@ axioms

Article

Fejér-Type Midpoint and Trapezoidal Inequalities for the
Operator (w1, wy)-Preinvex Functions

Sikander Mehmood 100, Hari Mohan Srivastava 23450, Pshtiwan Othman Mohammed ¢,

Eman Al-Sarairah 780, Fiza Zafar 1

check for
updates

Citation: Mehmood, S.; Srivastava,
H.M.; Mohammed, P.O.; Al-Sarairah,
E.; Zafar, F.; Nonlaopon, K.
Fejér-Type Midpoint and Trapezoidal
Inequalities for the Operator

(w1, wy)-Preinvex Functions. Axioms
2023,12,16. https://doi.org/
10.3390/axioms12010016

Academic Editor: Sevtap Stimer
Eker

Received: 17 November 2022
Revised: 20 December 2022

Accepted: 21 December 2022
Published: 24 December 2022

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Kamsing Nonlaopon **

Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University,
Multan 60800, Pakistan

Department of Mathematics and Statistics, University of Victoria, Victoria, BC VW 3R4, Canada
Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,
AZ1007 Baku, Azerbaijan

Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu,
Seoul 02447, Republic of Korea

Department of Mathematics, College of Education, University of Sulaimani,

Sulaimani 46001, Iraq

Department of Mathematics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
Department of Mathematics, Al-Hussein Bin Talal University, Ma’an P.O. Box 33011, Jordan
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
*  Correspondence: nkamsi@kku.ac.th

© ® N

Abstract: In this work, we obtain some new integral inequalities of the Hermite-Hadamard-Fejér
type for operator (w1, wy)-preinvex functions. The bounds for both left-hand and right-hand sides
of the integral inequality are established for operator (w1, w;)-preinvex functions of the positive
self-adjoint operator in the complex Hilbert spaces. We give the special cases to our results; thus, the
established results are generalizations of earlier work. In the last section, we give applications for
synchronous (asynchronous) functions.

Keywords: Hermite-Hadamard inequalities; Hermite—-Hadamard-Fejér inequalities; (w1, wy )-preinvexity;
self-adjoint operators; positive operators; functions of self-adjoint operators; Holder inequality;

synchronous (asynchronous) functions
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1. Introduction

In the field of inequality theory, which has many application areas in mathematical
analysis and applied mathematics, researchers have proven dozens of inequality types.
We will start by introducing two inequalities that stand out with their aesthetic structures,
applications, and functionality among these types of inequalities.

One of the basic concepts used in many of the studies in the field of inequalities is
a special function class with applications in statistics, convex programming, numerical
analysis, and many other fields. The Hermite-Hadamard inequality, which is created by
using convex functions, and have a very intricate structure with inequalities, is given here.

For any convex function, § : I € R — R, and for y1, o € I with 1 < pip, the following
two-sided inequality holds true:

5 #1+ﬂ2)< 1 /”%
g( 2 T M2 ng

()dn g(l‘l);g(lﬁ)’ 1)
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where 1, 4 € Rand p11 < pp. The inequality (1) is called the classical Hermite-Hadamard
inequality.

The Hermite-Hadamard-Fejér inequality, which is the general form of the inequality
(1) and has been proved by using a weight function, is presented as follows (see [1]).

For any convex function § : I € R — R and for an integrable function A(1) :

[¢1,¢,] — R, which is symmetric about 51#2 , it is asserted that

Sl + 0 b < b Ny < §(l)+g(lp) (2, . .
< < e~ 72 o)/ 2
B(022) [ hwa < [ gonwan s LG Mg, o

where A(11) is a weight function.

Researchers working on these two famous inequalities have obtained generaliza-
tions, extensions, improvements, and iterations by considering different types of convex
functions, different types of derivative and integral operators, new methods, and differ-
ent spaces. Hermite-Hadamard inequalities for operator convex and generalized convex
functions have proposed (see, for example [2-7]). In 2015, Barani [8] developed the Hermite—
Hadamard inequalities for the products of two operator preinvex functions. In 2017, Wang
and Sun [7] established the Hermite-Hadamard-type inequalities for operator a-preinvex
functions. In 2022, Omrani et al. [9] proposed the Hermite-Hadamard-type inequalities for
operator (p, h)-convex functions.

Due to wide range and applications of Hermite-Hadamard inequalities, researchers
have extended their work (see, for example [10-18]).

We now recall the operator order in B(E), which is the set of all-bounded linear
operators on a Hilbert space (E; (.,.)). For the self-adjoint operators K1, K, € B(E), we may
write K1 £ K5 if

<K1ﬁ/ 1’2> é <K21’\l/ 1/\[>

for all it € E. We name it the operator order.
In general, we write Ry = [0,00) and R = (—00, ).

