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Abstract

:

The class of measure spaces which can be represented as unions of Lebesgue-Rohlin spaces with continuous measures contains a lot of important examples, such as   R n   for any   n ∈ N   with the Lebesgue measure. In this work we consider symmetric functions on Banach spaces of all complex-valued integrable essentially bounded functions on such unions. We construct countable algebraic bases of algebras of continuous symmetric polynomials on these Banach spaces. The completions of such algebras of polynomials are Fréchet algebras of all complex-valued entire symmetric functions of bounded type on the abovementioned Banach spaces. We show that each such Fréchet algebra is isomorphic to the Fréchet algebra of all complex-valued entire symmetric functions of bounded type on the complex Banach space of all complex-valued essentially bounded functions on   [ 0 , 1 ]  .
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1. Introduction


The study of symmetric polynomials on infinite dimensional spaces started with the work [1] (for classical results in the finite dimensional case, see, e.g., [2,3,4]). In [1], the authors considered symmetric continuous polynomials on real Banach spaces   ℓ p   and    L p   [ 0 , 1 ]  ,   where   p ∈ [ 1 , + ∞ ) .   In particular, in [1] the authors constructed algebraic bases of algebras of the abovementioned polynomials. In [5], the authors considered symmetric continuous polynomials on separable sequence real Banach spaces with a symmetric basis (see [6] (Def. 3.a.1, p. 113)) and on a separable rearrangement invariant function the real Banach spaces (see [7] (Definition 2.a.1, p. 117)). Topological algebras of symmetric holomorphic functions on   ℓ p   were studied first in [8]. Symmetric polynomials and symmetric holomorphic functions of bounded type on sequence Banach spaces were studied in [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34] (see also the survey [35]). Symmetric holomorphic functions of unbounded type on sequence Banach spaces were studied in [36,37,38,39]. Symmetric polynomials and symmetric holomorphic functions on Banach spaces of Lebesgue measurable functions and on Cartesian powers of such spaces were studied in [40,41,42,43,44,45,46,47,48,49]. In [50,51,52,53,54], the authors used the most general approach to the study of symmetric functions.



In [41], the authors constructed an algebraic basis of the algebra of symmetric continuous complex-valued polynomials on the complex Banach space    L ∞   [ 0 , 1 ]    of complex-valued Lebesgue measurable essentially bounded functions on   [ 0 , 1 ]   and described the spectrum of the Fréchet algebra    H  b s    (  L ∞   [ 0 , 1 ]  )    of symmetric analytic entire functions, which are bounded on bounded sets, on    L ∞   [ 0 , 1 ]  .   In [42], the authors showed that the algebra    H  b s    (  L ∞   [ 0 , 1 ]  )    is isomorphic to the algebra of all analytic functions on the strong dual of the topological vector space of entire functions on the complex plane  C . In addition in [42], it was shown that the algebra    H  b s    (  L ∞   [ 0 , 1 ]  )    is a test algebra for the famous Michael problem (see [55]). In [49], the authors showed that the algebra    H  b s    (  L ∞   [ 0 , 1 ]  )    is isomorphic to the algebra of symmetric entire functions on the complex Banach space of complex-valued Lebesgue integrable essentially bounded functions on the semi-axis.



In this work, we generalize the results of the work [49], replacing the semi-axis with the arbitrary union of Lebesgue-Rohlin spaces (which are also known as standard probability spaces) with continuous measures. Note that there are a lot of important measure spaces which can be represented as the abovementioned union. For example,   R n   for any   n ∈ N   with the Lebesgue measure is one such space. We consider symmetric functions on Banach spaces of all complex-valued integrable essentially bounded functions on the unions of Lebesgue-Rohlin spaces with continuous measures. We construct countable algebraic bases of algebras of continuous symmetric polynomials on these Banach spaces. The completions of such algebras of polynomials are Fréchet algebras of all complex-valued entire symmetric functions of bounded type on the abovementioned Banach spaces. We show that every such Fréchet algebra is isomorphic to the Fréchet algebra    H  b s    (  L ∞   [ 0 , 1 ]  )  .  




2. Preliminaries


Let us denote by  N  and   Z +   the set of all positive integers and the set of all nonnegative integers, respectively.



2.1. Polynomials


Let X be a complex Banach space.



Let   N ∈ N .   A mapping   P : X → C ,   which is the restriction to the diagonal of some N-linear mapping    A P  :  X N  → C ,   i.e.,


  P  ( x )  =  A P  (    x , … , x  ︸  N  )  








for every   x ∈ X ,   is called an N-homogeneous polynomial.



A mapping   P : X → C ,   which can be represented in the form


  P =  P 0  +  P 1  + … +  P N  ,  








where   N ∈ N ,     P 0   is a constant mapping, and    P n  : X → C   is an n-homogeneous polynomial for every   n ∈ { 1 , … , N } ,   is called a polynomial of a degree at most   N .  



It is known that a polynomial   P : X → C   is continuous if and only if its norm


   ∥ P ∥  =  sup  ∥ x ∥ ≤ 1    | P  ( x )  |   








is finite. Consequently, for every continuous N-homogeneous polynomial   P : X → C   and for every   x ∈ X   we have the following inequality:


   | P  ( x )  |  ≤   ∥ P ∥ ∥ x ∥  N  .  



(1)








2.2. Holomorphic Functions


Definition 1.

([56] (Def. 2.1, p. 53)) A subset U of a vector space E is said to be finitely open if   U ∩ F   is an open subset of the Euclidean space F for each finite dimensional subspace F of   E .  





(See [56] (p. 53)). The finitely open subsets of E define a translation invariant topology    τ f  .   The balanced   τ f  -neighborhoods of zero form a basis for the   τ f  -neighborhoods of zero. On a topological vector space   ( E , τ ) ,   the topology   τ f   is finer than   τ ,   i.e.,    τ f  ≥ τ .  



Definition 2.

(See [56] (Def. 2.2, p. 54))The complex-valued function   f ,   defined on a finitely open subset U of a complex vector space E is said to be G-holomorphic if for each   a ∈ U , b ∈ E   the complex-valued function of one complex variable


  λ ↦ f ( a + λ b )  








is holomorphic in some neighborhood of zero. We let    H G   ( U )    denote the set of all G-holomorphic mappings from U into   C .  





The following proposition is a partial result of [56] (Prop. 2.4, p. 55).



Proposition 1.

If U is a finitely open subset of a complex vector space E and   f ∈  H G   ( U )  ,   then for each   a ∈ U   there exists a unique sequence of homogeneous polynomials from E into   C ,        f m  ( a )     m = 0  ∞  ,   such that


   f  ( a + y )  =  ∑  m = 0  ∞   f m  ( a )    ( y )    








for all y in some   τ f  -neighborhood of zero. This series is called the Taylor series of f at   a .  





Definition 3.

(See [56] (Def. 2.6, p. 57)) Let   ( E , τ )   be a complex locally convex space, and let U be a finitely open subset of   E .   A function   f : U → C   is called holomorphic or analytic if it is G-holomorphic and for each   a ∈ U   the function


  y ↦  ∑  m = 0  ∞   f m  ( a )    ( y )   








converges and defines a continuous function on some τ-neighborhood of zero. We let   H ( U )   denote the algebra of all holomorphic functions from U into  C  endowed with the compact open topology (the topology of uniform convergence on the compact subsets of U). A function, which is holomorphic on   E ,   is called entire.





The following proposition is a partial result of [56] (Lemma 2.8, p. 58).



Proposition 2.

If U is an open subset of a complex locally convex space E and   f : U → C   is G-holomorphic, then   f ∈ H ( U )   if and only if f is locally bounded.





The following proposition is a partial result of [56] (Cor. 2.9, p. 59).



Proposition 3.

