An Amended Whale Optimization Algorithm for Optimal Bidding in Day Ahead Electricity Market
Abstract
:1. Introduction
- The curse of dimensionality problem can be solved with the help of the OEL paradigm. Due to the issue of formulating strategic bidding, the huge search space and stochastic nature of the variables make the curse of dimensionality inevitable (rival bids). The job of locating a global optimum in dynamic simulations might thus be challenging. A unique solution to this issue is provided by OEL, which also offers a way out of the neighborhood minima trap. By generating opposing points in the search space, OEL improve any algorithm’s exploration capabilities;
- The characteristics of probable candidates that can address the strategic bidding dilemma should assist them in avoiding premature convergence. Due to the inclusion of stochastic variables throughout the simulation process, the issue of premature convergence in the strategic biding problem is significant. The introduction of OEL improves convergence speed while also guarding against premature convergence of the solver;
- By boosting the exploratory power of whales with Cauchy distribution, Cauchy operator aids in preventing the stagnation in local optimums. Thus, the greedy selection maintains a healthy balance between the current and prior placements of whales while the Cauchy operator aids in enhancing the capacity of whales in terms of exploration and exploitation.
- (a)
- To test the Amended Whale Optimization Algorithm (AWOA) on benchmark functions and resolve issue of bidding in the EM by confirming enhanced exploration and an optimum exploitation of search space through Oppositional Enabled Learning (OEL) and Cauchy Mutation (CM) Operator;
- (b)
- To search the performance of this novel variant i.e., AWOA with parent WOA (Whale Optimization Algorithm) and some recently developed algorithms are applied on benchmark functions;
- (c)
- To achieve different statistical assessments with Wilcoxon rank sum, box plot analysis and convergence investigation for the testing the effectiveness of the developed model;
- (d)
- To construct rival bidding prices using (normal, lognormal, gamma and Weibull) PDF, interpret them using the MC approach, and design a bidding strategy for the day-ahead market by entrancingly taking into account all inter-temporal limits;
- (e)
- To represent a fair evaluation between the outcomes acquired through optimization procedure based on profit, MCP (Market Clearing Price) calculation and solution quality.
2. Problem Statement
- Case I. The Normal distribution;
- Case II. The Lognormal distribution;
- Case III. The Gamma distribution;
- Case IV. The Weibull distribution.
- Generation limits
- 2.
- Minimum uptime
- 3.
- Minimum downtime
- 4.
- Limitations on the bid price
3. Research Methodology
3.1. Monte Carlo (MC) Approach
- For all the competitors participating in the EM, create a huge number of random test trials of block bid values considering the probability distribution equation and constraints of the PDFs;
- With those illustrations of block bid expenses of all of the competitors, decide the huge variety of trial outcomes;
- The average of all of the trial results gives the anticipated cost.
- Stipulate the number of M simulations allowed, M;
- Set simulation counter m = 0;
- Create random values of bid prices for each lth block of m rivals using Normal, Gamma, Weibull and Lognormal distribution function;
- Formulate WOA to pursue the finest bid price for every lth block of Genco-k and record the optimal value;
- Keep posted m = m + 1;
- If m < M then is present at (step 3), else go to see (step 7);
- Determine the predictive assessment of optimum bid price i.e., the average of (m = 1, 2… M). This final price is known as the finest bidding price (pl(t)) for the lth block of Genco-k at hour t.
3.2. Whale Optimization Algorithm (WOA)
3.2.1. Enclosing Prey
3.2.2. Bubble-Net Hunting Routine (Exploitation Phase)
- Shrinking encircling prey is attained by declining the value of Equation (8) thus the range is also reduced. is a random value with the interval of [−α, α] where the value of α declined from 2 to 0 over the time of iterations. Setting random values for in [−1, 1], the updated position of the search agent is well-defined wherever amid the novel and present best agent;
- The spiral position update methodology initially calculates the distance between the whale and the target location and then created a spiral equation to mimic the helix-shaped drive of humpbacks.
3.2.3. Prey’s Searching (Exploration Phase)
3.2.4. Flow Chart of WOA
3.3. Opposition Enabled Learning (OEL)
3.4. Cauchy Mutation (CM) Ooperator in WOA
3.5. Amended Whale Optimization Algorithm (AWOA)
The Opposition Enabled WOA
- Step 1: Initialization
- Step 2: Assessment
- Step 3: The WOA procedure
- Step 4: The OWOA procedure
- Step 5: Amalgamation
- Step 6: The CM operator
- Step 7: Searching the finest solution
- Step 8: Halt or not
4. Benchmarking of AWOA on Standard Benchmark Functions
- (a)
- Unimodal functions (G1-G7) (Table 2):-A function g(x) is a unimodal function if for some value m, it is monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case, the maximum value of g(x) is f(m) and there are no other local maxima;
- (b)
- Multimodal functions (G8-G13) (Table 3):-A function is said to be multimodal function if it has two or more than two local minima or maxima;
- (c)
- Fixed dimensions multimodal functions (G14-G23) (Table 4):-A function is said to be multimodal function if it has two or more than two local minima or maxima with fixed dimension.
4.1. Decisive Evaluation of AWOA on Unimodal Test Functions (G1 to G7)
4.2. Decisive Evaluation of AWOA on Multi-Modal Test Functions (Exploration Behavior of Functions G8 to G13)
4.3. Decisive Evaluation of AWOA on Fixed Modal Test Functions (Exploration Behavior of Functions G14 to G23)
4.4. Evaluation of Algorithm
- Convergence Evaluation
- Statistical Evaluation
- Data Distribution Evaluation
4.4.1. Convergence Evaluation
- From the convergence curves it is observed that the proposed OEL and CM mechanism helps WOA to escape from local minima trap. The outcome of this mechanism emerges as high profit for all the cases;
- It is observed from the figure that WOA has poor convergence properties for this particular problem as the profit yield by the algorithm is minimal as compared with other algorithms.
4.4.2. Statistical Evaluation with Wilcoxon Rank Sum Test
4.4.3. Data Distribution Evaluation with Boxplot
- In Figure 8, four box plots are drawn for functions G3, G8, G13, and G22. This analysis validates the fitness value distribution for unimodal, multimodal, and fixed multimodal dimensions functions. When opposed to ordinary WOA, the proposed AWOA’s interquartile range and median are lower overall specified benchmark functions;
- This implies that the output of AWOA fall in a comparatively narrow range as the conventional WOA. The significant enhancement attained by AWOA is due to opposition-based theory and the search capability of dynamic CM operators.
