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Abstract: In this paper, appropriate Lp bounds for particular classes of parabolic Marcinkiewicz
integrals along surfaces of revolution on product spaces are obtained. These bounds allow us to
use Yano’s extrapolation argument to obtain the Lp boundedness of the aforesaid integral operators
under weak conditions on the kernels. These conditions on the kernels are the best possible among
their respective classes. In this work, several previously known results on Marcinkiewicz integrals
are fundamentally improved and extended.
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1. Introduction

In this article, we assume that d ≥ 2 and Sd−1 are the unit sphere in the d-dimensional
Euclidean space Rd equipped with the normalized Lebesgue surface measure d$ = d$d(·).

Let
{

αj
}d

j=1 be fixed numbers belong to the closed interval [1, ∞), and let Ω : Rd ×

R+ → R be a mapping given by Ω(υ, κ) =
d
∑

j=1
υ2

j κ−2αj , where υ = (υ1, . . . , υd) ∈ Rd. For

any fixed υ ∈ Rd, one can easily check that Ω(υ, κ) is the decreasing function in κ > 0.
Accordingly, the equation Ω(υ, κ) = 1 has a unique solution represented by κ(υ) ≡ κ. Fabes
and Riviére [1] proved that κ(υ) is metric in Rd, and called (Rd, κ) the mixed homogeneity
space related to

{
αj
}d

j=1.
For κ > 0, let Dκ be referred to as the diagonal d× d matrix

Dκ = diag(κα1 , κα2 , . . . , καd).

For the space (Rd, κ), we consider the following transformation:
υ1 = κα1 cos ω1 . . . cos ωd−2 cos ωd−1,
υ2 = κα2 cos ω1 . . . cos ωd−2 sin ωd−1,

...
υd−1 = καd−1 cos ω1 sin ω2,
υd = καd sin ω1.

Therefore, dυ = κα−1 Jd(ω)dκdσ(ω), where κα−1 Jd(ω) is the Jacobian of the transforms,

α =
d

∑
j=1

αj, Jd(ω) =
d

∑
j=1

αjυ
2
j , and ω = Dκ−1 υ ∈ Sd−1.
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In [1], the authors proved that Jd(ω) is a C∞(Sd−1) function and that there exists a real
constant Cd satisfying 1 ≤ Jd(ω) ≤ Cd.

Let f be a measurable real valued function which is defined on Rd and belongs to the
space L1(Sd−1) with the following properties:∫

Sd−1
f(ω)Jd(ω)d$(ω) = 0 and f(Dκω) = f(ω), ∀κ > 0.

In [2], Ding, Xue and Yabuta studied parabolic Marcinkiewicz integrals µf given by

µf(g)(x) =
(∫ ∞

0
|Ff,s(g)(x)|2 ds

s3

)1/2
,

where

Ff,s(g)(x) =
∫

κ(υ)≤s
g(x− υ)

f(υ)
κα−1(υ)

dυ.

In addition, they established the Lp boundedness of µf for all p ∈ (1, ∞) whenever
f ∈ Lq(Sd−1) with q > 1. Thereafter, the Lp boundedness of the operator µf under various
assumptions on the kernels was investigated by many authors (see for instance [3–6]).

We indicate that the parabolic singular integral operator which is related to the integral
operator µf is given by

Tf(g)(x) = p.v.
∫
Rd

g(x− υ)
f(υ)
κα(υ)

dυ.

The operator Tf was studied by many researchers for a long time (we refer the readers
to consult [1,7,8] among others).

The investigation of the Marcinkiewicz integral on product domains was considered
by many authors (see for instance [9–12]).

For k = 1, 2, . . . , m and j = 1, 2, . . . , n, let αk ≥ 1 and β j ≥ 1 be fixed numbers; and for
η = a1 + ia2, λ = b1 + ib2 (a1, a2, b1, b2 ∈ R with a1, b1 > 0), let

Kκ1,κ2
f,h (v, u) =

f(v, u)h(κ1(v), κ2(u))

κ
α−η
1 (v)κβ−λ

2 (u)
,

where α =
m
∑

k=1
αj, β =

n
∑

j=1
β j, h is a measurable mapping on R+×R+, and f is a real-valued

measurable mapping on Rm ×Rn, integrable over Sm−1 × Sn−1 and satisfies the following:

f(Dκ1 v, Dκ2 u) = f(v, u), ∀κ1, κ2 > 0, (1)

∫
Sm−1

f(v, .)Jm(v)d$(v) =
∫
Sn−1

f(., u)Jn(u)d$(u) = 0. (2)

For convenient functions ψ, φ : R+ → R, we consider the parabolic Marcinkiewicz
operator

M
κ1,κ2
φ,ψ,f,h(g)(x, y) =

(∫∫
R+×R+

|Fs,t(g)(x, y)|2 dsdt
st

)1/2
, (3)

where

Fs,t(g)(x, y) =
1

sηtλ

∫∫
Λ(v,u)

Kκ1,κ2
f,h (v, u)g(x− v, xm+1 − φ(κ1(v)), y− u, yn+1 − ψ(κ2(u)))dvdu,

g ∈ S(Rm+1 ×Rn+1), Λ(v, u) = {(v, u) : κ1(v) ≤ s, κ2(u) ≤ t}, and (x, y) = (x, xm+1, y, yn+1).
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When we consider the case α1 = · · · = αm = 1 and β1 = · · · = βn = 1, we get
that κ1(υ) = |υ|, κ2(u) = |u|, α = m, β = n, and (Rm+1 × Rn+1, κ1, κ2) = (Rm+1 ×
Rn+1, | · |, | · |). In this case, we denote M