Let E be a complex locally convex space. Let U be an open subset of E, and suppose   f ∈ H ( U ) .   Then for every a in U and every   m ∈ N ,   the m-homogeneous polynomial   f m  ( a )    is continuous.





(See [56] (p. 166)). Let U be an open subset of a complex locally convex space E, and let B be a balanced closed subset of   E .   We let


   d B   ( a , U )  = sup  | λ | :  λ ∈ C , a + λ B ⊂ U   








for every   a ∈ U .   If E is a complex normed linear space and B is the unit ball of E, then    d B   ( a , U )    is the usual distance of a to the complement of U in   E .  



Let   f ∈ H ( U ) .   The B-radius of boundedness of f at   a ∈ U ,   is defined as


   r f   ( a , B )  = sup   | λ | :  λ  ∈ C , a + λ B ⊂ U ,  sup  y ∈ a + λ B    | f  ( y )  |  < ∞  .  











The B-radius of uniform convergence of f at   a ∈ U   is defined as


      R f   ( a , B )  = sup {  | λ |  :  λ ∈ C , a + λ B ⊂ U ,  and the Taylor series of f at a         converges to f uniformly on a + λ B  } .     











The following proposition is a partial result of [56] (Prop. 4.7, p. 166).



Proposition 4.

Let U be an open subset of a complex locally convex space   E .   Suppose   f ∈ H ( U ) .   If   a ∈ U ,   B is a closed balanced subset of E and    r f   ( a , B )  > 0 ,   then


    r f   ( a , B )  =  R f   ( a , B )  = min   d B   ( a , U )  ,    lim sup  n → ∞    sup  y ∈ B      f n  ( a )    ( y )    1 / n     − 1    .   













Let E be a complex normed space. An entire function   f : X → C ,   for which    r f   ( 0 , B )  = + ∞ ,   where B is a closed unit ball in   E ,   is called a function of bounded type. In other words, f is called a function of bounded type if it is bounded on every bounded subset of   E .   By Proposition 4, for every such a function f, its Taylor series at zero,    ∑  m = 0  ∞   f m  ,   converges uniformly to f on every bounded subset of E (we denote   f m  ( 0 )    by   f m  ).



By [57] (Cor. 7.3, p. 47),


   f m   ( y )  =  1  2 π i    ∫  | ξ | = r     f ( ξ y )   ξ  m + 1     d ξ ,  



(2)




where   m ∈  Z +  ,    y ∈ E   and   r > 0 .   Equation (2) is called the Cauchy Integral Formula.



Let E be a complex Banach space. Let    H b   ( E )    be the Fréchet algebra of all entire functions of bounded type   f : E → C   endowed with the topology of the uniform convergence on bounded subsets. Let


    ∥ f ∥  r  =  sup  ∥ x ∥ ≤ r    | f  ( x )  |   








for   f ∈  H b   ( E )    and   r ∈ ( 0 , + ∞ ) .   The topology of the Fréchet algebra    H b   ( E )    is generated by any set of norms


  { ∥ ·  ∥ r  :  r ∈ I } ,  








where I is an arbitrary unbounded subset of   ( 0 , + ∞ ) .  



For details on holomorphic functions on Banach spaces, we refer the reader to [57] or [56,58].




2.3. Measure Spaces


A measure space is a triple   ( Ω , F , ν ) ,   where  Ω  is a set,  F  is a  σ  algebra of its subsets, and   ν : F → [ 0 , + ∞ ]   is a measure. In addition, we assume  ν  to be a complete measure, i.e., every subset of a measurable set with null measure (so called null set) is measurable too. An isomorphism between two measure spaces   (  Ω 1  ,  F 1  ,  ν 1  )   and   (  Ω 2  ,  F 2  ,  ν 2  )   is an invertible map   f :  Ω 1  →  Ω 2    such that f and   f  − 1    are both measurable and measure-preserving maps. In the case    (  Ω 1  ,  F 1  ,  ν 1  )  =  (  Ω 2  ,  F 2  ,  ν 2  )   , the mapping f is called a measurable automorphism. Two measure spaces   (  Ω 1  ,  F 1  ,  ν 1  )   and   (  Ω 2  ,  F 2  ,  ν 2  )   are called isomorphic modulo zero if there exist null sets   M ⊂  Ω 1    and   N ⊂  Ω 2    such that measure spaces    Ω 1  \ M   and    Ω 2  \ N   are isomorphic [59] (§1, No. 5).



Let a measure space   ( Ω , F , ν )   be such that   ν ( Ω ) = 1 .   The measure space   ( Ω , F , ν )   is called separable ([59] (§2, No. 1)), if there exists a countable system  G  of measurable sets having the following two properties:




	
For every measurable set   A ⊂ Ω  , there exists a set B such that   A ⊂ B ⊂ Ω ,   B is identical with A modulo zero, and B is an element of the  σ  algebra generated by   G .  



	
For every pair of points   x , y ∈ Ω ,   there exists a set   G ⊂ G   such that either   x ∈ G , y ∉ G ,   or   x ∉ G , y ∈ G .  








Every countable system  G  of measurable sets satisfying conditions (1) and (2) is called a basis of the space   ( Ω , F , ν ) .  



Let   ( Ω , F , ν )   be a separable measure space, and let   B =   {  B n  }   n = 1  ∞    be an arbitrary basis in   ( Ω , F , ν ) .   If all intersections of the form    ∩  n = 1  ∞   A n  ,   where   A n   is one of the two sets   B n   and   Ω \  B n  ,   are nonempty, then the space   ( Ω , F , ν )   is called complete with respect to the basis   B .   By [59] (§2, No. 2), if the space   ( Ω , F , ν )   is complete modulo zero (i.e., isomorphic modulo zero to some complete measure space) with respect to some basis, then it is complete modulo zero with respect to every other basis. Separable measure spaces which are complete modulo zero with respect to their bases are called Lebesgue-Rohlin spaces or standard probability spaces. By [59] (§2, No. 4), every Lebesgue-Rohlin space with continuous measure (i.e., there are no points of positive measure) is isomorphic modulo zero to   [ 0 , 1 ]   with Lebesgue measure. The following simple lemma shows that every such space is isomorphic to   [ 0 , 1 ]   with Lebesgue measure.



Lemma 1.

Every Lebesgue-Rohlin measure space with continuous measure is isomorphic to   [ 0 , 1 ]   with Lebesgue measure.





Proof. 

Let   ( Ω , F , ν )   be a Lebesgue-Rohlin measure space with continuous measure. By [59] (§2, No. 4),   ( Ω , F , ν )   is isomorphic modulo zero to   [ 0 , 1 ]   with Lebesgue measure, i.e., there exist null sets   M ⊂ Ω   and   N ⊂ [ 0 , 1 ]   such that   Ω \ M   is isomorphic to   [ 0 , 1 ] \ N .   Let   f : Ω \ M → [ 0 , 1 ] \ N   be the isomorphism. Let K be an arbitrary null subset of   [ 0 , 1 ] \ N   with the cardinality of the continuum. Then    f  − 1    ( K )    is a null subset of   Ω \ M   with the cardinality of the continuum. Consequently, both sets    C 1  = M ∪  f  − 1    ( K )    and    C 2  = N ∪ K   are null sets of the cardinality of the continuum. Let   h :  C 1  →  C 2    be a bijection. Let   g : Ω → [ 0 , 1 ]   be defined by


  g  ( t )  =      h ( t ) ,     if  t ∈  C 1  ,       f ( t ) ,     if  t ∈  [ 0 , 1 ]  \  C 1  .       











Evidently, g is an isomorphism between   ( Ω , F , ν )   and   [ 0 , 1 ]   with Lebesgue measure. □






2.4. Symmetric Functions


In general, symmetric functions are defined in the following way.



Definition 4.

Let A be an arbitrary nonempty set, and let S be a nonempty set of mappings acting from A to itself. A function   f ,   defined on   A ,   is called symmetric with respect to the set S if   f ( s ( a ) ) = f ( a )   for every   s ∈ S   and   a ∈ A .  