Definition 1. (see [11]) Let K; be a bounded self-adjoint linear operator on a complex
Hilbert space (E; (.,.)) The Gelfand map establishes a *-isometric isomorphism between
the set C(Sp(Kj)) of all continuous functions defined on the spectrum of K;, denoted
Sp(Kj), and the Cx-algebra C * (K7 ) is generated by K; and the identity operator 1; on E,
as follows. For any §1,$, € C(Sp(K1)) and any y1, i € C, we have

D) O(mg + p2g2) = Q&) + 1m2Q(&2);
i) Q(§182) = Q1) (&)

(i) Q&) = Q1)

(@) Q@I = 1§11 := supy ¢ sk 181(T);

() (&) =1pand Q(g1) = Ky, where §1(t) = 1and §1(t) =1 for T € Sp(Ky).

Definition 2. By using the notations of Definition 1, we now define
§1(K1) := Q&)
forall $; € C(Sp(Ky)).
If K; is a self-adjoint linear operator and it is also bounded, and if §; € Sp(Kj) is a
real-valued function for any T € Sp(Kj ), then

§1(1) 20= g1(Kq) 0.

If 1 and ¢, are real-valued functions on Sp(Kj ), where
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for any T € Sp(Kj), then
§1(K1) = &(Kq)
in the operator order of B(E).

Definition 3. (see [3]) Let §1 be a real-valued function defined on the interval I, where
I C R. Then, &, is called operator convex if

§1((1 =Ky +7K3) = (1-7)81(Ky) + 781 (K2).
If ¢, is considered operator concave, then the above inequality will be reversed.

Definition 4. (see [4]) Let I C Rq and let E be a convex subset of B(E)J;. Then, a continuous
function ¢; : I — R is said to be operator s-convex on the interval I for operator in E if

$1(tK1 + (1= 1)Ky) = T°&1(Kq) + (1 - 1)°81(K2)

in the operator order B(E) for all T € [0, 1], where K; and K; are positive operators in E
and their spectra are contained in the interval I and s € [0, 1].

Definition 5. A bivariate function 3 : £ x £ — R is said to satisfy the condition (C) if, for
every ui, Up € Eand T € [0,1], we have

S (1, p2 + 7S, pi2)) = = (p1, p2)

and
S (p1, p2 + 7S (p, p2)) = (1 - 1)S(pi, p2)-
We note that, for every yq, yp € E and every ui, pp € [0,1], we find from the condition
(C) that
S(p + w2 (1, p2), 1+ S (i, p2)) = (2 — 1) S(pa, p2)-

Definition 6. A general form of the classical Beta function B(a, f), which is known as the
incomplete Beta function, is defined by

B.(, B) = B(z;a, B) i— /0 (1 =)l dr

(R(a) > 0; min{R(a),R(B)} >0 and z=1).

Definition 7. Let £ C B(E){; be an invex set with respect to & : E x £ — B(E)J; and
g1 : R = R. Then, the continuous function ¢, is called operator preinvex with respect
to & if

§1 (K1 + tS(Kp, Kq)) < (1 —1)81(Kq) + t81(K2)

in the operator order in B(E) for all K;,K; € Eand T € [0,1].
We now recall each of the following known results.

Theorem 1. (see [3], Theorem 3) Let £ be an invex subset of B(E)Z, and let S be a function,
where S : Ex E — B(E), and §1 : I C Ry — R is a continuous function on the interval I.
Suppose also that the set E satisfies the condition (C) on the set E. If the function § is said to
be operator preinvex on S-path Py, c with spectra of Ky and C contained in V, then the following
result holds true:

1 5 2
g1<1<142r1<2> §/0 $1 (K 4 t3(Ky, Ky) )dT < M
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for every Ky, Ky € E, C = Ky + 3(Kp, Ky) and T € (0,1].

Theorem 2. (see [6], Theorem 2.5) Let E be an invex subset of B(E)Z, and let S be a function,
where S : Ex E — B(E), and §1 : I C Ry — R is a continuous function on the interval I.
Suppose also that the set E satisfies the condition (C) on the set E. If, for s € (0,1], the function §

is said to be s-preinvex preinvex on the S-path Py, c with spectra of Ky and C are contained in V,
then the following result holds true:

) N .
ps-1 §1<K142FK2) g/ 1(Ky + T3 (Ko, Ky ) ) < 81(1(121(%'1(19)
0

for every Ky, Ky € Eand C = Ky + 3(Kp, Ky) and T € (0,1].

Theorem 3. (see [5], Theorem 3.1) Let E be an invex subset of B(E)Z, and let S be a function,
where S : Ex E — B(E), and §1 : 1 € Ry — R is a continuous function on the interval I.
Suppose also that the condition (C) is satisfied on E. If, for « € (0,1], the function ¢, is the operator

a-preinvex on the S-path Py, c with spectra of Ky and C are contained in V, then the following
inequality holds true:

. (Kit+ Ko vy ag1(K1) + &1(Ka)
(5572 = [k + o3y e < SHELEHE)

for every Ky, Ky € E, C = Ky + 3(Kp, Ky) and T € (0,1].
Each of the following lemmas will be needed in our investigation.