5. Application of AWOA on Strategic Bidding Problem
- Case I: Normal PDF
- i.
- The third block of Genco-k is not dispatched during the hours with a negative benefit (from 1 to 8 h) due to its high production cost and low system demand;
- ii.
- Due to the third block’s prolonged shutdown, cold startup costs are included in its production costs when it is committed at nine hours (8 h);
- iii.
- At the end of 12th h, 3rd block is again non-dispatched due to low system demand, and minimum down time constraint is active (4 h);
- iv.
- Third block is again dispatched at 15th h, and hot start-up cost is accounted in the making cost, because it has been shut-down for a short time (2 h);
- v.
- Third block is again non-dispatched from 20 to 24 h due to low system demand;
- vi.
- Optimal bid price of 3rd Block is shown zero during 1–8 h, 13–14 h, 18 h and 20–24 h, when it is non-dispatched.
- Case II: Lognormal PDF
- i.
- The third block of Genco-k is non-dispatched in the hours of negative profit (from 1 to 7 h) because of its great production cost and small system load;
- ii.
- Because the third block has been shut-down for a while, the cost of a cold start-up is included in its production costs when it is dispatched at 8 h (7 h);
- iii.
- The third Block is once more not dispatched at the end of 12th hours due to low system demand, and the minimum downtime constraint kicks in at 13th hours;
- iv.
- Due to a short period of shutdown, the third block’s hot start-up cost is included in this hour’s output costs when it is dispatched at 14th h (1h);
- v.
- The third block is again non-dispatched from 20th h to 24th h due to decrement in the system load;
- vi.
- Optimal bid price of the third Block is shown as zero during 1–10 h, 13–14 h, 16–24 h, when it is non-dispatched.
- Case III: Gamma PDF
- i.
- The third block of Genco-k is non-dispatched in the hours of negative benefit (from 1 to 9 h) because of its great production cost and small system demand;
- ii.
- When the third block is dispatched at 10th hours, the cost of a cold start-up is taken into consideration because it has been idle for a while (9 h);
- iii.
- Due to low system demand at the end of the 12th hour, the third block is once more not dispatched, and the minimum downtime constraint is in effect (3 h);
- iv.
- The third block is re-dispatched at the 13th hour, and as it was briefly shutdown; the hot start-up cost is included in the production cost of this hour;
- v.
- Due to less system load, the third block was once again not dispatched from 20 to 24 h;
- vi.
- The optimal bid price of the third block is shown as zero during 1–9 h, 13–14 h and 18–24 h, when it is non-dispatched.
- Case IV: Weibull PDF
- i.
- Block 3 of Genco-k is not supplied during the hours of adverse benefit due to its high manufacturing cost and less system needs (from 1 to 8 h);
- ii.
- Because the block 3 has been shut-down for a while, the cost of a cold start-up is included in its production costs when it is dispatched at nine hours (8 h);
- iii.
- At the conclusion of 12th h, the third block is once more not delivered due to decrement in system demand, and the minimal downtime constraint is in effect (4 h);
- iv.
- The third block is re-dispatched at 15th h, and because it was shut-down for a brief period of time, the hot start-up cost is included in the cost of production for this hr;
- v.
- The third block is again non-dispatched from the 20th to 24th h due to less system load;
- vi.
- Optimal bid price of the third block is exposed zero during 1–8 h, 13–14 h and 20–24 h when it is non-dispatched.
6. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Qmax | Capacity of the lth block of Genco-k [MW]. |
Qmin | Least output of lth block of Genco-k [MW]. |
Least uptime of lth block of Genco-k [hr]. | |
Least downtime of lth block of Genco-k [hr]. | |
Cost for cold start/up [$], measured while the Genco has been shut down for a large time. | |
Cost for cold start/up [$], measured while the Genco has been shut down for a large time. | |
Cooling time constant [hr]. | |
The amount of hours the lth block of Genco-k has been unceasingly ON at the last of hour t [hr]. | |
The amount of hours the lth block of Genco-k has been unceasingly OFF at the last of hour t [hr]. | |
Binary variable, that is 1, if the lth block is dispatched at hour t; otherwise, 0. | |
The amount of hours the Genco has been OFF, at the time of startup [hr]. |
References
- David, A.K.; Wen, F. Strategic bidding in competitive electricity markets: A literature survey. In Proceedings of the 2000 Power Engineering Society Summary Meeting, Seattle, WA, USA, 16–20 July 2000; Volume 4, pp. 2168–2173. [Google Scholar]