Let us describe the partial case of Definition 4, which we will use in this work. The set of all measurable automorphisms of some measure space   ( Ω , F , ν )   we will denote by    Ξ Ω  .   A complex Banach space X of measurable functions   x : Ω → C   such that   x ∘ σ   belongs to X for every   x ∈ X   and   σ ∈  Ξ Ω    will be in the role of the set A from Definition 4. The set of operators


  { x ∈ X ↦ x ∘ σ ∈ X :  σ ∈  Ξ Ω  }  








will be in the role of the set S from Definition 4. So, a function   f ,   defined on   X ,   is called symmetric if


  f ( x ∘ σ ) = f ( x )  








for every   x ∈ X   and   σ ∈  Ξ Ω  .  




2.5. Algebraic Combinations


A mapping


  t ∈ T ↦ Q (  f 1   ( t )  , … ,  f k   ( t )  ) ∈ C ,  








where T is a nonempty set,   k ∈ N ,     f 1  , … ,  f k    are mappings acting from T to  C  and Q is a polynomial acting from    C  k   to   C ,   is called an algebraic combination of mappings    f 1  , … ,  f k  .  



Let  A  be some algebra of complex-valued mappings. Let   B ⊂ A   be such that every element of  A  can be uniquely represented as an algebraic combination of some elements of   B .   Then  B  is called an algebraic basis of   A .  




2.6. Entire Symmetric Functions on    L ∞   [ 0 , 1 ]   


Let    L ∞   [ 0 , 1 ]    be the complex Banach space of all Lebesgue measurable essentially bounded complex-valued functions x on   [ 0 , 1 ]   with norm


    ∥ x ∥  ∞  = ess   sup  t ∈ [ 0 , 1 ]    | x  ( t )  |  .  











For every   n ∈ N ,   let    R n  :  L ∞   [ 0 , 1 ]  → C   be defined by


   R n   ( x )  =  ∫  [ 0 , 1 ]     ( x  ( t )  )  n   d t .  











Note that   R n   is a symmetric continuous n-homogeneous polynomial such that    ∥   R n   ∥ = 1    for every   n ∈ N .  



Theorem 1.

([41] (Theorem 4.3)) Every symmetric continuous n-homogeneous polynomial   P :  L ∞   [ 0 , 1 ]  → C   can be uniquely represented as


  P  ( x )  =  ∑   k 1  + 2  k 2  + … + n  k n  = n    α   k 1  , … ,  k n     R 1  k 1    ( x )  ⋯  R n  k n    ( x )  ,  








where    k 1  , … ,  k n  ∈  Z +    and    α   k 1  , … ,  k n    ∈ C .   In other words,   {  R n  }   forms an algebraic basis in the algebra of symmetric continuous polynomials on    L ∞   [ 0 , 1 ]  .  





Theorem 2.

([41] (Theorem 3.1)) For every sequence   ξ =   {  ξ n  }   n = 1  ∞  ⊂ C   such that the sequence       |   ξ n   |   n    n = 1  ∞   is bounded, there exists    x ξ  ∈  L ∞   [ 0 , 1 ]    such that    R n    x ξ   =  ξ n    for every   n ∈ N   and


   ∥   x ξ    ∥  ∞  ≤  2 M   sup  n ∈ N      |   ξ n   |   n  ,  








where


  M =  ∏  k = 1  ∞  cos   π 2  ·  1  k + 1    .  



(3)









Let    H  b s    (  L ∞   [ 0 , 1 ]  )    be the subalgebra of the Fréchet algebra    H b   (  L ∞   [ 0 , 1 ]  )   , which consists of all symmetric elements of    H b   (  L ∞   [ 0 , 1 ]  )  .   It can be checked that    H  b s    (  L ∞   [ 0 , 1 ]  )    is closed in    H b   (  L ∞   [ 0 , 1 ]  )  .  



For every function   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )   , its Taylor series converges uniformly to f on every bounded set. The nth term, where   n ∈ N ,   of the Taylor series is a continuous n-homogeneous polynomial, which is symmetric by the symmetry of f and by the Cauchy Integral Equation (2). Therefore, by Theorem 1, every   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )    can be represented as


  f  ( x )  =  α 0  +  ∑  n = 1  ∞   ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n     R 1  k 1    ( x )  ⋯  R n  k n    ( x )   



(4)




where    α   k 1  , … ,  k n    ∈ C ,    x ∈  L ∞   [ 0 , 1 ]   , and the series converges uniformly on every bounded subset of    L ∞   [ 0 , 1 ]  .  




2.7. Entire Symmetric Functions on    (  L 1  ∩  L ∞  )   [ 0 , + ∞ )   


Let    L 1   [ 0 , + ∞ )    be the complex Banach space of all Lebesgue integrable functions   x : [ 0 , + ∞ ) → C   with norm     ∥ x ∥  1  =  ∫  [ 0 , + ∞ )    | x  ( t )  |   d t .   Let    L ∞   [ 0 , + ∞ )    be the complex Banach space of all Lebesgue measurable essentially bounded functions   x : [ 0 , + ∞ ) → C   with norm


    ∥ x ∥  ∞  = ess   sup  t ∈ [ 0 , + ∞ )    | x  ( t )  |  .  











Let us consider the space    (  L 1  ∩  L ∞  )   [ 0 , + ∞ )  : =  L 1   [ 0 , + ∞ )  ∩  L ∞   [ 0 , + ∞ )    with norm   ∥ x ∥ = max { ∥ x  ∥ 1  , ∥ x  ∥ ∞  } .   By [60] (p. 97, Thm. 1.3), this space is complete. For   n ∈ N ,   let us define     R ^  n  :  (  L 1  ∩  L ∞  )   [ 0 , + ∞ )  → C   by


    R ^  n   ( x )  =  ∫  [ 0 , + ∞ )     ( x  ( t )  )  n   d t .  











For every   n ∈ N ,      R ^  n   is a symmetric n-homogeneous polynomial and    ∥    R ^  n   ∥ = 1   .



Theorem 3.

([48] (Theorem 2)) Every symmetric continuous n-homogeneous polynomial   P :  (  L 1  ∩  L ∞  )   [ 0 , + ∞ )  → C   can be uniquely represented as


  P  ( x )  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n      R ^  1  k 1    ( x )  ⋯   R ^  n  k n    ( x )  ,  








where    α   k 1  , … ,  k n    ∈ C .  





By [49] (Theorem. 2), Fréchet algebras    H  b s    (  (  L 1  ∩  L ∞  )   [ 0 , + ∞ )  )    and    H  b s    (  L ∞   [ 0 , 1 ]  )    are isomorphic.





3. The Main Result


Let   (  Ω γ  ,  F γ  ,  ν γ  )   be a Lebesgue-Rohlin measure space with continuous measure for every   γ ∈ Γ ,   where  Γ  is an arbitrary index set. Let   ( Ω , F , ν )   be the disjoint union of all the spaces belonging to the set    (  Ω γ  ,  F γ  ,  ν γ  ) :  γ ∈ Γ  ,   i.e.,


  Ω =  ⨆  γ ∈ Γ    Ω γ  ,  










  F =  A ∈ Ω :  A ∩  Ω γ  ∈  F γ    for every   γ ∈ Γ   








and


  ν  ( A )  =  ∑  γ ∈ Γ    ν γ   ( A ∩  Ω γ  )   








for   A ∈ F .   By Lemma 1, for every   γ ∈ Γ   there exists an isomorphism   w γ   between   (  Ω γ  ,  F γ  ,  ν γ  )   and   [ 0 , 1 ]   with Lebesgue measure. Therefore, for every   γ ∈ Γ ,   the mapping    W γ  :  L ∞   [ 0 , 1 ]  →  L ∞   (  Ω γ  )  ,   defined by


   W γ   ( x )  = x ∘  w γ   



(5)




for   x ∈  L ∞   [ 0 , 1 ]  ,   is a linear isometrical bijection, where    L ∞   (  Ω γ  )    is the complex Banach space of all complex-valued measurable essentially bounded functions on   (  Ω γ  ,  F γ  ,  ν γ  ) .  