κ1,κ2
φ,ψ,f,h by Mφ,ψ,f,h. Furthermore, when we

take h ≡ 1, η = 1 = λ, φ(s) = s, and ψ(t) = t, then the operator Mφ,ψ,f,h reduces to
the classical Marcinkiewicz integral on product spaces, which is denoted by Mf. Many
researchers were interested in studying the operator Mf. For instance, Ding in [13] proved
the L2 boundedness of Mf if f ∈ L(log L)2(Sm−1 × Sn−1). However, the authors of [14]
showed that Mf is bounded on Lp(Rm ×Rn) for all p ∈ (1, ∞) under the same condition
f ∈ L(log L)2(Sm−1 × Sn−1). Later, Choi in [15] improved the last results for the special
case p = 2. Precisely, he confirmed the L2(Rm ×Rn) boundedness of Mf provided that
f ∈ L(log L)(Sm−1 × Sn−1). In [16], the authors proved the Lp ( 1 < p < ∞) boundedness
of the operator Mf if f belongs to L(log L)(Sm−1 × Sn−1). Furthermore, they found that
the condition f ∈ L(log L)(Sm−1 × Sn−1) is optimal in the sense that if we replace the
space L(log L)(Sm−1× Sn−1) by the space L(log L)ε(Sm−1× Sn−1) with 0 < ε < 1, then the
operator Mf will not be bounded on L2(Rm ×Rn).

Al-Qassem in [17] established the Lp boundedness of Mf for all p ∈ (1, ∞) under the
assumption f belongs to the certain block space B(0,0)

q (Sm−1 × Sn−1) with q > 1. Moreover,

he proved that the space B(0,0)
q (Sm−1 × Sn−1) is optimal in the sense that we cannot replace

it by the space B(0,ε)
q (Sm−1 × Sn−1) for any ε ∈ (−1, 0) so that the operator Mf is still

bounded on L2(Rm ×Rn). For more information about the development and applications
of the operator Mf, one can refer to [2,16–18], among other references.

The results in [16] were generalized by Al-Salman in [9] in which he proved the Lp

boundedness of Mκ1,κ2
φ,ψ,f,1 for all 1 < p < ∞ under the conditions f ∈ L(log L)(Sn−1 ×

Sm−1), φ(κ1) = κ1, and ψ(κ2) = κ2. Very recently, this result was improved in [12], in which
the authors satisfied the Lp boundedness of Mκ1,κ2

φ,ψ,f,h for all |1/2− 1/p| < min{1/µ′, 1/2},
provided that φ(κ1) = κ1, ψ(κ2) = κ2, h ∈ Υµ(R+ × R+) for some µ > 1, and f ∈
L(log L)(Sn−1 × Sm−1) ∪ B(0,0)

q (Sm−1 × Sn−1) for some q > 1, where Υµ(R+ × R+) (for
µ > 1) refers to the class of all functions h that are defined on R+ ×R+, are measurable
and satisfy

‖h‖Υµ(R+×R+)
= sup

k,j∈Z

(∫ 2j+1

2j

∫ 2k+1

2k
|h(κ1, κ2)|

µ dκ1dκ2

κ1κ2

)1/µ

< ∞.

The consideration of the Lp mapping properties of rough integral operators related
to surfaces has been given a great deal of attention by many mathematicians (see for
example [19–21] and the references therein.)

In this article, we let I denote the collection of all non-negative C1(R+) mappings ϑ
that satisfy the following properties:

(a) ϑ is strictly increasing and ϑ′ is monotone on R+,
(b) ϑ(κ) ≤ M1ϑ(2κ) for a fixed constant M1 ∈ (0, 1) and ϑ(κ) ≥ M2ϑ(2κ) for a constant

M2 ∈ (0, M1],
(c) ϑ(κ) ≤ M3κϑ′(κ) on R+ for a fixed constant M3 ∈ ( −1

ln(M2)
, ∞).

Additionally, we let D denote the collection of all non-negative C1(R+) mappings ϑ
that satisfy the following properties:

(a) ϑ is strictly decreasing and ϑ′ is monotone on R+,
(b) ϑ(2κ) ≤ M1ϑ(κ) for a fixed constant M1 ∈ (0, 1) and ϑ(2κ) ≥ M2ϑ(κ) for a constant

M2 ∈ (0, M1],
(c) ϑ(κ) ≤ M3|κϑ′(κ)| on R+ for a fixed constant M3 ∈ ( −1

ln(M2)
, ∞).

We indicate here that the collections D and I were established and introduced in [18].
Some model examples for mappings belong to D are ϑ(κ) = κ−νe−ικ with ν ≥ 0 and ι ≥ 0,
and functions belonging to I are ϑ(κ) = κνeικ for ν ≥ 0 and ι ≥ 0.
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In view of the results in [9,12] on the boundedness of the operator Mκ1,κ2
φ,ψ,f,h along the

curve (x, y) = (υ, u) and of the results on the boundedness of the rough operators along
surfaces of revolution, we are prompted to ask the following natural question: is the rough
parabolic operator Mκ1,κ2

φ,ψ,f,h along surfaces of revolutions bounded?
The main goal of this paper is to give an affirmative answer to the above question. In

fact, we have the following:

Theorem 1. Assume that h belongs to Υµ(R+ ×R+) with µ > 1 and assume that f belongs to
the space Lq(Sn−1 × Sm−1) with 1 < q ≤ 2. Suppose that φ, ψ are in I or D. Then, there is a
positive constant Cp such that∥∥∥Mκ1,κ2

φ,ψ,f,h(g)
∥∥∥

Lp(Rm+1×Rn+1)
≤ Cp

µ

(µ− 1)(q− 1)
‖f‖Lq(Sn−1×Sm−1)‖h‖Υµ(R+×R+)

‖g‖Lp(Rm+1×Rn+1)

for |1/2− 1/p| < min{1/µ′, 1/2}.