- Kirschen, D.S.; Strbac, G. Fundamentals of Power System Economics; John Wiley & Sons Ltd.: London, UK, 2004. [Google Scholar]
- Bajpai, P.; Singh, S.N. Fuzzy Adaptive particle swarm optimization for bidding strategy in uniform price spot market. IEEE Trans. Power Syst. 2007, 22, 2152–2160. [Google Scholar]
- Yucekaya, A.D.; Valenzuela, J.; Dozier, G. Strategic bidding in electricity markets using particle swarm optimization. Electr. Power Syst. Res. 2009, 79, 335–345. [Google Scholar]
- Azadeh, A.; Skandari, M.; Maleki-Shoja, B. An integrated ant colony optimization approach to compare strategies of clearing market in electricity markets: Agent-based simulation. Energy Policy 2010, 38, 6307–6319. [Google Scholar]
- Soleymani, S. Bidding strategy of generation companies using PSO combined with SA method in the pay as bid markets. Int. J. Electr. Power Energy Syst. 2011, 33, 1272–1278. [Google Scholar] [CrossRef]
- Azadeh, A.; Ghaderi, S.F.; Nokhandan, B.P.; Sheikhalishahi, M. A new genetic algorithm approach for optimizing bidding strategy viewpoint of profit maximization of a generation company. Expert Syst. Appl. 2012, 39, 1565–1574. [Google Scholar]
- Kumar, J.V.; Kumar, D.V.; Edukondalu, K. Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Appl. Soft Comput. 2013, 13, 2445–2455. [Google Scholar]
- Kumar, J.V.; Kumar, D.V. Generation bidding strategy in a pool-based electricity market using shuffled frog leaping algorithm. Appl. Soft Comput. 2014, 21, 407–414. [Google Scholar] [CrossRef]
- Shivaie, M.; Ameli, M.T. An environmental/techno-economic approach for bidding strategy in security-constrained electricity markets by a bi-level harmony search algorithm. Renew. Energy 2015, 83, 881–896. [Google Scholar] [CrossRef]
- Nojavan, S.; Zare, K.; Ashpazi, M.A. A hybrid approach based on IGDT–MPSO method for optimal bidding strategy of price-taker generation station in day-ahead electricity market. Int. J. Electr. Power Energy Syst. 2015, 69, 335–343. [Google Scholar]
- Saxena, A.; Soni, B.P.; Kumar, R.; Gupta, V. Intelligent Grey Wolf Optimizer—Development and application for strategic bidding in uniform price spot energy market. Appl. Soft Comput. 2018, 69, 1–13. [Google Scholar] [CrossRef]
- Karri, C.; Rajababu, D.; Raghuram, K. Optimal Bidding Strategy in Deregulated Power Market Using Krill Herd Algorithm. In Applications of Artificial Intelligence Techniques in Engineering; Springer: Singapore, 2018; pp. 43–51. [Google Scholar]
- Sudhakar, A.V.V.; Karri, C.; Laxmi, A.J. Optimal Bidding Strategy in Deregulated Power Market Using Invasive Weed Optimization. In Applications of Artificial Intelligence Techniques in Engineering; Springer: Singapore, 2018; pp. 421–429. [Google Scholar]
- Fanzeres, B.; Ahmed, S.; Street, A. Robust strategic bidding in auction-based markets. Eur. J. Oper. Res. 2019, 272, 1158–1172. [Google Scholar]
- Jain, K.; Saxena, A. Evolutionary Neural Network based hybrid architecture for strategic bidding in electricity market. In Proceedings of the 2021 IEEE 2nd International Conference on Smart Technologies for Power, Energy and Control (STPEC), Bilaspur, India, 19–22 December 2021. [Google Scholar]
- Yang, Y.; Ji, T.; Jing, Z. Selective learning for strategic bidding in uniform pricing electricity spot market. CSEE J. Power Energy Syst. 2021, 7, 1334–1344. [Google Scholar]
- Jain, K.; Jasser, M.B.; Hamzah, M.; Saxena, A.; Mohamed, A.W. Harris Hawk Optimization-Based Deep Neural Networks Architecture for Optimal Bidding in the Electricity Market. Mathematics 2022, 10, 2094. [Google Scholar] [CrossRef]
- Iria, J.; Soares, F.; Matos, M. Optimal supply and demand bidding strategy for an aggregator of small prosumers. Appl. Energy 2018, 213, 658–669. [Google Scholar]
- Mohsenian-Rad, H. Optimal demand bidding for time-shiftable loads. IEEE Trans. Power Syst. 2014, 30, 939–951. [Google Scholar]
- Sadeghi-Mobarakeh, A.; Mohsenian-Rad, H. Optimal bidding in performance-based regulation markets: An MPEC analysis with system dynamics. IEEE Trans. Power Syst. 2016, 32, 1282–1292. [Google Scholar]
- Iria, J.; Soares, F.; Matos, M. Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets. Appl. Energy 2019, 238, 1361–1372. [Google Scholar]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
- Ding, Y.; Chen, Z.; Zhang, H.; Wang, X.; Guo, Y. A short-term wind power prediction model based on CEEMD and WOA-KELM. Renew. Energy 2022, 189, 188–198. [Google Scholar] [CrossRef]
- Singh, A.; Khamparia, A. A hybrid whale optimization-differential evolution and genetic algorithm based approach to solve unit commitment scheduling problem: WODEGA. Sustain. Comput. Inform. Syst. 2020, 28, 100442. [Google Scholar]
- Sharma, A.K.; Saxena, A. A demand side management control strategy using Whale optimization algorithm. SN Appl. Sci. 2019, 1, 870. [Google Scholar]