Lemma 1. (see [19], Lemma 1) Let E C Rq be an invex subset of R and let S be a func-
tion such that S : E x E — R and, for uy, pp € ER, where puy < py + S(po, p1)- If §1 €
L([p1, w1 + S(p2, 1)) is a differentiable function on E. If hy : [y, w1 + S(p2, w1)] — Ry is an
integrable mapping, then the following results holds true:

1 S (i)
Y2V 5 (1) B (2 di
S(p2, 1) /y] &1 (i) hy () din
1 . S (uo, 1+ (po, ) o
- ng (‘ul * (Véﬂl)) /m By (id)dit
1 2
= S(ﬂz,m)/o K(1)g:1(7)dr,
where )
Jo M1 + uS(p2, 1)) du (re, %))
K(t) =
_ffl hiy (g + uS(po, 1) )du (te[L1]).

Lemma 2. (see [19], Lemma 2) Let £ C Rq be an invex subset of R and let I be a func-
tion such that S : E x E — R and, for uy, pp € ER, where puy < py + S(po, p1)- If §1 €
L([p1, w1 + S(pa, 1)) is a differentiable function on E and if hy : [y, w1 + S(pa2, 1)) — Ry is

an integrable mapping, which is symmetric with respect to py + 33 (pa, 1), then the following
results holds true:



Axioms 2023,12,16

50f17

1 H1+S(p2,h1)
&~ 31 () hy(01)dn
o) o (@) (@)
§1(#1)+§1(V1+%(}42,y1)))/Hﬁ%(ﬂz,m) o
B R () dn
( 23 (p2, 1) i 1)
\9(}121741

= S0 [T () (i + 73z ),

where

K1) = [ TG+ S )i — [ G+ S )l (xe 01)).

In this article, we give some new Hermite-Hadamard—-Fejér-type inequalities for the
operator (w1, wy)-preinvex functions. We shall also demonstrate how our main findings in
this article provide generalizations of some results in earlier studies.

2. Main Results

We begin this section by recalling the following definition.

Definition 8. (see [20]) Let £ be an invex subset of B(E){, with respectto 3 : E x E — B
(E)4;. Furthermore, let 1 be a continuous function such that ¢; : £ — R is said to be the
operator (wy, w)-preinvex on E if

§1(Ky +73(Ka, Ky)) = 791 = 1)281 (Kq) + (1= 1)1 7281 (K), ®)

sa’s
E, their spectra are contained in C.

in the operator order B(E)Z;, for all T € [0,1] and, for every positive operators K; and K, in

Lemma 3. Let E C Ry be the invex subset of B(E)J, and assume there is a function 3, where
S:ExE—B(E);and ¢ : E — Ris a continuous function. If the condition (C) is fulfilled
on E, then for C = Ky + (K, Ky) for all K1, K, € E, the function ¢y is an operator (w1, wy)-
preinvex with respect to S on S-path Py, c and E contains the spectra of C if and only if the function
Qi K, [0,1] = R, defined by

Qi i, K, (T) := (§1 (K1 + 7S(Kp, K1) i, 1),
=1.

is (w1, wy)-convex in the interval [0,1] for all it € E with ||it

Proof. Let i € E with [jil]| = 1 and let Qu k, k, : [0,1] — R be (wy, ws)-convex on [0, 1].
For all

Cl =Ky + (U1%(K2,K1) € Pch and Cz =K+ wZ%(KZ, Kl) € Pch,

we fix T € [0,1] and utilize the condition C as follows:
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(31(C1+7S(6, Cr)) i i) = (81 (Ky + w1 (Ko, Ky) + T(wp — w1)S(Kp, K1) )i, 1)
= (&1 (Ky + (1 = 1)w1S(Ky, K1) 4+ TwrS(Kp, Ky) )11, )
= ($1(Ky + (1 = D)y + Tw2)S(Ky, Ky) )11, 12)
= Qi K, (1= T)wy + Twy)
Y1 — 1)y kK, (W1) + (1 — T) M T2 K, K, (W2)
“1(1— T)w2<g1 (K1 —l—wl%(Kz,Kl)) ) ‘>
+ (1 — 1) 12 (g1 (K1 + WS (K, Ky)) ‘,L‘t>
=71 — 1)1 (Cr)i, i) + (1 — 1) 12 (%1 (o),

ﬁ/
~

Hence ¢ is operator (wy, wy)-preinvex.
Conversely, let K1, K, € E and let | be operator (w1, w;)-preinvex with respect to 3
on J-path Pk, c. Suppose that wq, w; € [0, 1]

