 19,429.6 | |||
2002 | 17,945 | 15,365 | 42,485.7 | 30,473.2 | |||
2003 | 20,152 | 23,647 | 52,263.4 | 42,085.8 | |||
2004 | 24,726 | 22,359 | 64,291.3 | 54,181.2 | |||
2005 | 34,987 | 29,300 | 79,087.3 | 66,706.1 | |||
2006 | 42,000 | 45,248 | 97,288.4 | 79,624.6 | 42,000 | 42,000 | |
2007 | 44,000 | 49,013 | 119,678 | 92,910.8 | 97,429.5 | 74,337.5 | |
2008 | 69,300 | 46,000 | 147,221 | 106,545 | 117,575 | 108,177 | |
2009 | 108,300 | 94,600 | 181,102 | 120,512 | 141,885 | 143,527 | |
2010 | 134,800 | 147,300 | 222,781 | 134,800 | 171,222 | 180,356 | |
2011 | 186,200 | 161,300 | 274,052 | 149,398 | 206,625 | 218,652 | |
2012 | 272,900 | 237,600 | 337,123 | 164,298 | 249,348 | 258,417 | |
2013 | 353,500 | 359,600 | 414,708 | 179,494 | 353,500 | 300,905 | 299,661 |
2014 | 364,800 | 434,100 | 510,149 | 194,978 | 367,331 | 363,122 | 342,406 |
2015 | 409,100 | 376,100 | 627,554 | 210,745 | 404,670 | 438,203 | 386,675 |
2016 | 432,500 | 453,400 | 771,979 | 226,792 | 433,790 | 528,808 | 432,500 |
MAPE | 11.31 | 92.51 | 56.72 | 0.52 | 28.49 | 21.91 | |
2017 | 480,900 | 455,900 | 949,642 | 243,113 | 577,654 | 638,148 | 479,914 |
2018 | 519,400 | 479,300 | 1,168,190 | 259,706 | 609,323 | 770,095 | 528,953 |
2019 | 580,300 | 502,700 | 1,437,040 | 276,566 | 639,211 | 929,325 | 579,659 |
MAPE | 8.76 | 123.34 | 50.60 | 15.86 | 47.04 | 0.72 |
Students Studying Abroad | Returned Students | |||
---|---|---|---|---|
Raw Data | Predict Values | Raw Data | Predict Values | |
2011 | 339,700 | 339,700 | ||
2012 | 399,600 | 399,598 | 272,900 | 272,900 |
2013 | 413,900 | 428,068 | 353,500 | 353,500 |
2014 | 459,800 | 463,280 | 364,800 | 370,529 |
2015 | 523,700 | 503,649 | 409,100 | 399,243 |
2016 | 544,500 | 548,924 | 432,500 | 434,911 |
2017 | 608,400 | 599,228 | 480,900 | 476,556 |
2018 | 662,100 | 654,858 | 519,400 | 524,079 |
2019 | 703,500 | 716,212 | 580,300 | 577,728 |
2020 | 783,768 | 637,943 | ||
2021 | 858,076 | 705,300 | ||
2022 | 939,751 | 780,485 | ||
2023 | 1,029,480 | 864,291 | ||
2024 | 1,128,020 | 957,620 | ||
2025 | 1,236,210 | 1,061,480 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Wu, G.; Hu, Y.-C.; Zhang, X.; Ren, Y. Novel Fractional Grey Prediction Model with the Change-Point Detection for Overseas Talent Mobility Prediction. Axioms 2022, 11, 432. https://doi.org/10.3390/axioms11090432
Jiang P, Wu G, Hu Y-C, Zhang X, Ren Y. Novel Fractional Grey Prediction Model with the Change-Point Detection for Overseas Talent Mobility Prediction. Axioms. 2022; 11(9):432. https://doi.org/10.3390/axioms11090432
Chicago/Turabian StyleJiang, Peng, Geng Wu, Yi-Chung Hu, Xue Zhang, and Yining Ren. 2022. "Novel Fractional Grey Prediction Model with the Change-Point Detection for Overseas Talent Mobility Prediction" Axioms 11, no. 9: 432. https://doi.org/10.3390/axioms11090432
APA StyleJiang, P., Wu, G., Hu, Y. -C., Zhang, X., & Ren, Y. (2022). Novel Fractional Grey Prediction Model with the Change-Point Detection for Overseas Talent Mobility Prediction. Axioms, 11(9), 432. https://doi.org/10.3390/axioms11090432