By the estimates in Theorem 1 and Yano’s extrapolation argument(see [7,22]), we
establish the following result:

Theorem 2. Assume that f satisfies the conditions (1)–(2), and assume that h, φ and ψ are given
as in Theorem 1.
(i) If f ∈ B(0,0)

q (Sm−1 × Sn−1) for some q > 1, then the inequality∥∥∥Mκ1,κ2
φ,ψ,f,h(g)

∥∥∥
Lp(Rm+1×Rn+1)

≤ Cp‖h‖Υµ(R+×R+)
‖g‖Lp(Rm+1×Rn+1)

(
1 + ‖f‖

B(0,0)
q (Sm−1×Sn−1)

)
holds for all |1/2− 1/p| < min{1/µ′, 1/2};
(ii) If f ∈ L(log L)(Sm−1 × Sn−1), then the inequality∥∥∥Mκ1,κ2

φ,ψ,f,h(g)
∥∥∥

Lp(Rm+1×Rn+1)
≤ Cp‖h‖Υµ(R+×R+)

‖g‖Lp(Rm+1×Rn+1)

(
1 + ‖f‖L(logL)(Sm−1×Sn−1)

)
holds for all |1/2− 1/p| < min{1/µ′, 1/2}.

Noteworthy is the fact that, in Theorem 2, the boundedness of the operator Mκ1,κ2
φ,ψ,f,h

is obtained for the full range of p, i.e., 1 < p < ∞, whenever µ ≥ 2. However, when
1 < µ < 2, we satisfy that Mκ1,κ2

φ,ψ,f,h is bounded only for 2µ
3µ−1 < p < 2µ

2−µ . A natural

question arising here is whether we obtain the Lp boundedness of Mκ1,κ2
φ,ψ,f,h for 1 < p < ∞

whenever µ ∈ (1, 2). We shall answer this question in the next theorem.

Theorem 3. Assume that φ and ψ belong to I or D and that f satisfies the conditions (1) and (2).
Let h ∈ Υµ(R+ ×R+) for some µ ∈ (1, 2].

(i) If f ∈ L(log L)(Sm−1 × Sn−1) ∪ B(0,0)
q (Sm−1 × Sn−1) for some q > 1, then M

κ1,κ2
φ,ψ,f,h is

bounded on Lp(Rm+1 ×Rn+1) for all p ∈ [2, ∞).

(ii) If f ∈ L(log L)2(Sm−1 × Sn−1) ∪ B(0,1)
q (Sm−1 × Sn−1) for some q > 1, then M

κ1,κ2
φ,ψ,f,h

is bounded on Lp(Rm+1 ×Rn+1) for all p ∈ (1, 2).

From Theorem 3, we see that the boundedness of Mκ1,κ2
φ,ψ,f,h is satisfied whenever the

condition on f is optimal only for p ∈ [2, ∞). However, for the case p ∈ (1, 2), the
boundedness of Mκ1,κ2

φ,ψ,f,h is obtained, but the condition on f is not optimal.

Marcinkiewicz integrals operators are parts of the class of Littlewood-Paley g-functions.
The theory of Marcinkiewicz integrals has a long history. This theory is of vast scope and
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utility due its role in dealing with many important problems arising in such parts of analy-
sis as partial differential equations and several complex variables. Recent efforts in dealing
with these operators have been mostly focused on finding the weakest possible kernel
conditions under which Lp boundedness holds.

Henceforward, the constant C signifies a positive real number that could be different
at each occurrence but is independent of all essential variables.

2. Some Lemmas

This section is devoted to establishing some lemmas that will be needed to prove the
main results of this paper. Let us first recall the following lemma from [7].

Lemma 1. Suppose that φ belongs to I or D. For a suitable mapping g, we let the maximal function
Mω

φ be defined on Rd+1 by

Mω
φ g(x) = sup

j∈Z

∣∣∣∣∣
∫ 2j+1

2j
g(x− Dκω, xd+1 − φ(κ))

dκ

κ

∣∣∣∣∣.
Then for p > 1, there exists a positive constant Cp such that∥∥∥Mω

φ (g)
∥∥∥

Lp(Rd+1)
≤ Cp‖g‖Lp(Rd+1).

Lemma 2. Assume that φ, ψ are in I or D. Define the maximal functionMω,ν
φ,ψ on Rm+1×Rn+1 by

Mω,ν
φ,ψ g(x, y) = sup

k,j∈Z

∣∣∣∣∣
∫ 2j+1

2j

∫ 2k+1

2k
g(x− Dκ1 ω, xm+1 − φ(κ1), y− Dκ2 ν, yn+1 − ψ(κ2))

dκ1

κ1

dκ2

κ2

∣∣∣∣∣.
Then there is a constant Cp > 0 such that the inequality∥∥∥Mω,ν

φ,ψ(g)
∥∥∥

Lp(Rm+1×Rn+1)
≤ Cp‖g‖Lp(Rm+1×Rn+1)

holds for all g ∈ Lp(Rm+1 ×Rn+1) with 1 < p ≤ ∞.

Proof. It is well known that Mω,ν
φ,ψ g(x, y) ≤ Mν

ψ ◦ Mω
φ g(x, y), where Mω

φ g(x, y) =
Mω

φ g(·, y)(x), Mν
ψg(x, y) = Mν

ψg(x, ·)(y) and ◦ refers to the composition of the oper-
ators. Hence, by Lemma 1 we have∥∥∥Mω,ν

φ,ψ(g)
∥∥∥

Lp(Rm+1×Rn+1)
≤ Cp

∥∥∥Mν
ψ

(
Mω

φ (g)
)∥∥∥

Lp(Rm+1×Rn+1)
≤ Cp‖g‖Lp(Rm+1×Rn+1).

We shall need the following from [4]:

Lemma 3. Let γ denote the distinct numbers of {αj} with j ∈ {1, 2, . . . , d}, and let δ ∈ [0, 1].
Then for x, ξ ∈ Rd, there exists C > such that∣∣∣∣∫ 2

1
e−iDκ x·ξ dκ

κ

∣∣∣∣ ≤ C|x · ξ|−
δ
γ .