Qu ik, (1= 7wy +Tws) = (§1(Ky + (1 — T)wy + twr) (Ko, Ky) )11, )
= (§1(Kq + w1S(Kp, Kq) + T(ws — w1)I(Kp, Ky) ), 11)
— (31(Ky + 0 S(Ka, K1)
FTS(Ky + 0S(Ka, K1), Ky + w1 S (Ko, Ky )i, 1)
< (1 — 1) (§1 (K + anS(Kp, Ky, 1)
+ (1= 1) 72 ($1 (K1 + wrS(Ky, Ky )i, it)
=1Y(1 - 7)?2Q(wy) + (1 — )" 120 (wp),

which shows that Q) k, k, is (w1, w2)-convexon [0,1]. O

Theorem 4. Let £ C Ry be the invex subset of B(E); and assume there is a function S, where
S:ExE—B(E)],and &1 : E — Ris a continuous function. If the condition (C) is fulfilled
on E, then for C = Ky + (K, Ky) for all Ky, Ky € E, the function |Q)'| is an operator (w1, ws)-
preinvex with respect to S on S-path Py c and that E contains the spectra of C. Then, for all

pi,p2 € (0,1)

holds true:
1 1+ (p2,p) T
_ 71 (K (Ko, K1) )du |, 2t Yhy(i1)dn 4
s (] a0+ e k) ) ) @)
S(mam) ~
1 M +7 S (p2,p)
B 5 (K o~ . NN
7§(H2,741)/ (&1 ( 1+u\s(K2,K1)u,u>du/m hy () dn

1+ 5 S (2 pn) -
thlum/y : [ﬁ(l*WH) 1+(U1,1+w2)
1 I
_p( =" 1+w,1+w)] 51 (Ky 4+ 113(Ko, Kp) )11, it
ﬁ< (Mz,pt) ! 2 ) [[(§1 (K1 + 1S (Ko, Kq))t, i) |

M1 o—
»177:1+w,1+a)7 — 14wy l4+w
{5( S ) T 1) 5(%42,#1) 2 1)}

(g1 (K + 12Ky, Kq) )i, it | di.

It is also asserted that
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H 1 /HlJrS‘(Hzfﬂl)

T
31 (K1 + uS(Ky, Kq))du hy(2)dn
S0, ) /o §1(Kq + uS(Ky, Ky) )du by ()

M1
S(pa41) &
1 pt—=3 H1+S(p2,m1)
S 31 (Kq + uS (Ko, K du/ By (0)di
%(Vz,m)/o $1(Kq (K2, K1)) ” 1(11)
1143 S () -
< ||k oo/ [(1—:1+w,1+w>
= [|A | » B S G 1) 1 2
il*}l] <
Bl —————1+w, 14w Ki 4+ 11S(Ky, K
ﬁ<9(#2,y1) 1 2)“81( 1+ 1S (Ko, Ky)) ||
i — i —
. 1—-——— 14wy l+w; ) — (:1+w,1+w>:|
[ﬁ< S (2, 1) ? 1) S0 ) ? !
181 (Ky + 12 (Ka, K1) |- 5)

Proof. Let K1, K, € E and suppose that, for all uy, 4o € (0,1), where iy < py. Forit € E
with |[&z|| = 1, there is a function Q) : [u1, 42| C [0,1] — Ry given by

Q(1) = <</()Tg1(1<1+u%(1<2,1<1))du)a,a>. ©)

Now, by applying the properties of integrals of operator-valued functions and conti-
nuity in the inner product, we obtain

<</0T $1 (K1 +uS(Ky, Kﬂdu) it,it> = /OT<g1 (K1 4+ uS(Ky, Ky)) i, it )du. )

Since &1 (Ky + uS(Kp, K1) 20, Q1) = 0forall T € [py, 2], we have
O/ (1) = (&1 (K1 + t3(Kp, K1) i, i1) 2 0. ®)

Hence
| (1)] = O (7).

Furthermore, since ¢; is operator (wy, w;)-preinvex with respect to & on 3-path Py, ¢
and () is (wy, wy)-convex. Now, by using Lemma 1, we obtain

1 /V1+9(Mz,m)
(1m0 1) Q) (i)du 9
‘%(VZIV:[) M ( ) l( ) ( )
! %(yz,y1)> pASG)
" S0 L — / hy()du
(2 11) <”1 2 ) 1(1)

/ T
< () [ ([ -+ 03 ) )
[T (1= 1) Q ()| + (1 — 1) 2| () |]dT

+ S (2, 11) /112 (/T1|h1(}11 + u%(ﬂbmmd”)
. [T“”(l _ T>w2’0/(ﬂl)’ + (1 _ T)w17w2|0/(]12)ﬂd1’
=L+ 1. (10)