Let    (  L 1  ∩  L ∞  )   ( Ω )    be the complex Banach space of all measurable integrable essentially bounded functions   x : Ω → C   with norm


  ∥ x ∥ = max { ∥ x  ∥ 1  , ∥ x  ∥ ∞  } ,  








where


    ∥ x ∥  1  =  ∫ Ω   | x  ( t )  |   d t  








and


    ∥ x ∥  ∞  = ess   sup  t ∈ Ω    | x  ( t )  |  .  











Lemma 2.

Let   γ ∈ Γ .   The mapping    J γ  :  L ∞   (  Ω γ  )  →  (  L 1  ∩  L ∞  )   ( Ω )  ,   defined by


    J γ   ( x )   ( t )  =      x ( t ) ,     if   t ∈  Ω γ  ,       0 ,     if   t ∈ Ω \  Ω γ         



(6)




for   x ∈  L ∞   (  Ω γ  )  ,   is a linear isometrical injective mapping. Consequently,    L ∞   (  Ω γ  )    can be considered as a subspace of    (  L 1  ∩  L ∞  )   ( Ω )  .  





Proof. 

Clearly,   J γ   is linear and injective. Let us show that   J γ   is isometrical. Let   x ∈  L ∞   (  Ω γ  )  .   Note that    ∥   J γ     ( x )  ∥  ∞  =   ∥ x ∥  ∞  .   Since    ν γ   (  Ω γ  )  = 1 ,   it follows that


   ∥   J γ     ( x )  ∥  1  =  ∫ Ω   |   J γ    ( x )   ( t )  |  d t =   ∫  Ω γ    | x  ( t )  |  d t  ≤   ∥ x ∥  ∞  .  











Therefore,


   ∥   J γ    ( x )  ∥ = max    ∥   J γ     ( x )  ∥  1  ,   ∥  J γ   ( x )  ∥  ∞   =   ∥ x ∥  ∞  .  











Hence,   J γ   is an isometrical mapping. □





For every   E ⊂ Ω ,   let


   1 E   ( t )  =      1 ,     if  t ∈ E ,       0 ,     if  t ∈ Ω \ E .       











For   n ∈ N ,   let the polynomial     R ˜  n  :  (  L 1  ∩  L ∞  )   ( Ω )  → C   be defined by


    R ˜  n   ( x )  =  ∫ Ω    ( x  ( t )  )  n   d t .  











The symmetry and the n-homogeneity of the polynomial     R ˜  n  ,   for every   n ∈ N ,   can be easily verified. Let us prove the continuity of     R ˜  n  .  



Lemma 3.

For every   n ∈ N ,  


    ∥    R ˜  n   ∥ = 1    








and, consequently,    R ˜  n   is continuous.





Proof. 

Let us show that    ∥    R ˜  n   ∥ = 1 .    Let   x ∈  (  L 1  ∩  L ∞  )   ( Ω )    be such that   ∥ x ∥ ≤ 1 .   Then     ∥ x ∥  1  ≤ 1   and     ∥ x ∥  ∞  ≤ 1 .   Since     ∥ x ∥  ∞  ≤ 1 ,   it follows that   | x ( t ) | ≤ 1   for almost all   t ∈ Ω .   Consequently,     | x  ( t )  |  n  ≤  | x  ( t )  |    for almost all   t ∈ Ω .   Therefore,


   |    R ˜  n    ( x )  | ≤   ∫ Ω    | x  ( t )  |  n   d t ≤  ∫ Ω   | x  ( t )  |  d t  =   ∥ x ∥  1  ≤ 1 .  











Hence,


   ∥    R ˜  n   ∥ =   sup  ∥ x ∥ ≤ 1    |   R ˜  n   ( x )  |  ≤ 1 .  











On the other hand, for an arbitrary fixed   γ ∈ Γ ,   we have    ∥   1  Ω γ    ∥ = 1    and     R ˜  n   (  1  Ω γ   )  = 1 .   Therefore,    ∥    R ˜  n   ∥ = 1 .    Consequently,    R ˜  n   is continuous. □





Theorem 4.

Every symmetric continuous n-homogeneous polynomial   P :  (  L 1  ∩  L ∞  )   ( Ω )  → C   can be uniquely represented as


   P  ( x )  =  ∑   k 1  + 2  k 2  + … + n  k n  = n    α   k 1  , … ,  k n      R ˜  1  k 1    ( x )  ⋯   R ˜  n  k n    ( x )  ,   








where    k 1  , … ,  k n  ∈  Z +    and    α   k 1  , … ,  k n    ∈ C .  





Proof. 

For   γ ∈ Γ ,   let    Q γ  :  L ∞   [ 0 , 1 ]  → C   be defined by


   Q γ  = P ∘  J γ  ∘  W γ  ,  



(7)




where   W γ   and   J γ   are defined by (5) and (6), respectively. We have the following diagram:


   L ∞   [ 0 , 1 ]   →   W γ    W γ    L ∞   (  Ω γ  )   →   W γ    J γ    (  L 1  ∩  L ∞  )   ( Ω )   →   W γ   P  C .  











Since   W γ   and   J γ   are linear continuous mappings and P is a continuous n-homogeneous polynomial, it follows that   P ∘  J γ    and   Q γ   are continuous n-homogeneous polynomials.



Let us prove that   P ∘  J γ    is a symmetric polynomial on    L ∞   (  Ω γ  )  .   Let   x ∈  L ∞   (  Ω γ  )    and   σ ∈  Ξ  Ω γ   .   Let us show that    ( P ∘  J γ  )   ( x ∘ σ )  =  ( P ∘  J γ  )   ( x )  .   Note that


   J γ   ( x ∘ σ )  =  J γ   ( x )  ∘  σ ′  ,  








where    σ ′  : Ω → Ω   is defined by


   σ ′   ( t )  =      σ ( t ) ,     if  t ∈  Ω γ  ,       t ,     if  t ∈ Ω \  Ω γ  .       











It can be easily checked that    σ ′  ∈  Ξ Ω  .   Since P is symmetric, it follows that


   ( P ∘  J γ  )   ( x ∘ σ )  = P  (  J γ   ( x )  ∘  σ ′  )  = P  (  J γ   ( x )  )  =  ( P ∘  J γ  )   ( x )  .  











Thus,   P ∘  J γ    is symmetric.



Let us prove that   Q γ   is symmetric. Let   x ∈  L ∞   [ 0 , 1 ]    and   τ ∈  Ξ  [ 0 , 1 ]   .   By (7),


   Q γ   ( x ∘ τ )  =  ( P ∘  J γ  )   (  W γ   ( x ∘ τ )  )  .  











By (5),    W γ   ( x ∘ τ )  = x ∘ τ ∘  w γ  .   Therefore


   Q γ   ( x ∘ τ )  =  ( P ∘  J γ  )   ( x ∘ τ ∘  w γ  )  .  











Note that   x ∘ τ ∘  w γ  = x ∘  w γ  ∘  w γ  − 1   ∘ τ ∘  w γ  .   We have the following diagram:


   Ω γ   →   w γ  − 1     w γ    [ 0 , 1 ]   →   w γ  − 1    τ   [ 0 , 1 ]   →  w γ  − 1     Ω γ   →   w γ  − 1     w γ    [ 0 , 1 ]   →   w γ  − 1    x  C .  