Let τ ≥ 2. We define the family of measures {$K
κ1,κ2
f,h s,t := $s,t : s, t ∈ R+} and its

related maximal operators $∗h and Mh,τ on Rm+1 ×Rn+1 by∫∫
Rm+1×Rn+1

gd$s,t =
1

sηtλ

∫
1/2s≤κ1(v)≤s

∫
1/2t≤κ2(u)≤t

g(v, u)Kκ1,κ2
f,h (v, u)dudv,
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$∗hg(v, u) = sup
s,t∈R+

||$s,t,| ∗ g(v, u)|,

and

Mh,τ g(v, u) = sup
j,k∈Z

∫ τ j+1

τ j

∫ τk+1

τk
||$s,t| ∗ g(v, u)|dsdt

st
,

where |$s,t| is defined similarly to $s,t with replacing fh by |fh|.
To prove Theorem 1, we need to establish the following lemmas.

Lemma 4. Let f ∈ Lq(Sm−1 × Sn−1) with q > 1 and satisfy the conditions (1) and (2). For
s, t > 0 and suitable mappings φ, ψ, let

H(κ1, κ2) =
∫∫

Sm−1×Sn−1
e−i{Dsκ1 v·ξ+φ(sκ1(v))ξm+1+Dtκ2 u·ζ+ψ(tκ2(u))ζn+1}

× f(v, u)Jm(v)Jn(u)d$(v)d$(u).

Then, there exist positive constants C and δ with 0 < δ < min{ γ1
2q′ ,

γ2
2q′ ,

γ1
α , γ2

β , 1
2} such that

1∫
1/2

1∫
1/2

|H(κ1, κ2)|2
dκ1dκ2

κ1κ2
≤ C‖f‖2

Lq(Sm−1×Sn−1)|Dsξ|
± δ

γ1q′ |Dtζ|
± δ

γ2q′ , (4)

where a±b = min{ab, a−b} and γ1, γ2 denote the distinct numbers of {αi}, {β j}, respectively.

Proof. We shall prove the lemma only for the case 1 < q ≤ 2 since Lq(Sm−1 × Sn−1) ⊆
L2(Sm−1 × Sn−1) for all q ≥ 2. Thanks to the Schwartz inequality, we know that

1∫
1/2

1∫
1/2

|H(κ1, κ2)|2
dκ1dκ2

κ1κ2
≤ C

∫
Sn−1

( ∫∫
Sm−1×Sm−1

G(ξ, v, x)

× f(v, u)f(x, u)Jn(v)Jn(x)d$(v)d$(x)
)

Jm(u)d$(u),

where G(ξ, v, x) =
∫ 2

1 e
−iD s

2 κ1
ξ·(v−x) dκ1

κ1
. Let ρ =

D s
2

ξ

|D s
2

ξ| . Then using Lemma 3, we obtain

G(ξ, v, x) ≤ C | D s
2
ξ · (v− x) |−δ/γ1≤ C2αδ/γ1(| ρ · (v− x) || Dsξ |)−δ/γ1

≤ C | Dsξ |−δ/γ1 (| ρ · (v− x) |)−δ/γ1 ,

where 0 < δ < min{ 1
2 , γ1

α }. This in turn by Hölder’s inequality implies

1∫
1/2

1∫
1/2

|H(κ1, κ2)|2
dκ1dκ2

κ1κ2
≤ C|Dsξ|

− δ
q′γ1 ‖f‖2

Lq(Sm−1×Sn−1)

×
( ∫∫

Sm−1×Sm−1
|ρ · (v− x)|−

δq′
γ1 d$(v)d$(x)

)1/q′

.

Now, if we choose 0 < δ < γ1
2q′ , we deduce that the last integral is finite, and hence

1∫
1/2

1∫
1/2

|H(κ1, κ2)|2
dκ1dκ2

κ1κ2
≤ C‖f‖2

Lq(Sm−1×Sn−1)|Dsξ|
− δ

γ1q′ . (5)
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Similarly, we obtain

1∫
1/2

1∫
1/2

|H(κ1, κ2)|2
dκ1dκ2

κ1κ2
≤ C‖f‖2

Lq(Sm−1×Sn−1)|Dtζ|
− δ

γ2q′ . (6)

Now, to prove the other estimates in (4), we need to use conditions (1) and (2) and a
simple change of variable to obtain

1∫
1/2

1∫
1/2

|H(κ1, κ2)|2
dκ1dκ2

κ1κ2

≤ C
1∫

1/2

1∫
1/2

( ∫∫
Sm−1×Sn−1

|e−iDsκ1 ξ·v − 1||f(v, u)Jm(v)Jn(u)|d$(v)d$(u)
)2 dκ1dκ2

κ1κ2

≤ C‖f‖2
L1(Sm−1×Sn−1)|Dsξ|2.

Thus, when the last estimate is combined with the estimate
1∫

1/2

1∫
1/2
|H(κ1, κ2)|2 dκ1dκ2

κ1κ2
≤

C‖f‖2
L1(Sn−1×Sm−1), we obtain that

1∫
1/2

1∫
1/2

|H(κ1, κ2)|2
dκ1dκ2

κ1κ2
≤ C‖f‖2

Lq(Sm−1×Sn−1)|Dsξ|
δ

γ1q′ . (7)

Similarly, we know that

1∫
1/2

1∫
1/2

|H(κ1, κ2)|2
dκ1dκ2

κ1κ2
≤ C‖f‖2

Lq(Sm−1×Sn−1)|Dtζ|
δ

γ2q′ . (8)

Consequently by (5)–(8), we obtain all the estimates in the lemma and hence the proof is
complete.