Thus, after changing order of integration, we obtain
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1/2 T
L= %(szﬂl)/o </o |fia (p1 +u%(yz,y1))|du>
. [T“’l(l _ T)wzlﬂl(}ll)’ + (1 _ T)wle’Q/(yz)HdT
1/2
= S(papn) [ G+ 1Sz, )
1/2
. (/ [T (1 —1)“2|Q (1) | + (1 — T)“’lT‘”‘Q’(yz)HdT)du
1/2
= S(rzpn) [ (1 + 1Sz )
1
) [(ﬁ(z ‘14w, 1 +w2) —B(u:1+ w1 +w2)> 1 (1) |
1
+([3(2 : 1—|—w2,1+w1> —B(u: 1+w2,1+w1))‘0’(y2)‘]du.
Using the change of variable given by i = p3 + u$(&y, 41 ) for u € [0,1], we find that

it 3 S(p2.m) R
h = /y [ ()|

. |:<ﬁ(;1+(d],1+602> _ﬁ(g\ml+wlrl+w2))|0,(ﬂ1)|
+<ﬁ<;31+w2/1+w1)—ﬁ(%:1+w2,1+w1)>]0’(;42)]}dﬁ. (11)

Similarly, on changing the integration order and considering the fact that #; is sym-
metric with respect to yi1 + 5$(42,41), we obtain

1

=3 m) ([ 1+ )

[ (1= 02 |Q ) | + (1= D) T2 | (o) | dT
= S(p2, 1) /leﬁl(m +uS(p2, )|
: (/1/2 [e1 (1= 1) ()| + (1 - T)““T“z\ﬂ’(uz)HdT> du
= S [ s+ )
-[(ﬁ(u:1+w1,1+wz)—,5< :1+w1,1+wz)>!0’<m)!
+ (ﬁ(u:1+w2,1+w1)—[5<2:1+w2,1+W1>)‘Q/(V2)@d”'

1

_= N

By changing the variable &t = py + (1 — u)(dp,47) for u € [0,1], we have

w1+ 3 S (p2.)
-

[Fn (1))

v H1

: [(5(1— %iép::l) :1+w1,1+wz> —ﬁ(i : 1+w1,1+w2)>10’(#1)!
+ (ﬁ(lgm:l+w2,1+w1>B(;:1+w2,1+w1))‘0/(ﬂ2)@da- (12)
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We now add (11) and (12) and utilize the fact that

171l = sup  |Ay(a)].
ielay, a1+ (ap,47 )]
We then obtain
1+ 3S(u2 )
L+L= I|ﬁ1||oo/ ’ 1Y (1) |
H1
it—]/tl 1:[—]11
. 1—-———— 14w, 14+wy ) — ——— 14w, 14w
[ﬁ< S (po, 1) ! 2) ﬁ(g(ﬂzfﬂl) ! 2)]
-l [ (1_”-m:1+w 14w ) - (M—M;Hw 14w )}d
' (u2)] | S(p2, 1) 2 1) —F S(p2, p1) ? !

Finally, by using the results of (6)—(8), we obtain (4) and, upon taking the supremum
on both sides of (4) with ||it|| = 1, we obtain (5). O

Remark 1. For w; = s and w; = 0in (5), we have

S (pa ) 7
/ /0 §1(K1 + uS(Ky, Ky))du By () dx
M1

H+3S (2 m) 1 +S(p2.)
_/01 2l gl(K1+u%(K2,K1))du/1 g ()di
M1

s+1 _
< (S0 )Pl ]

[l|g1 (Ka + paS(Ka, Ka) ) ||+ [| &1 (Ky + p2S (K, K1) ||]-

Remark 2. Fors = 1in (5), we have

m+S(pam) o7
/1 ¥ /0 g1(Ky + uS(Ko, Ky ))du Fiy (i) di
"

H1+S(p2, )
§1(Kl+u%(Kz,K1))du-/ B fiq (i) dix
M1

/#H%S(Mz/m)
0

< (%(VZIAul))ZthHoo[
- 8

$1 (K1 + S (Ko, Kq)) || + |11 (Ky + p2S(Kp, K1) ||]-

Theorem 5. Let E C Ry be the invex subset of B(E); and assume there is a function S, where
S:Ex E—B(E)} and ¢ : E — R is a continuous function. If the condition (C) is fulfilled on
E, then for C = Ky + (Ka, Ky) for all Ky, Ky € E, the function |Q’|b is an operator (wq, wy)-
preinvex with respect to S on S-path Py c and that E contains the spectra of C. Then, for all
p1, 42 € (0,1) where uy < po and for all it € E, where ||it|| = 1, the following inequality
holds true:
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1 Pl1+(5(112/ﬂ1)< (/T ) >
—_— 31 (Ky + uSS(Ky, Ky))du |0, 0 Yhy(0)dn
’3(142/#1)/;:1 0 sk (Ko, K1) (@)

1 /%ﬁ%g(ﬂz,ﬂl)

S(p2, 1) Jo

+S(po, 1)
_ <§1 (Kl + u%(KZIKl))il,iQdu ) /141 Ha M

hiy (i) di
M1

< S 1) ( / 1|1<<r>“dr) "28(1 + w1+ @)

IS

(g (K + S (K, Kn)) i, )]+ (31 (Ks + 1S (Ko, K) )it )|

It is also asserted that

(13)