- Hassan, N.M.; Swief, R.A.; Kamh, M.Z.; Hasanien, H.M.; Abdelaziz, A.Y. Centralized/decentralized optimal load flow based on tuned whale optimization algorithm. In Proceedings of the 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), Aswan, Egypt, 8–9 February 2020. [Google Scholar]
- Shahbudin, I.S.; Musirin, I.; Suliman, S.; Harun, A.F.; Mustaffa, S.A.S.; Suyono, H.; Ghani, N.A. FACTS device installation in transmission system using whale optimization algorithm. Bull. Electr. Eng. Inform. 2019, 8, 30–38. [Google Scholar]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for Machine Intelligence. In Proceedings of the Computational Intelligence for Modeling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [Google Scholar]
- Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition-based differential evolution algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 2010–2017. [Google Scholar]
- Xu, Q.; Wang, L.; Wang, N.; Hei, X.; Zhao, L. A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intell. 2014, 29, 1–12. [Google Scholar]
- Wang, H.; Li, H.; Liu, Y.; Li, C.; Zeng, S. Opposition—Based particle swarm algorithm with Cauchy mutation. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation (CEC2007), Singapore, 25–28 September 2007; pp. 4750–4756. [Google Scholar]
- Wu, Q. Hybrid forecasting model based on support vector machine and particle swarm optimization with adaptive and Cauchy mutation. Expert Syst. Appl. 2011, 38, 9070–9075. [Google Scholar]
- Qin, H.; Zhou, J.; Lu, Y.; Wang, Y.; Zhang, Y. Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro- thermal scheduling. Energy Convers. Manag. 2010, 51, 788–794. [Google Scholar]
- Ali, M.; Pant, M. Improving the performance of differential evolution algorithm using Cauchy mutation. Soft Comput. 2010, 15, 991–1007. [Google Scholar]
- Wang, G.-G.; Deb, S.; Gandomi, A.H.; Alavi, A.H. Opposition-based krill herd algorithm with Cauchy mutation and position clamping. Neurocomputing 2016, 177, 147–157. [Google Scholar]
- Bialek, W.; Callan, C.G.; Strong, S.P. Field theories for learning probability distributions. Phys. Rev. Lett. 1996, 77, 4693–4697. [Google Scholar]
- Boyle, P.P. Options: A Monte Carlo approach. J. Financ. Econ. 1977, 4, 323–338. [Google Scholar]
- Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the monte carlo method is so important today. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 386–392. [Google Scholar]
- Wood, A.J.; Wollenberg, B.F. Power Generation Operation and Control; Wiley: New York, NJ, USA, 1996. [Google Scholar]
- Walters, D.C.; Sheble, G.B. Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans. Power Syst. 1993, 8, 1325–1332. [Google Scholar] [CrossRef]
- Ross, D.W.; Kim, S. Dynamic economic dispatch of generation. IEEE Trans. Power Appar. Syst. 1980, PAS-99, 2060–2068. [Google Scholar] [CrossRef]
BLOCK 1 | BLOCK 3 | BLOCK 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
QI | µin | σin | QI | µin | σin | QI | µin | σin | |
RIVAL 1 | 200 | 10 | 2.5 | 300 | 20 | 3 | 400 | 30 | 3 |
RIVAL 2 | 300 | 15 | 3 | 400 | 30 | 2 | 500 | 50 | 4 |
RIVAL 3 | 250 | 10 | 2 | 300 | 15 | 2.5 | 300 | 20 | 2.5 |
RIVAL 4 | 300 | 20 | 4 | 350 | 25 | 5 | 450 | 40 | 5 |
Function | Dim | Range | Min. Value |
---|---|---|---|
30 | [−100, 100] | 0 | |
30 | [−10, 10] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−30, 30] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−1.28, 1.28] | 0 |
Function | Dim | Range | Min. Value |
---|---|---|---|
30 | [−500, 500] | −418.9829 × 5 | |
30 | [−5.12, 5.12] | 0 | |
30 | [−32, 32] | 0 | |
30 | [−600, 600] | 0 | |
30 | [−50, 50] | 0 | |
30 | [−50, 50] | 0 |
Function | Dim | Range | Min. Value |
---|---|---|---|
2 | [−65, 65] | 1 | |
4 | [−5, 5] | 0.00030 | |
2 | [−5, 5] | −1.0316 | |
2 | [−5, 5] | 0.398 | |
2 | [−2, 2] | 3 | |
3 | [1, 3] | −3.86 | |
6 | [0, 1] | −3.32 | |
4 | [0, 10] | −10.1532 | |
4 | [0, 10] | −10.4028 | |
4 | [0, 10] | −10.5363 |
Functions | Statistical Parameters | Algorithms | ||||||
---|---|---|---|---|---|---|---|---|
AWOA | WOA | SCA | GWO | ALO | MFO | GSA | ||
G1 | Mean | 1.91 × 10−103 | 2.35 × 10−72 | 1.29 × 10−12 | 3.82 × 10−33 | 2.09 × 10−03 | 2.92 × 10−03 | 3.96 × 10−17 |
St.dev | 3.53 × 10−104 | 4.46 × 10−73 | 6.55 × 10−12 | 8.63 × 10−33 | 1.90 × 10−03 | 3.63 × 10−13 | 1.33 × 10−17 | |
p-value | NA | 3.02 × 10−11 | 7.22 × 10−01 | 6.20 × 10−01 | 8.97 × 10−01 | 1.88 × 10−03 | 1.48 × 10−07 | |
G2 | Mean | 2.45 × 10−66 | 6.89 × 10−50 | 1.16 × 10−09 | 6.30 × 10−20 | 6.17 × 10+01 | 1.67 | 3.22 × 10−08 |
St.dev | 4.47 × 10−67 | 1.26 × 10−50 | 2.94 × 10−09 | 4.51 × 10−20 | 5.11 × 10+01 | 4.61 | 6.53 × 10−09 | |
