On Certain Estimates for Parabolic Marcinkiewicz Integrals Related to Surfaces of Revolution on Product Spaces and Extrapolation
Abstract
:1. Introduction
- (a)
- is strictly increasing and is monotone on ,
- (b)
- for a fixed constant and for a constant ,
- (c)
- on for a fixed constant .
- (a)
- is strictly decreasing and is monotone on ,
- (b)
- for a fixed constant and for a constant ,
- (c)
- on for a fixed constant .
2. Some Lemmas
3. Proof of the Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fabes, E.; Riviére, N. Singular integrals with mixed homogeneity. Stud. Math. 1966, 27, 19–38. [Google Scholar] [CrossRef]
- Ding, Y.; Xue, Q.; Yabuta, K. Parabolic Littlewood-Paley g-function with rough kernels. Acta Math. Sin. (Engl. Ser.) 2008, 24, 2049–2060. [Google Scholar]
- Al-Salman, A. A note on parabolic Marcinkiewicz integrals along surfaces. Proce. A Razmadze Math. Inst. 2010, 154, 21–36. [Google Scholar]
- Chen, Y.; Ding, Y. Lp Bounds for the parabolic Marcinkiewicz integral with rough kernels. J. Korean Math. Soc. 2007, 44, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ding, Y. The parabolic Littlewood-Paley operator with Hardy space kernels. Can. Math. Bull. 2009, 52, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Chen, Y.; Yu, W. Lp Bounds for the parabolic Littlewood-Paley operator associated to surfaces of revolution. Bull. Korean Math. Soc. 2012, 29, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Al-Qassem, H. A note on parabolic maximal operators along surfaces of revolution via extrapolation. Symmetry 2022, 14, 1147. [Google Scholar] [CrossRef]
- Nagel, A.; Riviére, N.; Wainger, S. On Hilbert transforms along curves. II. Am. J. Math. 1976, 98, 395–403. [Google Scholar] [CrossRef]
- Al-Salman, A. Parabolic Marcinkiewicz Integrals along Surfaces on Product Domains. Acta Math. Sin. Engl. Ser. 2011, 27, 1–18. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Pan, Y. On rough maximal operators and Marcinkiewicz integrals along submanifolds. Stud. Math. 2009, 190, 73–98. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H. Rough Marcinkiewicz Integrals with Mixed Homogeneity on Product Spaces. Acta Math. Sin. (Engl. Ser.) 2013, 29, 1231–1244. [Google Scholar] [CrossRef]
- Ali, M.; Aldolat, M. Parabolic Marcinkiewicz integrals on product spaces and extrapolation. Open Math. 2016, 14, 649–660. [Google Scholar] [CrossRef]
- Ding, Y. L2-boundedness of Marcinkiewicz integral with rough kernel. Hokk. Math. J. 1998, 27, 105–115. [Google Scholar]
- Chen, J.; Fan, D.; Ying, Y. Rough Marcinkiewicz integrals with L(log L)2 kernels. Adv. Math. 2001, 30, 179–181. [Google Scholar]
- Choi, Y. Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains. J. Math. Anal. Appl. 2001, 261, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Al-Qassem, A.; Al-Salman, A.; Cheng, L.; Pan, Y. Marcinkiewicz integrals on product spaces. Stud. Math. 2005, 167, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Al-Qassem, H. Rough Marcinkiewicz integral operators on product spaces. Collec. Math. 2005, 36, 275–297. [Google Scholar]
- Fan, D.; Pan, Y.; Yang, D. A weighted norm inequality for rough singular integrals. Tohoku Math. J. 1999, 51, 141–161. [Google Scholar] [CrossRef]
- Kim, W.; Wainger, S.; Wright, J.; Ziesler, S. Singular Integrals and Maximal Functions Associated to Surfaces of Revolution. Bull. Lond. Math. Soc. 1996, 28, 291–296. [Google Scholar] [CrossRef]
- Kukushkin, M. On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space. Fractal Fract. 2021, 5, 77. [Google Scholar] [CrossRef]
- Ali, M.; Al-Mohammed, O. Boundedness of a class of rough maximal functions. J. Ineq. Appl. 2018, 2018, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S. Estimates for singular integrals and extrapolation. arXiv 2007, arXiv:0704.1537v1. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.; Pan, Y. Singular integral operators with rough kernels supported by subvarieties. Am. J. Math. 1997, 119, 799–839. [Google Scholar]
- Duoandikoetxea, J. Multiple singular integrals and maximal functions along hypersurfaces. Ann. de l’Inst. Fourier 1986, 36, 185–206. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Al-Qassem, H. On Certain Estimates for Parabolic Marcinkiewicz Integrals Related to Surfaces of Revolution on Product Spaces and Extrapolation. Axioms 2023, 12, 35. https://doi.org/10.3390/axioms12010035
Ali M, Al-Qassem H. On Certain Estimates for Parabolic Marcinkiewicz Integrals Related to Surfaces of Revolution on Product Spaces and Extrapolation. Axioms. 2023; 12(1):35. https://doi.org/10.3390/axioms12010035
Chicago/Turabian StyleAli, Mohammed, and Hussain Al-Qassem. 2023. "On Certain Estimates for Parabolic Marcinkiewicz Integrals Related to Surfaces of Revolution on Product Spaces and Extrapolation" Axioms 12, no. 1: 35. https://doi.org/10.3390/axioms12010035
APA StyleAli, M., & Al-Qassem, H. (2023). On Certain Estimates for Parabolic Marcinkiewicz Integrals Related to Surfaces of Revolution on Product Spaces and Extrapolation. Axioms, 12(1), 35. https://doi.org/10.3390/axioms12010035