1 i+ (2 m1) T
S(ua, 111) 31 (K1 + uS(Kp, Kq))du by (it)din
H%(uz,m) /m /0 &K (K2, K1))du Ty (i)

S(uam1)

1 i+ =5 1+ (p2,p1)
S 51 (K + uS(Ky, K du~/ By (10)dit
C5(142/#1)/0 &1 (Ky +uS(Ky, Ky)) " 1()

< (2 m) /01|1<<r>|“dr) "B+ wor1 + )

SN

- 181 (K1 + 1S (Kp, Kyp)) |b + 181 (Ky + 23 (Ko, K1) \b] p (14)

where

1 1
S4o=1
a+b

Proof. After applying Holder’s inequality on Lemma 1, we obtain

1 /H1+9Y(Hzlﬂl)
M

‘%(m,m) Q) (ix)di

1

& +(p2,m1)
J(#Ml))/m Y () da
H

S —Y P LSy
S(p2, 1) (M 2

< 3Gz ) /01|I<<r>|“dr) :

. (/01|Q’((1 — T)wy + Twy) |de> %.

From the (w1, wy)-convexity of |(Y |b, we have

1
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Q(i1)hy (1)dit

%(Mlﬂl)) mAS(m)
St R — / i (n)di
S(p2, 1) (Hl 2 " 1(11)

< ([ IKC0 )

’ 1 /H1+3(ﬂ2/ﬂ1)

S(p2, 1) i

1
b

| </01 [TWI(l — )0 )+ (1 - T)wlTw2|Q’(M2)|b} dT)

=3 1|K<r>|“dr);

: [/5(1 + wi, 1+ w)) (|0’(u1)\b + ‘Q/(ﬂz)‘h)} '

Finally, by applying the results in (6)—(8), we obtain (13) and, upon taking the supre-
mum on both sides of (13) with ||it]| = 1, we obtain (14). O

Theorem 6. Let E C Ry be the invex subset of B(E); and assume there is a function S, where
S:ExE —B(E)]and ¢ : E — Ris a continuous function. If the condition (C) is fulfilled
on E, then for C = Ky + 3(Ky, Ky) for all Ky, Ky € E, the function |QY'| is an operator (w1, w5)-
preinvex with respect to S on S-path Py c and that E contains the spectra of C. Then, for all
1,42 € (0,1) where uy < po and for all i € E, where ||it|| = 1, the following inequality
holds true:

1 /;41+%(yz,;u)<(/r ) >
S(uo. 11) 31 (K + uSS(Ky, Kp))du )i, 0 Y () du
‘%(Hzlﬂl) " 0 sk (Ka, Ky)) 1(it)

1 "1
a WK (/0 §1(K1+u3(1<2,1<1))du)a,a>
1+ (g2, 111 S
+< (/V (2 >g1 (K1 + uS(Kz,Kl))du> uu>} /m (m2ip11) iy (2)d
i p

< Blwr + 1wz + 1) [[(§1 (K + 1S (Ka, Ky)) i, ) |
+[(81 (K1 + p2S(Kp, Ky ) ) it, 1) | ]| 721 | - (15)

It is also asserted that

m+S(p2 ) T
H1/1 " /O F1(Ky + uS (Ko, Ky) ) du Fy (i) did

%(;12/}11) M1
2%( ), ]) Jo 81 1 2, 1N

H1+S (p2 1) H1+S (p2,p1)
+),

5’1 (Kl +u%(K2,K1))du:| / ﬁ](ﬁ)dﬁ
14

1

< Blwr +1,w2 + 1) [||81 (K + p1S(Ka, Ky)) ) |
+|g1 (K + p2S (Ka, K1) [|] 111 ] - (16)

Proof. From Lemma 2 and the fact of the (w1, w;)-convexity of (), we have
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1 1+ (p2,m1)
_ 5 () (0)du
|%(m,m)/ & () ()

(& () + &1 (1 +S(p2, 1)) ”1“ H2b1) (2)da
23(p2, 1) fn

<3Gz m) [ ([ -+ 03 1>|du)

)
[T (1= )| ()| + (1 — 7)1 T2 | QY (o) |]dT

+ S(p2, 1) / (/ [P (1 + uSs (P‘zf}ll))|d”>
.[T“’l(l—r‘”2|Q 11 |+ l—T)wlT“J2|Q/(y2)|]dT
=h+Dh,

which, upon changing the order of integration, yields

b= [ ( [ G+ u%(uz,m)wu) a7
. [T“’l(l — T)“’2|Q’(y1)| +(1- T)“’lr“’2|0’(y2)|]dr
1
= Sz m) [ e+ 1S Gz, )|

1
: / (291 (1 = )2 | QY ()| + (1 — D)1 72| QY (jup) || dedu. (18)

Similarly, on changing the integration order and considering %; is symmetric with
respect to 1 + 3S(d, &), we obtain