p-value | NA | 3.02 × 10−11 | 7.99 × 10−01 | 6.50 × 10−01 | 2.36 × 10−01 | 7.89 × 10−02 | 6.75 × 10−01 | |
G3 | Mean | 9.16 × 10+04 | 5.82 × 10+04 | 4.17 × 10−04 | 2.60 × 10−08 | 5.02 × 10+03 | 1.67 | 6.00 × 10+02 |
St.dev | 1.47 × 10+04 | 1.06 × 10+04 | 1.72 × 10−03 | 7.06 × 10−08 | 1.49 × 10+03 | 1.73 × 10+03 | 1.80 × 10+02 | |
p-value | NA | 2.44 × 10−09 | 6.64 × 10−02 | 7.64 × 10−02 | 7.84 × 10−01 | 1.23 × 10−02 | 6.80 × 10−08 | |
G4 | Mean | 8.83 × 10+01 | 9.30 × 10+01 | 2.72 × 10−04 | 2.07 × 10−08 | 2.02 × 10+01 | 3.65 | 3.25 |
St.dev | 2.90 × 10+01 | 2.84 × 10+01 | 8.69 × 10−04 | 1.78 × 10−08 | 4.42 | 5.96 | 1.38 | |
p-value | 8.42 × 10−01 | NA | 4.69 × 10−02 | 4.09 × 10−01 | 3.69 × 10−02 | 4.78 × 10−01 | 6.80 × 10−08 | |
G5 | Mean | 2.87 × 10+01 | 2.88 × 10+01 | 3.13 × 10+01 | 2.65 × 10+01 | 2.07 × 10+02 | 3.27 × 10+03 | 3.51 × 10+01 |
St.dev | 4.98 | 5.01 × 10−01 | 5.51 × 10−01 | 5.35 × 10−01 | 2.31 × 10+02 | 1.64 × 10+04 | 2.26 × 10+01 | |
p-value | NA | 5.57 × 10−10 | 3.60 × 10−02 | 1.20 × 10−06 | 4.60 × 10−02 | 6.90 × 10−02 | 1.80 × 10−06 | |
G6 | Mean | 2.78 × 10−01 | 8.11 × 10−01 | 3.85 × 10−01 | 5.12 × 10−01 | 1.13 × 10−03 | 1.19 × 10−13 | 2.33 × 10−01 |
St.dev | 7.02 × 10−02 | 2.33 × 10−01 | 1.14 × 10−01 | 3.26 × 10−01 | 5.35 × 10−04 | 1.60 × 10−13 | 4.30 × 10−01 | |
p-value | NA | 3.19 × 10−09 | 7.56 × 10−03 | 1.64 × 10−01 | 1.26 × 10−01 | 7.90 × 10−02 | 6.80 × 10−08 | |
G7 | Mean | 1.08 × 10−04 | 1.47 × 10−02 | 1.59 × 10−03 | 1.34 × 10−03 | 2.93 × 10−01 | 7.58 × 10−03 | 2.67 × 10−02 |
St.dev | 1.13 × 10−03 | 3.19 × 10−03 | 1.39 × 10−03 | 8.20 × 10−03 | 1.43 × 10−01 | 4.66 × 10−03 | 1.26 × 10−02 | |
p-value | NA | 1.15 × 10−07 | 4.48 × 10−02 | 3.23 × 10−01 | 1.63 × 10−03 | 1.70 × 10−02 | 6.66 × 10−08 |
Functions | Statistical Parameters | Algorithms | ||||||
---|---|---|---|---|---|---|---|---|
AWOA | WOA | SCA | GWO | ALO | MFO | GSA | ||
G8 | Mean | −9.89 × 10+03 | −6.57 × 10+03 | −2.18 × 10+03 | −6.03 × 10+03 | −5.49 × 10+03 | −3.31 × 10+03 | −2.83 × 10+03 |
St.dev | 6.01 × 10+02 | 1.83 × 10+03 | 1.44 × 10+02 | 7.40 × 10+02 | 8.41 × 10+01 | 3.59 × 10+02 | 3.24 × 10+02 | |
p-value | NA | 3.02 × 10−11 | 1.79 × 10−03 | 3.37 × 10−01 | 1.48 × 10−03 | 8.96 × 10−02 | 3.79 × 10−01 | |
G9 | Mean | 0.00 | 0.00 | 7.41 × 10−01 | 2.00 | 7.29 × 10+01 | 2.31 × 10+01 | 1.81 × 10+01 |
St.dev | 0.00 | 0.00 | 3.74 | 3.03 | 1.75 × 10+01 | 1.21 × 10+01 | 3.71 | |
p-value | 1.62 × 10−01 | NA | 2.40 × 10−03 | 1.35 × 10−05 | 4.57 × 10−01 | 1.24 × 10−02 | 8.29 × 10−08 | |
G10 | Mean | 7.99 × 10−15 | 7.99 × 10−15 | 6.44 × 10−04 | 4.39 × 10−14 | 4.38 | 6.71 × 10−02 | 4.66 × 10−09 |
St.dev | 2.03 × 10−15 | 2.09 × 10−15 | 3.53 × 10−03 | 4.70 × 10−15 | 3.21 | 3.68 × 10−01 | 6.96 × 10−10 | |
p-value | 7.85 × 10−01 | NA | 6.80 × 10−02 | 7.35 × 10−01 | 4.79 × 10−02 | 7.80 × 10−02 | 6.80 × 10−08 | |
G11 | Mean | 2.14 × 10−01 | 2.76 × 10−01 | 3.18 × 10−01 | 5.42 × 10−01 | 6.05 × 10−02 | 2.58 × 10−01 | 1.74 × 10+01 |
St.dev | 3.01 × 10−02 | 4.12 × 10−02 | 1.92 × 10−01 | 3.95 × 10−02 | 3.28 × 10−02 | 3.25 × 10−02 | 3.50 | |
p-value | 4.55 × 10−01 | NA | 1.60 × 10−04 | 5.40 × 10−01 | 1.46 × 10−01 | 1.25 × 10−02 | 1.60 × 10−05 | |
G12 | Mean | 1.94 × 10−02 | 6.65 × 10−02 | 8.71 × 10−02 | 2.73 × 10−02 | 1.92 × 10+01 | 1.87 × 10−01 | 6.04 × 10−01 |
St.dev | 3.73 × 10−03 | 1.46 × 10−02 | 4.64 × 10−02 | 1.01 × 10−02 | 1.01 × 10+01 | 4.59 × 10−01 | 5.79 × 10−01 | |
p-value | NA | 4.31 × 10−08 | 1.12 × 10−03 | 1.20 × 10−03 | 1.48 × 10−02 | 7.89 × 10−03 | 1.16 × 10−04 | |
G13 | Mean | 4.45 × 10−02 | 1.42 | 2.73 × 10−01 | 3.82 × 10−01 | 2.39 × 10+01 | 5.14 × 10−02 | 1.98 |
St.dev | 1.04 × 10−01 | 3.59 × 10−01 | 1.57 × 10−01 | 1.69 × 10−01 | 1.32 × 10+01 | 1.64 × 10−01 | 2.21 | |
p-value | NA | 3.02 × 10−11 | 8.97 × 10−03 | 2.40 × 10−02 | 3.65 × 10−01 | 1.46 × 10−01 | 1.56 × 10−04 |
Functions | Statistical Parameters | Algorithms | ||||||
---|---|---|---|---|---|---|---|---|
AWOA | WOA | SCA | GWO | ALO | MFO | GSA | ||
G14 | Mean | 1.08 × 10+01 | 5.93 | 1.46 | 2.76 | 1.40 | 2.31 | 5.33 |
St.dev | 2.03 | 1.20 | 8.53 × 10−01 | 3.29 | 6.94 × 10−01 | 2.01 | 3.94 | |
p-value | 1.00 | 1.10 | 3.58 × 10−01 | 4.80 × 10−03 | N/A | 1.24 × 10−01 | 0.425 | |
G15 | Mean | 2.25 × 10−04 | 8.27 × 10−03 | 1.02 × 10−03 | 3.02 × 10−03 | 2.79 × 10−03 | 9.78 × 10−04 | 3.75 × 10−03 |
St.dev | 2.57 × 10−04 | 1.46 × 10−03 | 3.73 × 10−04 | 6.92 × 10−03 | 2.89 × 10−03 | 3.48 × 10−04 | 2.05 × 10−03 | |
p-value | 6.86 × 10−01 | 6.76 × 10−01 | 1.80 × 10−03 | 6.80 × 10−03 | 1.65 × 10−03 | N/A | 2.62 × 10−01 | |
G16 | Mean | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 | −1.03 |
St.dev | 1.94 × 10−08 | 7.62 × 10−10 | 2.64 × 10−05 | 9.00 × 10−09 | 2.79 × 10−12 | 6.78 × 10−16 | 5.22 × 10−16 | |