Lemma 5. Assume that h ∈ Υµ(R+ ×R+) for some µ > 1, f ∈ Lq(Sm−1 × Sn−1) for some
q > 1, τ ≥ 2, and ψ, φ are given as in Theorem 1. Then for some positive constant C we have the
following estimates

‖$s,t‖ ≤ C‖f‖Lq(Sm−1×Sn−1)‖h‖Υµ(R+×R+)
, (9)

∫ τ j+1

τ j

∫ τk+1

τk
|$̂s,t(ξ, ζ)|2 dsdt

st
≤ C ln2(τ)‖f‖2

Lq(Sm−1×Sn−1)‖h‖
2
Υµ(R+×R+)

× |Dτk ξ|
± 2δ

γ1q′w
∣∣Dτ j ζ

∣∣± 2δ
γ2q′w (10)

for all j, k ∈ Z, where δ is the same as in Lemma 4, w = max{2, µ′} and ‖$s,t‖ is the total variation
of $s,t.

Proof. By the definition of $s,t, we immediately obtain (9). Furthermore, by Hölder’s
inequality and a simple change in variables, we have
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|$̂s,t(ξ, ζ)| ≤ C
∫ s

1
2 s

∫ t

1
2 t
|h(κ1, κ2)|

∣∣∣∣ ∫∫Sm−1×Sn−1
e−i{Dκ1 v·ξ+φ(κ1(v))ξm+1+Dκ2 u·ζ+ψ(κ2(u))ζn+1 }

× Jm(v)Jn(v)f(v, u)d$(v)d$(u)|dκ1dκ1

κ1κ2

≤ C‖h‖Υµ(R+×R+)

 1∫
1/2

1∫
1/2

|G(κ1, κ2)|µ
′ dκ1dκ2

κ1κ2

1/µ

.

It is easy to see that if µ ∈ (1, 2], we obtain

|$̂s,t(ξ, ζ)| ≤ ‖h‖Υµ(R+×R+)
‖f‖(1−2/µ′)

L1(Sm−1×Sn−1)

 1∫
1/2

1∫
1/2

|G(κ1, κ2)|2
dκ1dκ2

κ1κ2

1/µ′

.

However, if µ > 2, using Hölder’s inequality we obtain

|$̂s,t(ξ, ζ)| ≤ ‖h‖Υµ(R+×R+)

 1∫
1/2

1∫
1/2

|G(κ1, κ2)|2
dκ1dκ2

κ1κ2

1/2

.

Hence, in either case of µ, we have

|$̂s,t(ξ, ζ)| ≤ C‖f‖(w−2)/µ′

L1(Sm−1×Sn−1)
‖h‖Υµ(R+×R+)

(∫ 1

1/2

∫ 1

1/2
|G(κ1, κ2)|2

dκ1dκ2

κ1κ2

)1/w

,

where w = max{2, µ′}. Thus, by Lemma 4, we obtain

|$̂s,t(ξ, ζ)|2 ≤ C‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

|Dsξ|
± 2δ

wγ1q′ |Dtζ|
± 2δ

wγ2q′ .

In addition, since τk ≤ s ≤ τk+1 and τ j ≤ t ≤ τ j+1, we directly obtain that

|$̂s,t(ξ, ζ)|2 ≤ C‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

|Dτk ξ|
− 2δ

wγ1q′
∣∣Dτ j ζ

∣∣− 2δ
wγ2q′ (11)

and

|$̂s,t(ξ, ζ)|2 ≤ C‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

|Dτk+1 ξ|
+ 2δ

wγ1q′
∣∣Dτ j+1 ζ

∣∣+ 2δ
wγ2q′

≤ Cτ
max{α1,...,αm ,β1,...,βn} 2δ

wq′ (
1

γ1
+ 1

γ2
)

‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

× |Dτk ξ|
+ 2δ

wγ1q′
∣∣Dτ j ζ

∣∣+ 2δ
wγ2q′

≤ C2
2δ max{α1,...,αm ,β1,...,βn}( 1

γ1
+ 1

γ2
)

‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

× |Dτk ξ|
+ 2δ

wγ1q′
∣∣Dτ j ζ

∣∣+ 2δ
wγ2q′

≤ C‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

|Dτk ξ|
+ 2δ

wγ1q′
∣∣Dτ j ζ

∣∣+ 2δ
wγ2q′ . (12)

Consequently, by combining (11) with (12), we obtain (10).
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Lemma 6. Let f ∈ L1(Sm−1 × Sn−1), h ∈ Υµ(R+ ×R+) with µ > 1 and ψ, φ be given as
in Theorem 1. Then, for every µ′ < p ≤ ∞, there exists a positive constant Cp such that for all
g ∈ Lp(Rm+1 ×Rn+1),

‖$∗h(g)‖Lp(Rm+1×Rn+1) ≤ Cp‖h‖Υµ(R+×R+)
‖f‖L1(Sm−1×Sn−1)‖g‖Lp(Rm+1×Rn+1).

Proof. By Hölder’s inequality, we obtain

||$s,t| ∗ g(x, y)| ≤ C‖h‖Υµ(R+×R+)‖f‖
1/µ

L1(Sm−1×Sn−1)

 1
st

s∫
s
2

t∫
t
2

∫
Sm−1×Sn−1

|f(v, u)|

× |g(x− Dκ1 v, xm+1 − φ(κ1(v)), y− Dκ2 u, yn+1 − ψ(κ2(u)))|µ
′
d$(v)d$(u)dκ1dκ2

)1/µ′

.