Since   w γ   and  τ  are isomorphisms, it follows that    w γ  − 1   ∘ τ ∘  w γ  ∈  Ξ  Ω γ   .   Since   P ∘  J γ    is symmetric, it follows that


   ( P ∘  J γ  )   ( x ∘ τ ∘  w γ  )  =  P ∘  J γ    x ∘  w γ  ∘  (  w γ  − 1   ∘ τ ∘  w γ  )   =  ( P ∘  J γ  )   ( x ∘  w γ  )  .  











By (5) and (7),    ( P ∘  J γ  )   ( x ∘  w γ  )  =  Q γ   ( x )  .   Therefore    Q γ   ( x ∘ τ )  =  Q γ   ( x )  .   Hence,   Q γ   is symmetric.



Let us prove that   Q γ   does not depend on   γ .   Let    γ 1  ,  γ 2  ∈ Γ   be such that    γ 1  ≠  γ 2  .   Let us show that    Q  γ 1   ≡  Q  γ 2   .   Let   x ∈  L ∞   [ 0 , 1 ]  .   By (5) and (7),


   Q  γ 1    ( x )  = P  (  J  γ 1    ( x ∘  w  γ 1   )  )  .  



(8)







Let    σ   γ 1   γ 2    : Ω → Ω   be defined by


   σ   γ 1   γ 2     ( t )  =       (  w   γ 2    − 1   ∘  w  γ 1   )   ( t )  ,     if  t ∈  Ω  γ 1   ,        (  w   γ 1    − 1   ∘  w  γ 2   )   ( t )  ,     if  t ∈  Ω  γ 2   ,       t ,     if  t ∈ Ω \ (  Ω  γ 1   ∩  Ω  γ 2   ) .       











Since   w  γ 1    and   w  γ 2    are isomorphisms, it follows that    σ   γ 1   γ 2    ∈  Ξ Ω  .   Since P is symmetric, it follows that


  P  (  J  γ 1    ( x ∘  w  γ 1   )  )  = P  (  J  γ 1    ( x ∘  w  γ 1   )  ∘  σ   γ 1   γ 2    )  .  



(9)







Let us show that


   J  γ 1    ( x ∘  w  γ 1   )  ∘  σ   γ 1   γ 2    =  J  γ 2    ( x ∘  w  γ 2   )  .  











If   t ∈  Ω  γ 2   ,   then    σ   γ 1   γ 2     ( t )  =  (  w   γ 1    − 1   ∘  w  γ 2   )   ( t )  .   In this case,    σ   γ 1   γ 2     ( t )  ∈  Ω  γ 1   ,  ; therefore, by (6),


    J  γ 1    ( x ∘  w  γ 1   )     σ   γ 1   γ 2     ( t )   =  x ∘  w  γ 1      (  w   γ 1    − 1   ∘  w  γ 2   )   ( t )   =  ( x ∘  w  γ 2   )   ( t )  .  











If   t ∈ Ω \  Ω  γ 2   ,   then    σ   γ 1   γ 2     ( t )  ∈ Ω \  Ω  γ 1   ,  ; therefore, by (6),


    J  γ 1    ( x ∘  w  γ 1   )     σ   γ 1   γ 2     ( t )   = 0 .  











Thus,


    J  γ 1    ( x ∘  w  γ 1   )     σ   γ 1   γ 2     ( t )   =       ( x ∘  w  γ 2   )   ( t )  ,     if  t ∈  Ω  γ 2   ,       0 ,     if  t ∈ Ω \  Ω  γ 2   ,       








that is,


    J  γ 1    ( x ∘  w  γ 1   )     σ   γ 1   γ 2     ( t )   =  (  J  γ 2    ( x ∘  w  γ 2   )  )   ( t )   








for every   t ∈ Ω .   Therefore,


   J  γ 1    ( x ∘  w  γ 1   )  ∘  σ   γ 1   γ 2    =  J  γ 2    ( x ∘  w  γ 2   )  .  



(10)







Consequently, by (8)–(10),


   Q  γ 1    ( x )  = P  (  J  γ 2    ( x ∘  w  γ 2   )  )  =  Q  γ 2    ( x )  .  











Therefore,    Q  γ 1   ≡  Q  γ 2   .  



Since   Q γ   is a continuous n-homogeneous symmetric polynomial on    L ∞   [ 0 , 1 ]  ,   by Theorem 1,   Q γ   can be uniquely represented as


  Q  ( x )  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n     R 1  k 1    ( x )  ⋯  R n  k n    ( x )  ,  



(11)




where   x ∈  L ∞   [ 0 , 1 ]    and    α   k 1  , … ,  k n    ∈ C .  



Recall that for every index   γ ∈ Γ ,   the mapping   w γ   is an isomorphism between   (  Ω γ  ,  F γ  ,  ν γ  )   and   [ 0 , 1 ]   with Lebesgue measure   μ .   For every index   γ ∈ Γ ,   let us construct the isomorphism   w γ ′   between   (  Ω γ  ,  F γ  ,  ν γ  )   and   [ 0 , 1 )   with Lebesgue measure. Choose a countable set   M ⊂  Ω γ    such that    w γ  − 1    ( 1 )  ∈ M .   Let   N =  w γ   ( M )  \  { 1 }  .   Since the mapping   w γ   is a bijection, the set N is countable. Since measures   ν γ   and  μ  are continuous, the sets M and N are null sets. Let   h : M → N   be an arbitrary bijection. Let us define the mapping    w γ ′  :  Ω γ  →  [ 0 , 1 )    by


   w γ ′   ( t )  =       w γ   ( t )  ,     if  t ∈  Ω γ  \ M ,       h ( t ) ,     if  t ∈ M .       











It can be checked that the mapping   w γ ′   is an isomorphism between   (  Ω γ  ,  F γ  ,  ν γ  )   and   [ 0 , 1 )   with Lebesgue measure.



Let     {  γ n  }   n = 1  ∞  ∈ Γ   be an arbitrary sequence of pairwise distinct indexes. Let us define the mapping    v   {  γ n  }   n = 1  ∞   :  ⊔  n = 1  ∞   Ω  γ n   →  [ 0 , + ∞ )    by


   v   {  γ n  }   n = 1  ∞    ( t )  =  w k ′   ( t )  + k − 1  








for   t ∈  Ω  γ k   ,    k ∈ N .   Note that the mapping   v   {  γ n  }   n = 1  ∞    is an isomorphism between    ⊔  n = 1  ∞   Ω  γ n     and   [ 0 , + ∞ ) .  



Let us define the mapping    V   {  γ n  }   n = 1  ∞   :  (  L 1  ∩  L ∞  )   [ 0 , + ∞ )  →  (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n      by


   V   {  γ n  }   n = 1  ∞    ( x )  = x ∘  v   {  γ n  }   n = 1  ∞   ,  








where   x ∈  (  L 1  ∩  L ∞  )   [ 0 , + ∞ )  .   Since the mapping   v   {  γ n  }   n = 1  ∞    is an isomorphism, it follows that the mapping   V   {  γ n  }   n = 1  ∞    is a linear isometric bijection.



Let us define the mapping    I   {  γ n  }   n = 1  ∞   :  (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n    →  (  L 1  ∩  L ∞  )   ( Ω )    by


   I   {  γ n  }   n = 1  ∞    ( x )   ( t )  =      x ( t ) ,     if  t ∈  ⊔  n = 1  ∞   Ω  γ n   ,       0 ,     if  t ∈ Ω \  ⊔  n = 1  ∞   Ω  γ n   ,       








where   x ∈  (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n    .   It can be checked that the mapping   I   {  γ n  }   n = 1  ∞    is linear, isometric and injective.