1/ 1
L= S(yz,yl)/o </T A1 (1 +u%(ﬂzfﬂl))|d”>
[ (1= )2 ()| + (1 - D)9 T ()| de
1
= | Ve + 0z, )

. /Ou [T9°(1—1)“2|Q (1) | + (1 — 7)1 72| () |JdT du. (19)

After adding (17) and (19) and using the assumption that

lle =" sup  |m(a)],

€[y, 81+ (3,81 )]
we obtain
I=L+D
- /01|h1(;41 + uS(pa, 1))
YT ——

_ eI (ua) | + |9 (p2) ]
S(p2, 1)
= [|Q ()] + | (u2)[] Blewr + 1, w2 +1) || ]|

M1+ (p2,p1)
B(wr +1,w2+1)/ du
M1

Finally, by utilizing the results in (6)—(8), we obtain (15) and, on applying the supre-
mum on both sides of (15) with ||it]| = 1, we obtain (16). O
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Remark 3. For wi; = s and wy = 0in (16), we have

H 1 /]41+‘5(I’L2/;41) /'T o (K + C\(K K ))d h, (\)d\
—_ u (Ko, u g () di
S(p2 1) Iy o ST 2R

_1[/”1 51 (Ky + uS(Ky, Ky ) )du
23\9(#2#1) ) 81K 2,181

H1+S (p2 1) H1+S (B2 1)
+<</0 &1 (K1+u3(K2,K1))dM)ﬁ,ﬁ>] / hy(in)dit
H

1

< IMmlle

< ot | (81 (K1 + p1S(Kp, Ky)) ||

+|81 (K1 + p2S (Ko, K1) ||]-

Remark 4. For s = 1, we have

1 m+S () T N -
‘ W/y /0 31 (Ky 4 uS(Ky, Ky) )du by (1) di
4 1

. [/”l 31(Ky + uS(Ko, Ky))d
_ uS (Ko, u
2%(742,”1) 0 g1{&1 2, 4N

H1+S (p2 1) 1+ (pa, )
+</0 1 2,41 (gl(KlJr”%(KZ'Kl))d”) u,1,‘[>:|/ 1 2,11 hl(a)da
iz

1

h
I 12||oo 181 (Kq + 1S (Ko, Kq)) ||

+|81 (Kq + 28 (Ko, K1) ||

174\

Finally, we state and prove the following result.

Theorem 7. Let E C Rg be the invex subset of B(E); and assume there is a function S, where
S:ExE =B (E) and §1 : E — Ris a continuous function. If the condition (C) is fulfilled on
E, then for C = Ky + S(Ka, Ky) for all Ky, Ky € E, the function |Q’|b is an operator (w1, ws)-
preinvex with respect to S on S-path Py c and that E contains the spectra of C. Then, for all

p1, 42 € (0,1), where uy < pyp and for all & € E, where ||it]| = 1, the following inequality
holds true:

1 i+ (p2m1) T
Sz ) 51(Ky + u3 (Ko K du)a,a>h )di
S(Vz,m)/m <(/0 g1 (K +u3(Ky, Ky)) 1 (1)
1 M1
23 (pp, 1) K(/O 81(K1+u%(K2,K1))du)g,g>
+3( S o)
<(/0h1 H2,4i1) Kl—l—u\s(K2,K1))d )ﬁ,i{>} /Hl B2/ iy (2)di
I

= S(p2, 1) (/ |K(T \dT>
[B+wn 1+ @) (|G (K + S (Ko K)) i)

+[(&1(Ky +V23(K2/K1))ﬂri‘>‘)]%~ (20)

It is also asserted that
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1 m+S(p2 ) T
Y EE— o1 (K S(Kp, Ky) )du by (1t)du
It Jy 0w 0 Ko )
1 mo N
St Uo &1 (Ky + uS(Ky, Ky ) du
m+S(p2p) | mAS(p2p)
+/0 81 (K1+u%(Kz,K1))du} / Fiy () dr
Ju
1 i 1
< () [ 1K)
: [5(1 +w1,1+w2)(“§1(1<1 +V1%(K2,K1))Hb
1
+181 (K +142%(K2,K1))Hb)} !, (21)

1,1 _
where;—l-g—l.

Proof. On applying Holder’s inequality to Lemma 2, we can write

1 H1+S(p2,)
—_ 31 (1) hy(01)dn
’%(szﬂl)/m S (@)

_ <g“1(141) + &1 (11 + Sy, m))) /’*1”@‘2'”1)
23(p2, 1) j

< %(u;m) (/01|K(T)|adT>

. (/01]0’((1 — T)wq + Twy) |bd7) %.

Fir (1)l

1

=

From the (wy, wy)-convexity of | |?, we obtain

1+ (p2,m1)
! /1 Q@) ()da
I

’%(ﬂzfﬂl)

1

1 1 H1+S(p2p1)
Y alm+ =S, )/ i (i0)di
S+ 330em ) [ (@)

< M (/01|K(T)|aal’f>l17
| (/01 [T 1= D] )|+ (1= 1) Q)| dT) E
= %(yz,;tl)(/ollK(TﬂadT);

. [ﬁ(1 +wi, 1+ wy) (\Q/(P‘l)‘b + ‘Q/(”z)‘b)} .