Hence, using Minkowski’s inequality for integrals together along with Lemma 2, we obtain

‖$∗h(g)‖Lp(Rm+1×Rn+1) ≤ C‖h‖Υµ(R+×R+)‖f‖
1/µ

L1(Sm−1×Sn−1)

×
( ∫∫

Sm−1×Sn−1
|f(v, u)|‖Mv,u

φ,ψ(|g|
µ′)‖L(p/µ′)(Rm+1×Rn+1)

d$(v)d$(u)
)1/µ′

≤ C‖h‖Υµ(R+×R+)‖f‖L1(Sm−1×Sn−1) ‖M
v,u
φ,ψ(|g|)‖Lp(Rm+1×Rn+1)

≤ Cp‖h‖Υµ(R+×R+)
‖f‖L1(Sm−1×Sn−1)‖g‖Lp(Rm+1×Rn+1).

Lemma 7. We assume that h ∈ Υµ(R+ ×R+) with µ > 1, f ∈ Lq(Sm−1 × Sn−1) with 1 <
q ≤ 2 and ψ, φ belong to D or I. Then, for any functions {Bk,j(·, ·), j, k ∈ Z} on Rm+1 ×Rn+1, a
positive constant Cp exists such that the inequality∥∥∥∥∥∥∥∥

 ∑
j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Bj,k

∣∣∣2 dsdt
st


1/2
∥∥∥∥∥∥∥∥

Lp(Rm+1×Rn+1)

≤ Cp ln(τ)‖f‖Lq(Sm−1×Sn−1)‖h‖Υµ(R+×R+)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Bj,k

∣∣∣2)1/2
∥∥∥∥∥∥

Lp(Rm+1×Rn1 )

holds for all |1/p− 1/2| < min{1/µ′, 1/2}.

Proof. We will follow a similar argument employed in [23]. Since Υµ(R+ ×R+) ⊆
Υ2(R+ ×R+) for all µ ≥ 2 , it suffices to prove the lemma for the case 1 < µ ≤ 2. Thus,
we have |1/2− 1/p| < 1/µ′. Now, if 2 ≤ p < 2µ

2−µ , then by duality, there is a function G ∈
L(p/2)′(Rm+1 ×Rn+1) which is non-negative and satisfies ‖G‖

L(p/2)′ (Rm+1×Rn+1)
≤ 1 and

∥∥∥∥∥∥∥∥
 ∑

j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Bj,k

∣∣∣2 dsdt
st


1/2
∥∥∥∥∥∥∥∥

2

Lp(Rm+1×Rn+1)

=
∫∫

Rm+1×Rn+1 ∑
j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Bj,k(x, y)
∣∣∣2 dsdt

st
G(x, y)dxdy.
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Thanks to Schwartz’s inequality, we deduce that

∣∣∣$s,t ∗ Bj,k(x, y)
∣∣∣2 ≤ C‖f‖Lq(Sm−1×Sn−1)‖h‖

µ

Υµ(R+×R+)

 t∫
1
2 t

s∫
1
2 s

∫∫
Sm−1×Sm−1

×
∣∣∣Bj,k(x− Dκ1 v, xm+1 − φ(κ1(v)), y− Dκ2 u, yn+1 − ψ(κ2(u)))

∣∣∣2
× |f(v, u)||h(κ1, κ2)|2−µd$(v)d$(u)

dκ1dκ2

κ1κ2

)
.

Thus, we obtain that∥∥∥∥∥∥∥∥
 ∑

j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Bj,k

∣∣∣2 dsdt
st


1/2
∥∥∥∥∥∥∥∥

2

Lp(Rm+1×Rn+1)

≤ C‖h‖µ

Υµ(R+×R+)

× ‖f‖Lq(Sm−1×Sn−1)

∫∫
Rm+1×Rn+1

(
∑

j,k∈Z

∣∣∣Bj,k(x, y)
∣∣∣2)M|h|2−µ ,τG̃(−x,−y)dxdy

≤ C‖f‖Lq(Sm−1×Sn−1)‖h‖
µ

Υµ(R+×R+)

∥∥∥∥∥ ∑
j,k∈Z

∣∣∣Bj,k

∣∣∣2∥∥∥∥∥
L(p/2)(Rm+1×Rn+1)

×
∥∥∥M|h|2−µ ,τ(G̃)

∥∥∥
L(p/2)′ (Rm+1×Rn+1)

,

where G̃(−x,−y) = G(x, y). Since h ∈ Υµ(R+ ×R+), we obtain |h|2−µ ∈ Υ µ
2−µ

(R+ ×R+),

and since
( p

2
)′

>
(

µ
2−µ

)′
, we obtain, by Lemma 6 and Hölder’s inequality

∥∥∥∥∥∥∥∥
 ∑

j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Bj,k

∣∣∣2 dsdt
st


1/2
∥∥∥∥∥∥∥∥

2

Lp(Rm+1×Rn+1)

≤ C ln2(τ)‖h‖µ

Υµ(R+×R+)
‖f‖Lq(Sm−1×Sn−1)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Bj,k

∣∣∣2)1/2
∥∥∥∥∥∥

2

Lp(Rm+1×Rn+1)

×
∥∥∥$∗|h|2−µ(G̃)

∥∥∥
L(p/2)′ (Rm+1×Rn+1)

≤ Cp ln2(τ)‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Bj,k

∣∣∣2)1/2
∥∥∥∥∥∥

2

Lp(Rm+1×Rn+1)

.

On the other hand, if 2µ
3µ−2 < p < 2, then by the duality, there is a set of functions

X = Xj,k(x, y, s, t) defined on Rm+1 ×Rn+1 ×R+ ×R+ with∥∥∥∥∥∥‖Xj,k‖L2([τk ,τk+1]×[τ j ,τ j+1], dsdt
st )

∥∥∥
l2

∥∥∥
Lp′ (Rm+1×Rn+1)

≤ 1
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such that ∥∥∥∥∥∥∥∥
 ∑

j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Bj,k

∣∣∣2 dsdt
st


1/2
∥∥∥∥∥∥∥∥

Lp(Rm+1×Rn+1)

=
∫∫

Rm+1×Rn+1 ∑
j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

(
$s,t ∗ Bj,k(x, y)

)
Xj,k(x, y, s, t)

dsdt
st

dxdy

≤ Cp ln(τ)
∥∥∥(Γ(X))1/2

∥∥∥
Lp′ (Rm+1×Rn+1)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Bj,k

∣∣∣2)1/2
∥∥∥∥∥∥

Lp(Rm+1×Rn+1)

, (13)

where

Γ(X)(x, y) = ∑
j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Xj,k(x, y, s, t)
∣∣∣2 dsdt

st
.