Since mappings   V   {  γ n  }   n = 1  ∞    and   I   {  γ n  }   n = 1  ∞    are linear and continuous, and the mapping P is a continuous n-homogeneous polynomial, it follows that the mapping   P ∘  I   {  γ n  }   n = 1  ∞   ∘  V   {  γ n  }   n = 1  ∞     is a continuous n-homogeneous polynomial. It can be checked that   P ∘  I   {  γ n  }   n = 1  ∞   ∘  V   {  γ n  }   n = 1  ∞     is symmetric. Therefore, by Theorem 3,   P ∘  I   {  γ n  }   n = 1  ∞   ∘  V   {  γ n  }   n = 1  ∞     can be uniquely represented in the form


   P ∘  I   {  γ n  }   n = 1  ∞   ∘  V   {  γ n  }   n = 1  ∞     ( x )  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        β   k 1  , … ,  k n      R ^  1  k 1    ( x )  ⋯   R ^  n  k n    ( x )  ,  








where   x ∈  (  L 1  ∩  L ∞  )   [ 0 , + ∞ )    and    β   k 1  , … ,  k n    ∈ C .   Since the mapping   V   {  γ n  }   n = 1  ∞    is an isomorphism, it follows that


      P ∘  I   {  γ n  }   n = 1  ∞     ( y )  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        β   k 1  , … ,  k n    ×            R ^  1  ∘  V    {  γ n  }   n = 1  ∞    − 1     ( y )    k 1   ⋯      R ^  n  ∘  V    {  γ n  }   n = 1  ∞    − 1     ( y )    k n       



(12)




for every   y ∈  (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n    .   Let us show that coefficients   β   k 1  , … ,  k n     coincide with respective coefficients    α   k 1  , … ,  k n    ,   obtained in (11). Let us define the mapping   T :  L ∞   (  Ω  γ 1   )  →  (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n      by


  T  ( x )   ( t )  =      x ( t ) ,     if  t ∈  Ω  γ 1         0 ,     if  t ∈  ⊔  n = 2  ∞   Ω  γ n   ,       








where   x ∈  L ∞   (  Ω  γ 1   )  .   It can be verified that the mapping T is linear, isometric and injective. We have the following diagram:


      L ∞   [ 0 , 1 ]   →   V   {  γ n  }   n = 1  ∞     W  γ 1     L ∞   (  Ω  γ 1   )   →   V   {  γ n  }   n = 1  ∞    T   (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n     →   V   {  γ n  }   n = 1  ∞     I   {  γ n  }   n = 1  ∞           →   V   {  γ n  }   n = 1  ∞     I   {  γ n  }   n = 1  ∞     (  L 1  ∩  L ∞  )   ( Ω )   →   V   {  γ n  }   n = 1  ∞    P  C .     











By (12),


      P ∘  I   {  γ n  }   n = 1  ∞   ∘ T ∘  W  γ 1     ( x )  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        β   k 1  , … ,  k n    ×            R ^  1  ∘  V    {  γ n  }   n = 1  ∞    − 1   ∘ T ∘  W  γ 1     ( x )    k 1   ⋯      R ^  n  ∘  V    {  γ n  }   n = 1  ∞    − 1   ∘ T ∘  W  γ 1     ( x )    k n       



(13)




for every   x ∈  L ∞   [ 0 , 1 ]  .   Taking into account that   P ∘  I   {  γ n  }   n = 1  ∞   ∘ T ∘  W  γ 1   =  Q  γ 1     and     R ˜  j  ∘  V    {  γ n  }   n = 1  ∞    − 1   ∘ T ∘  W  γ 1   =  R j    for every   j ∈ N ,   by (13),


   Q γ   ( x )  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        β   k 1  , … ,  k n     R 1  k 1    ( x )  ⋯  R n  k n    ( x )   








for every   x ∈  L ∞   [ 0 , 1 ]  .   By the uniqueness of the representation (11), we obtain the equality    β   k 1  , … ,  k n    =  α   k 1  , … ,  k n      for every    k 1  , … ,  k n  ∈  Z +    such that    k 1  + 2  k 2  + … + n  k n  = n .   Therefore, by (12),


      P ∘  I   {  γ n  }   n = 1  ∞     ( y )  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n    ×            R ^  1  ∘  V    {  γ n  }   n = 1  ∞    − 1     ( y )    k 1   ⋯      R ^  n  ∘  V    {  γ n  }   n = 1  ∞    − 1     ( y )    k n   ,     








for every   y ∈  (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n    .   Consequently, for every   z ∈  (  L 1  ∩  L ∞  )   ( Ω )  ,   which belongs to    I   {  γ n  }   n = 1  ∞     (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n     ,  


     P  ( z )  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n    ×            R ^  1  ∘  V    {  γ n  }   n = 1  ∞    − 1   ∘  I    {  γ n  }   n = 1  ∞    − 1     ( z )    k 1   ⋯      R ^  n  ∘  V    {  γ n  }   n = 1  ∞    − 1   ∘  I    {  γ n  }   n = 1  ∞    − 1     ( z )    k n   .     











Taking into account that


     R ^  j  ∘  V    {  γ n  }   n = 1  ∞    − 1   ∘  I    {  γ n  }   n = 1  ∞    − 1     ( z )  =   R ˜  j   ( z )   








for every   j ∈ N ,  


  P  ( z )  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n        R ˜  1   ( z )    k 1   ⋯     R ˜  n   ( z )    k 1    



(14)




for every   z ∈  (  L 1  ∩  L ∞  )   ( Ω )  ,   which belongs to    I   {  γ n  }   n = 1  ∞     (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n     .   As we can see, coefficients in this equality do not depend on the choice of the sequence of indexes     {  γ n  }   n = 1  ∞  .  



Let us show that the equality (14) holds for every   z ∈  (  L 1  ∩  L ∞  )   ( Ω )  .   Let z be an arbitrary element of the space    (  L 1  ∩  L ∞  )   ( Ω )  .   Since


    ∥ z ∥  1  =  ∫ Ω   | z  ( t )  |  d t  =  ∑  γ ∈ Γ    ∫  Ω γ    | z  ( t )  |   d t  








is finite, there exists not more than a countable set of indexes   γ ∈ Γ   such that    ∫  Ω γ    | z  ( t )  |   d t > 0 .   So, there exists a sequence of pairwise distinct indexes     {  γ n  }   n = 1  ∞  ⊂ Γ   such that   z = 0   a. e. on the set   Ω γ   for every index   γ ∈ Γ \   {  γ n  }   n = 1  ∞  .   Therefore,   z ∈  I   {  γ n  }   n = 1  ∞     (  L 1  ∩  L ∞  )    ⊔  n = 1  ∞   Ω  γ n     .   Consequently, for the element z the equality (14) holds. This completes the proof. □





Theorem 4 and the Cauchy Integral Equation (2) imply the following corollary.



Corollary 1.

Every function   f ∈  H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )    can be uniquely represented in the form


   f =  α 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n       R ˜  1  k 1   ⋯   R ˜  n  k n   ,   








where    α   k 1   k 2  …  k n    ∈ C ,   and the series converges uniformly on bounded sets.





Lemma 4.

For every   y ∈  (  L 1  ∩  L ∞  )   ( Ω )   , there exists    x y  ∈  L ∞   [ 0 , 1 ]    such that     R ˜  n   ( y )  =  R n   (  x y  )    for every   n ∈ N   and the following estimate holds:


    ∥   x y    ∥  ∞  ≤  2 M   ∥ y ∥  ,   



(15)




where M is defined by (3).





Proof. 

Consider the sequence   c =   {  c n  }   n = 1  ∞   , where    c n  =   R ˜  n   ( y )    for   n ∈ N  . Since    R ˜  n   is an n-homogeneous polynomial and    ∥    R ˜  n   ∥ = 1   , by (1),


   |    R ˜  n     ( y )  | ≤ ∥ y ∥  n   








for every   n ∈ N  . Consequently,


   sup  n ∈ N      |   c n   |   n  ≤  ∥ y ∥  < ∞ .  