p-value | 6.67 × 10−01 | NA | 4.88 × 10−03 | 6.71 × 10−02 | 9.65 × 10−03 | 1.80 × 10−02 | 1.35 × 10−03 | |
G17 | Mean | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 | 3.98 × 10−01 |
St.dev | 2.41 × 10−06 | 3.01 × 10−04 | 1.63 × 10−03 | 1.50 × 10−06 | 1.34 × 10−13 | 0.00 | 0.00 | |
p-value | NA | 7.00 × 10−01 | 1.97 × 10−02 | 3.94 × 10−02 | 1.48 × 10−03 | 3.21 × 10−02 | 1.23 × 10−07 | |
G18 | Mean | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
St.dev | 7.74 × 10−05 | 9.55 × 10−05 | 3.28 × 10−05 | 1.38 × 10−05 | 6.86 × 10−13 | 2.54 × 10−15 | 1.25 × 10−02 | |
p-value | NA | 9.37 × 10−01 | 5.70 × 10−02 | 6.80 × 10−04 | 1.47 × 10−02 | 4.14 × 10−02 | 1.79 × 10−04 | |
G19 | Mean | −3.66 | −3.69 | −3.86 | −3.86 | −3.86 | −3.86 | −3.86 |
St.dev | 3.73 × 10−02 | 3.88 × 10−02 | 2.81 × 10−03 | 1.74 × 10−03 | 1.78 × 10−13 | 2.71 × 10−15 | 3.86 × 10−02 | |
p-value | 7.00 × 10−01 | NA | 3.59 × 10−01 | 4.68 × 10−05 | 4.19 × 10−01 | 7.96 × 10−02 | 8.59 × 10−02 | |
G20 | Mean | −2.71 | −2.84 | −2.91 | −3.32 | −3.27 | −3.22 | −3.32 |
St.dev | 1.08 × 10−02 | 1.17 × 10−01 | 3.07 × 10−01 | 1.19 × 10−01 | 6.16 × 10−02 | 9.65 × 10−02 | 1.19 × 10−01 | |
p-value | 9.37 × 10−01 | 7.37 × 10−01 | 1.46 × 10−01 | 7.90 × 10−05 | N/A | 4.57 × 10−02 | 7.56 × 10−01 | |
G21 | Mean | −8.94 | −2.63 | −3.25 | −6.34 | −6.37 | −6.13 | −6.34 |
St.dev | 2.21 × 10−01 | 2.52 | 1.75 | 3.66 | 2.72 | 3.26 | 3.66 | |
p-value | NA | 2.86 × 10−02 | 2.37 × 10−02 | 1.77 × 10−06 | 2.31 × 10−01 | 1.80 × 10−02 | 9.03 × 10−01 | |
G22 | Mean | 4.25 × 10−01 | −3.84 | −3.70 | −9.97 | −5.10 | −7.42 | −9.97 |
St.dev | 1.21 | 3.20 | 1.80 | 1.67 | 3.01 | 1.21 × 10+01 | 1.67 | |
p-value | NA | 2.86 × 10−02 | 7.42 × 10−02 | 1.92 × 10−05 | 7.90 × 10−01 | 2.39 × 10−01 | 3.94 × 10−01 |
C0 (MW2h) | C1 ($/MWh) | C2 ($/h) | C3 ($/h) | C4 (rad./MW) | Qmax (MW) | Qmin (MW) | MUT (h) | MDT (h) | h ($) | δ ($) | τ (h) | ($) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Block1 | 0.00482 | 7.97 | 78 | 150 | 0.063 | 200 | 50 | 1 | 1 | 1000 | 1500 | 1 | 100 |
Block2 | 0.00194 | 15.85 | 310 | 200 | 0.042 | 400 | 100 | 1 | 1 | 1500 | 2500 | 1 | 200 |
Block3 | 0.001562 | 32.92 | 561 | 300 | 0.0315 | 600 | 100 | 1 | 1 | 2000 | 4000 | 8 | 400 |
LOAD DISPATCH OF NORMAL DISTRIBUTION OF 5 GENCO AN-D 3 BLOCK | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HOUR | LOAD | Rival 1 | Rival 2 | Rival 3 | Rival 4 | GENCO-R | ||||||||||
B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | ||
200 | 300 | 400 | 300 | 400 | 500 | 250 | 300 | 300 | 300 | 350 | 450 | 200 | 400 | 600 | ||
1 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | N-D | N-D | 150 | N-D | N-D | 200 | 400 | N-D |
2 | 1500 | 200 | N-D | N-D | 150 | N-D | N-D | 250 | 300 | N-D | N-D | N-D | N-D | 200 | 400 | N-D |
3 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | N-D | N-D | 150 | N-D | N-D | 200 | 400 | N-D |
4 | 1500 | 200 | 150 | N-D | 300 | N-D | N-D | 250 | N-D | N-D | N-D | N-D | N-D | 200 | 400 | N-D |
5 | 2000 | 200 | 50 | N-D | 300 | N-D | N-D | 250 | 300 | 300 | N-D | N-D | N-D | 200 | 400 | N-D |
6 | 2000 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | N-D | 300 | 300 | N-D | N-D | 200 | 400 | N-D |
7 | 2000 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | 300 | 50 | N-D | N-D | 200 | 400 | N-D |
8 | 2500 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | 250 | 300 | N-D | N-D | 200 | 400 | N-D |
9 | 3000 | 200 | 300 | N-D | 300 | 400 | N-D | 250 | 300 | N-D | 300 | 350 | N-D | 200 | 400 | N-D |
10 | 3500 | 200 | 300 | 400 | 300 | 400 | N-D | 250 | 300 | 300 | 300 | N-D | N-D | 200 | 400 | 150 |
11 | 3500 | 200 | 300 | 200 | 300 | 400 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
12 | 3500 | 200 | 300 | N-D | 300 | 400 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | 200 |
13 | 2500 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | N-D | 300 | 350 | N-D | 200 | 400 | 400 |
14 | 3000 | 200 | 300 | 400 | 300 | N-D | N-D | 250 | 300 | N-D | 300 | 350 | N-D | 200 | 400 | N-D |
15 | 3500 | 200 | 300 | 400 | 300 | N-D | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | 200 |
16 | 3500 | 200 | 300 | 350 | 300 | 250 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
17 | 3500 | 200 | 300 | 400 | 300 | 200 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
18 | 3000 | 200 | 300 | N-D | 300 | 100 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
19 | 3000 | 200 | 300 | N-D | 300 | 400 | N-D | 250 | 300 | 300 | 300 | N-D | N-D | 200 | 400 | 50 |
20 | 2500 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | 300 | 250 | N-D | N-D | 200 | 400 | N-D |
21 | 2000 | 200 | N-D | N-D | N-D | N-D | N-D | 250 | 300 | N-D | 300 | 350 | N-D | 200 | 400 | N-D |
22 | 2000 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | N-D | N-D | 350 | N-D | 200 | 400 | N-D |