Again, since p′
2 > 1, then by the duality, a function Z ∈ L(p′/2)′(Rm+1 ×Rn+1) exists

that satisfies ‖Z‖
L(p′/2)′ (Rm+1×Rn+1)

≤ 1 and

∥∥∥(Γ(X))1/2
∥∥∥2

Lp′ (Rm+1×Rn+1)

= ∑
j,k∈Z

∫∫
Rm+1×Rn+1

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Xj,k(x, y, s, t)
∣∣∣2 dsdt

st
Z(x, y)dxdy

≤ C‖f‖Lq(Sm−1×Sn−1)‖h‖
µ

Υµ(R+×R+)

∥∥∥$∗|h|2−µ(Z)
∥∥∥

L(p′/2)′ (Rm+1×Rn+1)

×

∥∥∥∥∥∥∥
 ∑

j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣Xj,k(·, ·, s, t)
∣∣∣2 dsdt

st


∥∥∥∥∥∥∥

L(p′/2)(Rm+1×Rn+1)

≤ C‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

.

Therefore, by the last inequality, together with (13), the desired inequality holds for
the case 2µ

3µ−2 < p < 2 which in turn finishes the proof of this lemma.

By adapting the same technique employed in proving Lemma 4 in [7] to the product
space setting, it is easy to show the following result.

Lemma 8. Assume that h ∈ Υµ(R+ ×R+) with 1 < µ ≤ 2, f ∈ Lq(Sm−1 × Sn−1) with
1 < q ≤ 2 and φ, ψ belong to I or D. Then for any functions {Bk,j(·, ·), j, k ∈ Z} on Rm+1×Rn+1,
there is a positive constant Cp such that∥∥∥∥∥∥∥∥

 ∑
j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Bj,k

∣∣∣2 dsdt
st


1/2
∥∥∥∥∥∥∥∥

Lp(Rm+1×Rn+1)

≤ Cp ln2(τ)‖f‖Lq(Sm−1×Sn−1)‖h‖Υµ(R+×R+)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Bj,k

∣∣∣2)1/2
∥∥∥∥∥∥

Lp(Rm+1×Rn1 )

f or 1 < p < 2,

and
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∥∥∥∥∥∥∥∥
 ∑

j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Bj,k

∣∣∣2 dsdt
st


1/2
∥∥∥∥∥∥∥∥

Lp(Rm+1×Rn+1)

≤ Cp ln(τ)‖f‖Lq(Sm−1×Sn−1)‖h‖Υµ(R+×R+)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Bj,k

∣∣∣2)1/2
∥∥∥∥∥∥

Lp(Rm+1×Rn1 )

f or 2 < p < ∞.

Proof. First, we consider the case 1 < p < 2. By following the same above arguments, we
obtain, by the duality, there are functions A = Aj,k(x, y, s, t) defined on Rm+1 ×Rn+1 ×
R+ ×R+ with ∥∥∥∥∥∥‖Aj,k‖L2([τk ,τk+1]×[τ j ,τ j+1], dsdt

st )

∥∥∥
l2

∥∥∥
Lp′ (Rm+1×Rn+1)

≤ 1

and satisfies ∥∥∥∥∥∥∥∥
 ∑

j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Bj,k

∣∣∣2 dsdt
st


1/2
∥∥∥∥∥∥∥∥

Lp(Rm+1×Rn+1)

=
∫∫

Rm+1×Rn+1 ∑
j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

(
$s,t ∗ Bj,k(x, y)

)
Aj,k(x, y, s, t)

dsdt
st

dxdy

≤ Cp ln(τ)
∥∥∥(H(A))1/2

∥∥∥
Lp′ (Rm+1×Rn+1)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Bj,k

∣∣∣2)1/2
∥∥∥∥∥∥

Lp(Rm+1×Rn+1)

, (14)

where

H(A)(x, y) = ∑
j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Aj,k(x, y, s, t)
∣∣∣2 dsdt

st
.

As p′
2 > 1, then again by the duality, there exists a function P ∈ L(p′/2)′(Rm+1×Rn+1)

such that ‖P‖
L(p′/2)′ (Rm+1×Rn+1)

≤ 1 and

∥∥∥(H(A))1/2
∥∥∥2

Lp′ (Rm+1×Rn+1)

= ∑
j,k∈Z

∫∫
Rm+1×Rn+1

τ j+1∫
τ j

τk+1∫
τk

∣∣∣$s,t ∗ Aj,k(x, y, s, t)
∣∣∣2 dsdt

st
P(x, y)dxdy

≤ C‖f‖L1(Sm−1×Sn−1)‖h‖Υ1(R+×R+)

∥∥∥$∗|h|(P̃)
∥∥∥

L(p′/2)′ (Rm+1×Rn+1)

×

∥∥∥∥∥∥∥
 ∑

j,k∈Z

τ j+1∫
τ j

τk+1∫
τk

∣∣∣Aj,k(·, ·, s, t)
∣∣∣2 dsdt

st


∥∥∥∥∥∥∥

L(p′/2)(Rm+1×Rn+1)

≤ C ln2(τ)‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

. (15)

Therefore, using inequalities (14) and (15), we end the proof of this lemma.
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3. Proof of the Main Results