Therefore, by Theorem 2, there exists    x c  ∈  L ∞   [ 0 , 1 ]    such that    R n   (  x c  )  =  c n    for every   n ∈ N   and


   ∥   x c    ∥  ∞  ≤  2 M   sup  n ∈ N      |   c n   |   n  ≤  2 M   ∥ y ∥  ,  








where M is defined by (3). We set    x y  : =  x c  .   This completes the proof. □





Let us define the mapping   J :  H  b s    (  L ∞   [ 0 , 1 ]  )  →  H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )    in the following way. Let   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )  .   Then f can be uniquely represented in the form (4), that is,


  f =  α 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n      R 1  k 1   ⋯  R n  k n   .  



(16)







Let


  J  ( f )  =  α 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n       R ˜  1  k 1   ⋯   R ˜  n  k n   .  



(17)







Let us show that   J  ( f )  ∈  H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )  .  



Proposition 5.

  J  ( f )  ∈  H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )    for every   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )    and


     ∥ J  ( f )  ∥  r  ≤   ∥ f ∥    2 M  r     



(18)




for every   r > 0 ,   where M is defined by (3).





Proof. 

By Lemma 4, for every   y ∈  (  L 1  ∩  L ∞  )   ( Ω )    there exists    x y  ∈  L ∞   [ 0 , 1 ]    such that


    R ˜  n   ( y )  =  R n   (  x y  )   



(19)




for every   n ∈ N   and the inequality (15) holds. By (16), (17) and (19),


  J  ( f )   ( y )  = f  (  x y  )   



(20)




for every   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )    and   y ∈  (  L 1  ∩  L ∞  )   ( Ω )  .   By (15) and (20),


      ∥ J  ( f )  ∥  r     = sup   | J  ( f )   ( y )  | :   y  ∈  (  L 1  ∩  L ∞  )   ( Ω )    such that    ∥ y ∥  ≤ r           = sup   | f   (  x y  )   | :   y ∈   (  L 1  ∩  L ∞  )   ( Ω )    such that    ∥ y ∥  ≤ r           ≤ sup   | f  ( x )  | :   x  ∈  L ∞   [ 0 , 1 ]    such that     ∥ x ∥  ∞  ≤  2 M  r           ≤   ∥ f ∥    2 M  r       



(21)




for every   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )    and   r > 0 .   Thus, we have proved (18).



Let   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )   . Let us show that   J  ( f )  ∈  H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )  .   The inequality (21) and the fact that f is the function of bounded type imply the fact that   J ( f )   is the function of bounded type. By (17) and by the symmetry of     R ˜  n  ,   the function   J ( f )   is symmetric. Let us show that   J ( f )   is entire. By Proposition 4,


   lim sup  n → ∞     ∥  P n  ∥  1  1 / n   = 0 ,  



(22)




where    P 0  =  α 0    and


   P n  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n     R 1  k 1   ⋯  R n  k n    








for   n ∈ N .   Consider the series


   ∑  n = 0  ∞    P ˜  n  ,  



(23)




where     P ˜  0  =  α 0    and


    P ˜  n  =  ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n      R ˜  1  k 1   ⋯   R ˜  n  k n    








for   n ∈ N .   Note that     P ˜  n  = J  (  P n  )   ; therefore, by (21),


   ∥    P ˜  n    ∥  1  ≤   ∥  P n  ∥   2 M    








for every   n ∈ N .   By the n-homogeneity of the polynomial    P n  ,  


      ∥   P n    ∥   2 M   =  sup   ∥ x ∥  ≤  2 M     |   P n    ( x )  | =   sup  ∥ x ∥ ≤ 1   |  P n    2 M  x  | =    2 M   n   sup  ∥ x ∥ ≤ 1    |   P n    ( x )  | =     2 M   n    ∥  P n  ∥  1  .     











Therefore,


   ∥    P ˜  n    ∥  1  ≤    2 M   n    ∥  P n  ∥  1  .  



(24)







By (22) and (24),


  0 ≤  lim sup  n → ∞    ∥    P ˜  n    ∥   1   1 / n   ≤  2 M   lim sup  n → ∞     ∥  P n  ∥   1   1 / n   = 0 .  











Therefore,


   lim sup  n → ∞     ∥   P ˜  n  ∥   1   1 / n   = 0  








and, consequently, by Proposition 4, the series (23) converges to some entire function on the space    (  L 1  ∩  L ∞  )   ( Ω )    with the infinite radius of boundedness. By (17), this function is   J ( f )  . Consequently,   J ( f )   is an entire function of bounded type. Thus,   J  ( f )  ∈  H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )   . □





Theorem 5.

The mapping J, defined by (17), is an isomorphism of Fréchet algebras    H  b s    (  L ∞   [ 0 , 1 ]  )    and    H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )   .





Proof. 

Let us show that J is linear. Let   f , g ∈  H  b s    (  L ∞   [ 0 , 1 ]  )   . Then functions f and g can be uniquely represented as


  f =  α 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n      R 1  k 1   ⋯  R n  k n   ,  










  g =  β 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        β   k 1  , … ,  k n      R 1  k 1   ⋯  R n  k n    








respectively. Let   λ ∈ C .   Note that


  λ f = λ  α 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        λ  α   k 1  , … ,  k n       R 1  k 1   ⋯  R n  k n    








and


  f + g =  α 0  +  β 0  +  ∑  n = 1  ∞   ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        (  α   k 1  , … ,  k n    +  β   k 1  , … ,  k n    )   R 1  k 1   ⋯  R n  k n   .  











Therefore,


  J  ( λ f )  = λ  α 0  +  ∑  n = 1  ∞   ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +       λ  α   k 1  , … ,  k n      R ˜  1  k 1   ⋯   R ˜  n  k n   = λ J  ( f )   








and


     J  ( f + g )  =  α 0  +  β 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        (  α   k 1  , … ,  k n    +  β   k 1  , … ,  k n    )     R ˜  1  k 1   ⋯   R ˜  n  k n   = J  ( f )  + J  ( g )  .     











Thus, J is linear.



Let us show that J is continuous. Since J is a linear mapping between Fréchet algebras, it follows that for J the continuity and the boundedness are equivalent. In turn, the boundedness of J follows from (18). Thus, J is continuous.



Let us show that J is multiplicative. By (17),


  J  (  R 1  k 1   ⋯  R n  k n   )  =   R ˜  1  k 1   ⋯   R ˜  n  k n    



(25)




for every   n ∈ N   and    k 1  , … ,  k n  ∈  Z +  .   As a consequence of Theorem 1, every symmetric continuous polynomial   P :  L ∞   [ 0 , 1 ]  → C   can be uniquely represented as


  P =  α 0  +  ∑  n = 1  N   ∑   k 1  + 2  k 2  + … + n  k n  = n    α   k 1  , … ,  k n     R 1  k 1   ⋯  R n  k n   ,  








where   N ∈ N ,     k 1  , … ,  k n  ∈  Z +    and    α   k 1  , … ,  k n    ∈ C .   Therefore, since J is linear, taking into account (25),


  J  ( P )  =  α 0  +  ∑  n = 1  N   ∑   k 1  + 2  k 2  + … + n  k n  = n    α   k 1  , … ,  k n      R ˜  1  k 1   ⋯   R ˜  n  k n   .  



(26)







By using (26), it can be verified the equality


  J  (  P 1   P 2  )  = J  (  P 1  )  J  (  P 2  )   



(27)




for arbitrary symmetric continuous polynomials    P 1  ,  P 2  :  L ∞   [ 0 , 1 ]  → C .   Let   f , g ∈  H  b s    (  L ∞   [ 0 , 1 ]  )  .   Let us show that   J ( f g ) = J ( f ) J ( g ) .   Let   f =  ∑  n = 0  ∞   f n    and   g =  ∑  n = 0  ∞   g n    be the Taylor series expansions of f and g respectively. Then


  f g =  ∑  k = 0  ∞    ∑  s = 0  k   f s    g  k − s   .  