—

Finally, by using the results in (6)—(8), we obtain (20) and then, by applying the
supremum on both sides of (20) with ||it]] = 1, we obtain (21). O

3. Applications for Synchronous (Asynchronous) Functions

The functions §1, i1 : [K1, Kz] — R are synchronous (asynchronous) on [Ky, K3] if the
following inequality holds:

(&1(t) = §1(s)) (A1 (t) — hi(s)) > ()0,
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forall t,s € [Ky, Ky]. Itis clear that, if the functions ¢1, i, are monotonic and have the same
monotonicity on [Kj, Kp], then they are synchronous on [Kj, K»|; meanwhile, if they have
opposite monotonicity, they are synchronous. The following result provides a Cebyhsev-
type inequality for functions of self-adjoint operators.

Theorem 8. (see [21]) Let A be a self-adjoint operator with Sp(Ky) C [x, M] for some real numbers
m <M if ¢,k : [m, M] — R are continuous and synchronous (asynchronous) on [m, M|, then

(§1(K1)h1 (Ky)x, x) = (<)(§1(K1)x, x) (h1 (K1), x),
forany x € Hwith ||x|| = 1
If ¢, /iy are synchronous, then
N(Ky, Kp)(x) < M(Kq, Kp)(x) < Q(Kyq, Kp) (%), (22)

for any x € H with ||x|| = 1.
If g1, hy are asynchronous, then reverse inequalities holds in (22)

N(Ky,Kp)(x) > M(Kq, Kp)(x) > Q(Kq, Kp) (x).

For all positive operators K; and K; on a Hilbert space H with spectra in I , we define
real functions, where

M = M(Ky, Kp)(x) = (§1(Ky)x, x) (hn (K1)x, x) + (§1(K2)x, x) (Fi1 (K2)x, x).
N = N(Ky,Ko)(x) = (§1(K1)x, x) (h1(Ka)x, x) + (§1(K2)x, x) (1 (Ky)x, x).

Theorem 9. Let §1, k1 : [m, M] — RT operator (w1, wy)-preinvex and Ky,Ky C Sp(Ky) U
Sp(Ky) C [m, M], wy,ws € [0,1]

() If &,7 are synchronous and §1, 1 > 0, then we have the following inequality

1
/g1 Ky + uS(Ka, K0 ))x, ) (g (Kq + uS (Ko, K1), x)dut
0

< [Bwi +1,2wy +1) 4+ B(w) + wr + 1, w1 + wy +1)]Q,

where

Q= Q(Ky, Kz)(x) = ((§1(K1)h (K1) + §1(K2) 1 (K2))x, x).

Remark 5. If wy = 1 and wy = 0, then the following inequality holds

(51(Ky + uS (Ko, K1), x) (h (Ky + uS(Kp, K1 ))x, x)du

IN
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(ii) If &,y are synchronous and g1, fi; > 0, then we have the following inequality

CIC R G I

(§1(Ky + uS(Ky, Ky))x, x) (i (K1 + uS(Ky, Ky))x, x)du

A\
N| =
—

+

N| = ©

[B(2w1 +1,2w7 +1) + B(wy + wp + 1wy + w2 +1)]Q,

where
Q= Q(Ky,Kz)(x) = ((§1(K1)hn (K1) + §1(K2)h1 (K2))x, x).

(iii) If &, 7, are synchronous and ¢, > 0, then we have the following inequality

<g~1 <K1;K2>xx> 0/1<ﬁ1(1<1 +uS(Ka, Ky))x, x)du

+

<ﬁ1(<KlerK2>)xrx> /l<§1(K1 + uS (Ko, K1))x, x)du
0

IN

1 1
/<ﬁ1 (Ky 4+ uS(Ko, Ky))x, x) /<§1 (K1 +uSS(Kp, Ky))x, x)du
0 0

[B2wi +1,2wy +1) 4+ B(wy + wy + 1, w1 + wy +1)]Q
(@ (557 o) (n( (P57 e

We have developed new estimates for both the lower and the upper bounds of the
Hermite-Hadamard-Fejér type inequalities for the operator (w1, wy)-preinvex functions.
The main result of our work is Lemma 3. The remaining established results are based on
Lemma 3. Additionally, we have provided some remarks that illustrate how the main
theorems extend other results shown in the cited literature. All of the information pre-
sented here should encourage more study in this field. Interested readers can establish the
fascinating results on different class of convex and generalized functions. The results can
be generalized to different fields such as fractional calculus, g-calculus, interval-valued,
and time-scale domains for the square operator modulus in semi Hilbert spaces (see, for
example [15,22]).

4+ NI= NIR
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