23 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | N-D | N-D | 300 | N-D | N-D | 200 | 250 | N-D |
24 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 250 | N-D | N-D | N-D | N-D | 200 | 300 | N-D |
LOAD DISPATCH OF LOGNORMAL DISTRIBUTION OF 5 GENCO AN-D 3 BLOCK | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HOUR | LOAD | Rival 1 | Rival 2 | Rival 3 | Rival 4 | GENCO-R | ||||||||||
B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | ||
200 | 300 | 400 | 300 | 400 | 500 | 250 | 300 | 300 | 300 | 350 | 450 | 200 | 400 | 600 | ||
1 | 1500 | 200 | 100 | N-D | 300 | N-D | N-D | N-D | 300 | N-D | N-D | N-D | N-D | 200 | 400 | N-D |
2 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 100 | 300 | N-D | N-D | N-D | N-D | 200 | 400 | N-D |
3 | 1500 | 200 | 100 | N-D | 300 | N-D | N-D | N-D | 300 | N-D | N-D | N-D | N-D | 200 | 400 | N-D |
4 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | N-D | 300 | N-D | 100 | N-D | N-D | 200 | 400 | N-D |
5 | 2000 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | N-D | N-D | 50 | N-D | 200 | 400 | N-D |
6 | 2000 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | N-D | 300 | 50 | N-D | 200 | 400 | N-D |
7 | 2000 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | N-D | N-D | 350 | N-D | 200 | 400 | N-D |
8 | 2500 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | N-D | 300 | 250 | N-D | 200 | 400 | N-D |
9 | 3000 | 200 | 300 | 400 | 300 | 50 | N-D | 250 | 300 | 300 | 300 | N-D | N-D | 200 | 400 | N-D |
10 | 3500 | 200 | 300 | 200 | 300 | 400 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
11 | 3500 | 200 | 300 | 400 | 300 | 400 | N-D | 250 | 300 | 300 | 300 | N-D | N-D | 200 | 400 | 150 |
12 | 3500 | 200 | 300 | 400 | 300 | N-D | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | 200 |
13 | 2500 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | N-D | 300 | 250 | N-D | 200 | 400 | N-D |
14 | 3000 | 200 | 300 | 400 | 300 | N-D | N-D | 250 | 300 | 300 | 300 | 50 | N-D | 200 | 400 | N-D |
15 | 3500 | 200 | 300 | 400 | 300 | N-D | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | 200 |
16 | 3500 | 200 | 300 | 400 | 300 | 200 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
17 | 3500 | 200 | 300 | 200 | 300 | 400 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
18 | 3000 | 200 | 300 | 400 | 300 | N-D | N-D | 250 | 300 | N-D | 300 | 350 | N-D | 200 | 400 | N-D |
19 | 3000 | 200 | 300 | 400 | 300 | N-D | N-D | 250 | 300 | N-D | 300 | 350 | N-D | 200 | 400 | N-D |
20 | 2500 | 200 | 300 | N-D | N-D | N-D | N-D | 250 | 300 | 300 | 300 | 250 | N-D | 200 | 400 | N-D |
21 | 2000 | 200 | 50 | N-D | 300 | N-D | N-D | 250 | 300 | N-D | 300 | N-D | N-D | 200 | 400 | N-D |
22 | 2000 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | 300 | 50 | N-D | N-D | 200 | 400 | N-D |
23 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 100 | 300 | N-D | N-D | N-D | N-D | 200 | 400 | N-D |
24 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 100 | 300 | N-D | N-D | N-D | N-D | 200 | 400 | N-D |
LOAD DISPATCH OF GAMMA DISTRIBUTION OF 5 GENCO AN-D 3 BLOCK | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HOUR | LOAD | Rival 1 | Rival 2 | Rival 3 | Rival 4 | GENCO-R | ||||||||||
B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | ||
200 | 300 | 400 | 300 | 400 | 500 | 250 | 300 | 300 | 300 | 350 | 450 | 200 | 400 | 600 | ||
1 | 1500 | 200 | N-D | N-D | 150 | N-D | N-D | 250 | 300 | N-D | N-D | N-D | N-D | 200 | 400 | N-D |
2 | 1500 | 200 | N-D | N-D | N-D | N-D | N-D | 250 | 300 | N-D | 150 | N-D | N-D | 200 | 400 | N-D |
3 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | N-D | N-D | N-D | N-D | 200 | 250 | N-D |
4 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | N-D | N-D | N-D | N-D | 200 | 250 | N-D |
5 | 2000 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | 50 | N-D | N-D | N-D | 200 | 400 | N-D |
6 | 2000 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | 50 | 300 | N-D | N-D | 200 | 400 | N-D |
7 | 2000 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | N-D | 50 | N-D | N-D | 200 | 400 | N-D |
8 | 2500 | 200 | 150 | N-D | 300 | N-D | N-D | 250 | 300 | 300 | 300 | 100 | N-D | 200 | 400 | N-D |
9 | 3000 | 200 | 300 | 100 | 300 | N-D | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
10 | 3500 | 200 | 300 | 400 | 300 | 200 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
11 | 3500 | 200 | 300 | 400 | 300 | 200 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
12 | 3500 | 200 | 300 | 400 | 300 | 200 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
13 | 2500 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | 250 | 300 | N-D | N-D | 200 | 400 | N-D |
14 | 3000 | 200 | 300 | N-D | 300 | 100 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