Consequently, since J is linear and continuous, taking into account (26),


  J  ( f g )  =  ∑  k = 0  ∞   ∑  s = 0  k  J  (  f s   g  k − s   )  =  ∑  k = 0  ∞   ∑  s = 0  k  J  (  f s  )  J  (  g  k − s   )  =    ∑  n = 0  ∞  J  (  f n  )       ∑  n = 0  ∞  J  (  g n  )    = J  ( f )  J  ( g )  .  











Thus, J is multiplicative.



Let us show that J is a bijection. Let   γ 0   be an arbitrary element of   Γ .   Let   v :  L ∞   [ 0 , 1 ]  →  (  L 1  ∩  L ∞  )   ( Ω )    be defined by


  v =  J  γ 0   ∘  W  γ 0   ,  



(28)




where   W  γ 0    is defined by (5), and   J  γ 0    is defined by (6). Since   W  γ 0    is a linear isometrical bijection and   J  γ 0    is a linear isometrical injective mapping (by Lemma 2), it follows that v is a linear isometrical injective mapping. Therefore, for every   r > 0 ,   the image of the closed ball with the center at 0 and the radius r of the space    L ∞   [ 0 , 1 ]    under v is a subset of the closed ball with the center at 0 and the radius r of the space    (  L 1  ∩  L ∞  )   ( Ω )  .   Therefore,


     sup {  | g  ( v  ( x )  )  | :    x ∈  L ∞   [ 0 , 1 ]  ,    ∥ x ∥  ∞  ≤      r }      ≤    sup   | g  ( y )  | :  y  ∈  (  L 1  ∩  L ∞  )   ( Ω )  ,   ∥ y ∥  ≤ r  .     



(29)




for every function of bounded type   g :  (  L 1  ∩  L ∞  )   ( Ω )  → C   and for every   r > 0 .   Let us prove the following auxiliary statement.



Lemma 5.

For every function   f ∈  H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )  ,   the function   f ∘ v   belongs to the Fréchet algebra    H  b s    (  L ∞   [ 0 , 1 ]  )  .  





Proof of Lemma 5.

Let   f ∈  H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )   . Since f is a function of bounded type, it follows that the value    ∥ f ∥  r   is finite for every   r > 0 .   Therefore, by (29), the value    ∥ f ∘ v ∥  r   is finite for every   r > 0 .   Thus, the function   f ∘ v   is of bounded type.



Let us show that   f ∘ v   is symmetric. For every   σ ∈  Ξ  [ 0 , 1 ]   ,   let us define the function    σ ^  : Ω → Ω   by


   σ ^   ( t )  =       (  w   γ 0    − 1   ∘ σ ∘  w  γ 0   )   ( t )  ,     if  t ∈  Ω  γ 0         t ,     if  t ∈ Ω \  Ω  γ 0   .       











It can be checked that    σ ^  ∈  Ξ Ω    and   v  ( x ∘ σ )  = v  ( x )  ∘  σ ^    for every   x ∈  L ∞   [ 0 , 1 ]  .   Therefore, taking into account the symmetry of   f ,  


   ( f ∘ v )   ( x ∘ σ )  = f  ( v  ( x )  ∘  σ ^  )  = f  ( v  ( x )  )  =  ( f ∘ v )   ( x )   








for every   σ ∈  Ξ  [ 0 , 1 ]     and   x ∈  L ∞   [ 0 , 1 ]  .   Thus,   f ∘ v   is symmetric.



Let us show that   f ∘ v   is an entire function. Since the function f is an entire function of bounded type, its Taylor series, terms of which we denote by    f 0  ,  f 1  , … ,  f n  , …  , is uniformly convergent to f on every bounded subset of the space    (  L 1  ∩  L ∞  )   ( Ω )   . By Proposition 4,


   lim sup  n → ∞     ∥  f n  ∥   1   1 / n   = 0 .  











Consider the series


   ∑  n = 0  ∞   f n  ∘ v .  



(30)







By (29),    ∥   f n    ∘ v ∥  1  ≤   ∥  f n  ∥  1    for every   n ∈ N .   Consequently,


   lim sup  n → ∞     ∥  f n  ∘ v ∥   1   1 / n   = 0 ,  








that is, the series (30) converges uniformly to some entire function of bounded type on every bounded subset of the space    L ∞   [ 0 , 1 ]  .   Let us show that this function is equal to   f ∘ v .   Since    ∑  n = 0  ∞   f n    converges uniformly to f on every bounded subset of    (  L 1  ∩  L ∞  )   ( Ω )  ,   it follows that for every   ε > 0   and   r > 0   there exists   N ∈ N   such that


    f −  ∑  n = 0  m   f n   r  < ε  








for every   m > N .   Therefore, by (29),


    f ∘ v −  ∑  n = 0  m   f n  ∘ v  r  ≤   f −  ∑  n = 0  m   f n   r  < ε ,  








where   m > N  . Thus, the series (30) converges uniformly to   f ∘ v   on every bounded subset of the space    L ∞   [ 0 , 1 ]  .   Consequently, the function   f ∘ v   is entire. This completes the proof of Lemma 5. □





We now continue with the proof of Theorem 5. Let us show that J is surjective. Let g be an arbitrary element of    H  b s    (  (  L 1  ∩  L ∞  )   ( Ω )  )   . Then g can be represented in the form


  g =  α 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n       R ˜  1  k 1   ⋯   R ˜  n  k n   .  



(31)







Let   f = g ∘ v .   By Lemma 5,   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )  .   By (31),


  f =  α 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n     (     R ˜  1   ∘ v   )   k 1   ⋯   (   R ˜  n   ∘ v )   k n   .  











Taking into account the equality     R ˜  n   ∘ v =  R n  ,  


  f =  α 0  +  ∑  n = 1  ∞    ∑      k 1  + 2  k 2  + … + n  k n  = n        k 1  , … ,  k n  ∈  Z +        α   k 1  , … ,  k n      R 1  k 1   ⋯  R n  k n   .  











By (17),   J ( f ) = g  . Thus, the mapping J is surjective and


  J ( f ) ∘ v = f  



(32)




for every   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )  .  



Let us prove that J is injective. Recall that J is linear. For a linear mapping, the injectivity is equivalent to the fact that the image of every nonzero element is nonzero. Let f be a nonzero element of    H  b s    (  L ∞   [ 0 , 1 ]  )   . Let us show that   J ( f ) ≠ 0 .   Suppose   J ( f ) = 0 .   Then   J ( f ) ∘ v = 0 .   Therefore, by (32),   f = 0 .  , which is a contradiction. Thus,   J ( f ) ≠ 0 .   Consequently, J is injective. So, J is bijective.



By (18) and (29),


    ∥ f ∥  r  ≤   ∥ J  ( f )  ∥  r  ≤   ∥ f ∥    2 M  r    








for every   f ∈  H  b s    (  L ∞   [ 0 , 1 ]  )    and for every   r > 0  . This inequality implies the continuity of J and   J  − 1   . This completes the proof of Theorem 5.






4. Conclusions


This work is a significant generalization of the work [49]. We consider symmetric functions on Banach spaces of all complex-valued integrable essentially bounded functions on the unions of Lebesgue-Rohlin spaces with continuous measures. Note that there are a lot of important measure spaces which can be represented as the abovementioned union. For example,   R n   for any   n ∈ N   with the Lebesgue measure is one such space. We investigate algebras of symmetric polynomials and entire symmetric functions on the abovementioned spaces. In particular, we show that Fréchet algebras of all complex-valued entire symmetric functions of bounded type on these Banach spaces are isomorphic to the Fréchet algebra of all complex-valued entire symmetric functions of bounded type on the complex Banach space    L ∞   [ 0 , 1 ]  .  



The next step in this investigation is to consider the case of unions of arbitrary Lebesgue-Rohlin spaces.
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