15 | 3500 | 200 | 300 | 200 | 300 | 400 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
16 | 3500 | 200 | 300 | 400 | 300 | 200 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
17 | 3500 | 200 | 300 | 400 | 300 | 200 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
18 | 3000 | 200 | 300 | N-D | 300 | 100 | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
19 | 3000 | 200 | 300 | 100 | 300 | N-D | N-D | 250 | 300 | 300 | 300 | 350 | N-D | 200 | 400 | N-D |
20 | 2500 | 200 | 300 | N-D | 300 | N-D | N-D | 250 | 300 | 300 | 300 | N-D | N-D | 200 | 350 | N-D |
21 | 2000 | 200 | 50 | N-D | 300 | N-D | N-D | 250 | 300 | N-D | 300 | N-D | N-D | 200 | 400 | N-D |
22 | 2000 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | N-D | N-D | 350 | N-D | 200 | 400 | N-D |
23 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | N-D | N-D | N-D | N-D | 200 | 250 | N-D |
24 | 1500 | 200 | N-D | N-D | 300 | N-D | N-D | 250 | 300 | N-D | N-D | N-D | N-D | 200 | 250 | N-D |
LOAD DISPATCH OF WEIBULL DISTRIBUTION OF 5 GENCO AND 3 BLOCK | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HOUR | LOAD | Rival 1 | Rival 2 | Rival 3 | Rival 4 | GENCO-R | ||||||||||
B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 | ||
200 | 300 | 400 | 300 | 400 | 500 | 250 | 300 | 300 | 300 | 350 | 450 | 200 | 400 | 600 | ||
1 | 1500 | 200 | ND | ND | 300 | ND | ND | 250 | 300 | ND | ND | ND | ND | 200 | 250 | ND |
2 | 1500 | 200 | ND | ND | 300 | ND | ND | 250 | 300 | ND | ND | ND | ND | 200 | 250 | ND |
3 | 1500 | 200 | ND | ND | 300 | ND | ND | 250 | 300 | ND | ND | ND | ND | 200 | 250 | ND |
4 | 1500 | 200 | ND | ND | ND | ND | ND | 250 | 300 | 300 | ND | ND | ND | 200 | 250 | ND |
5 | 2000 | 200 | ND | 300 | 300 | ND | ND | 250 | 300 | ND | 50 | ND | ND | 200 | 400 | ND |
6 | 2000 | 200 | ND | ND | 300 | ND | ND | 250 | 300 | 50 | 300 | ND | ND | 200 | 400 | ND |
7 | 2000 | 200 | 300 | ND | 300 | ND | ND | 250 | 300 | 50 | ND | ND | ND | 200 | 400 | ND |
8 | 2500 | 200 | 300 | ND | 300 | ND | ND | 250 | 300 | 250 | 300 | ND | ND | 200 | 400 | ND |
9 | 3000 | 200 | 300 | 400 | 300 | ND | ND | 250 | 300 | ND | 300 | 350 | ND | 200 | 400 | ND |
10 | 3500 | 200 | 300 | 400 | 300 | 200 | ND | 250 | 300 | 300 | 300 | 350 | ND | 200 | 400 | ND |
11 | 3500 | 200 | 300 | 200 | 300 | 400 | ND | 250 | 300 | 300 | 300 | 350 | ND | 200 | 400 | ND |
12 | 3500 | 200 | 300 | 200 | 300 | 400 | ND | 250 | 300 | 300 | 300 | 350 | ND | 200 | 400 | ND |
13 | 2500 | 200 | 300 | ND | 300 | ND | ND | 250 | 300 | 250 | 300 | ND | ND | 200 | 400 | ND |
14 | 3000 | 200 | 300 | 100 | 300 | ND | ND | 250 | 300 | 300 | 300 | 350 | ND | 200 | 400 | ND |
15 | 3500 | 200 | 300 | 400 | 300 | 200 | ND | 250 | 300 | 300 | 300 | 350 | ND | 200 | 400 | ND |
16 | 3500 | 200 | 300 | ND | 300 | 400 | ND | 250 | 300 | 300 | 300 | 350 | ND | 200 | 400 | 200 |
17 | 3500 | 200 | 300 | 200 | 300 | 400 | ND | 250 | 300 | 300 | 300 | 350 | ND | 200 | 400 | ND |
18 | 3000 | 200 | 300 | ND | 300 | ND | ND | 250 | 300 | 300 | 300 | 350 | ND | 200 | 400 | 100 |
19 | 3000 | 200 | 300 | 100 | 300 | ND | ND | 250 | 300 | 300 | 300 | 350 | ND | 200 | 400 | ND |
20 | 2500 | 200 | 300 | ND | 300 | ND | ND | 250 | 300 | 250 | 300 | ND | ND | 200 | 400 | ND |
21 | 2000 | 200 | 300 | ND | 300 | ND | ND | 250 | 300 | ND | 300 | ND | ND | 200 | 150 | ND |
22 | 2000 | 200 | 50 | ND | 300 | ND | ND | 250 | 300 | ND | 300 | ND | ND | 200 | 400 | ND |
23 | 1500 | 200 | ND | ND | 300 | ND | ND | 250 | 300 | ND | ND | ND | ND | 200 | 250 | ND |
24 | 1500 | 200 | ND | ND | 300 | ND | ND | 250 | 300 | ND | ND | ND | ND | 200 | 250 | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, K.; Saxena, A.; Alshamrani, A.M.; Alrasheedi, A.F.; Alnowibet, K.A.; Mohamed, A.W. An Amended Whale Optimization Algorithm for Optimal Bidding in Day Ahead Electricity Market. Axioms 2022, 11, 456. https://doi.org/10.3390/axioms11090456
Jain K, Saxena A, Alshamrani AM, Alrasheedi AF, Alnowibet KA, Mohamed AW. An Amended Whale Optimization Algorithm for Optimal Bidding in Day Ahead Electricity Market. Axioms. 2022; 11(9):456. https://doi.org/10.3390/axioms11090456
Chicago/Turabian StyleJain, Kavita, Akash Saxena, Ahmad M. Alshamrani, Adel Fahad Alrasheedi, Khalid Abdulaziz Alnowibet, and Ali Wagdy Mohamed. 2022. "An Amended Whale Optimization Algorithm for Optimal Bidding in Day Ahead Electricity Market" Axioms 11, no. 9: 456. https://doi.org/10.3390/axioms11090456
APA StyleJain, K., Saxena, A., Alshamrani, A. M., Alrasheedi, A. F., Alnowibet, K. A., & Mohamed, A. W. (2022). An Amended Whale Optimization Algorithm for Optimal Bidding in Day Ahead Electricity Market. Axioms, 11(9), 456. https://doi.org/10.3390/axioms11090456