Proof of Theorem 1. The proof of this theorem mainly depends on the approaches
used in [4,11,16,23], which have their roots in [24]. For an µ > 1, let h ∈ Υµ(R+ ×R+).
Then, by Minkowski’s inequality, we obtain

M
κ1,κ2
φ,ψ,f,h(g)(x, y) =

(∫∫
R+×R+

∣∣∣∣∣ ∞

∑
j,k=0

1
sηtλ

∫
2−j−1t<κ2(u)≤2−jt

∫
2−k−1s<κ1(v)≤2−ks

× Kκ1,κ2
f,h (v, u)g(x− v, xm+1 − φ(κ1(v)), y− u, yn+1 − ψ(κ2(u)))dvdu

∣∣∣2 dsdt
st

)1/2

≤
∞

∑
j,k=0

(∫∫
R+×R+

∣∣∣∣ 1
sηtλ

∫
2−j−1t<κ2(u)≤2−jt

∫
2−k−1s<κ1(v)≤2−ks

× Kκ1,κ2
f,h (v, u)g(x− v, xm+1 − φ(κ1(v)), y− u, yn+1 − ψ(κ2(u)))dvdu

∣∣∣2 dsdt
st

)1/2

≤ 2a1+b1

(2a1 − 1)(2b1 − 1)

(∫∫
R+×R+

|$s,t ∗ g(x, y)|2 dsdt
st

)1/2
. (16)

Let τ = 2q′γ′ . Then, we know that ln(τ) ≤ C qµ
(1−q)(1−µ)

. In addition, for j ∈ Z, let{
Tj
}∞
−∞ be a smooth partition of unity which is defined on (0,∞) and adapted to the

interval Ij = [τ−1−i, τ1−i]. Precisely, we have the following:

Tj ∈ C∞, 0 ≤ Tj ≤ 1, ∑
j∈Z

T2
j (κ) = 1,

supp (Ti) ⊆ Ij, and
∣∣∣∣drTj(κ)

dκr

∣∣∣∣ ≤ Cr

κr ,

where Cr does not depend on the lacunary sequence {τ j; j ∈ Z}. We define the multiplier

operators Mj,k on Rm+1 ×Rn+1 by (M̂j,k(g))(ξ, ζ) = Tk(κ1(ξ))Tj(κ2(ζ))ĝ(ξ, ζ). Thus, for
any g ∈ S(Rm+1 × Rn+1), we obtain g(x, y) = ∑

j,k∈Z
(Mj+l2,k+l1(g))(x, y). This leads, by

Minkowski’s inequality, to(∫∫
R+×R+

|$s,t ∗ g(x, y)|2 dsdt
st

)1/2
≤ C ∑

l1,l2∈Z
Nl2,l1(g)(x, y), (17)

where

Nl2,l1(g)(x, y) =
(∫∫

R+×R+

∣∣Vl2,l1(g)(x, y, s, t)
∣∣2 dsdt

st

)1/2
,

Vl2,l1(g)(x, y, s, t) = ∑
j,k∈Z

$s,t ∗Mj+l2,k+l1 ∗ g(x, y)χ
[τk ,τk+1)×[τ j ,τ j+1)

(s, t).

Therefore, to prove Theorem 1, it is enough to show that∥∥Nl2,l1(g)
∥∥

Lp(Rm+1×Rn+1)
(18)

≤ Cp ln(τ)2−
ε
2 (|l1|+|l2|)‖f‖Lq(Sn−1×Sm−1)‖h‖Υµ(R+×R+)

‖g‖Lp(Rm+1×Rn+1)

for any p satisfying |1/2− 1/p| < min{1/µ′, 1/2} and for some ε > 0.
Let us first estimate the L2-norm forNl2,l1(g). By using Plancherel’s Theorem, Fubini’s

Theorem, Lemma 5, and similar procedures as those employed in [11], we obtain
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∥∥Nl2,l1(g)
∥∥2

L2(Rm+1×Rn+1)

≤ ∑
j,k∈Z

∫∫
Θj+l2,k+l1

 τ j+1∫
τ j

τk+1∫
τk

∣∣$̂s,t(ξ, ζ)
∣∣2 dsdt

st

∣∣ĝ(ξ, ζ)
∣∣2dξdζ

≤ Cp ln2(τ)‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

× ∑
j,k∈Z

∫∫
Θj+l2,k+l1

|Dτk ξ|
± 2δ

γ1q′w
∣∣Dτ j ζ

∣∣± 2δ
γ2q′w

∣∣ĝ(ξ, ζ)
∣∣2dξdζ

≤ Cp ln2(τ) 2−ε(|l1|+|l2|)‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+) ∑

j,k∈Z

∫∫
Θj+l2,k+l1

∣∣ĝ(ξ, ζ)
∣∣2dξdζ

≤ Cp ln2(τ) 2−ε(|l1|+|l2|)‖f‖2
Lq(Sm−1×Sn−1)‖h‖

2
Υµ(R+×R+)

‖g‖2
L2(Rm+1×Rn+1), (19)

where Θj,k =
{
(ξ, ζ) ∈ Rm+1 ×Rn+1 : (κ1(ξ), κ2(ζ)) ∈ Ik × Ij

}
and ε ∈ (0, 1).

On the other hand, the Lp-norm for Nl2,l1(g) is estimated as follows: by invoking
Lemma 7 together with the Littlewood–Paley theory and using (3.20) in [11] we obtain∥∥Nl2,l1(g)
∥∥

Lp(Rm+1×Rn+1)

≤ C

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ τ j+1

τ j

∫ τk+1

τk

(∣∣∣$s,t ∗Mj+l2,k+l1 ∗ g
∣∣∣)2 dsdt

st

)1/2
∥∥∥∥∥∥

Lp(Rm+1×Rn+1)

≤ Cp ln(τ)‖f‖Lq(Sm−1×Sn−1)‖h‖Υµ(R+×R+)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Mj+l2,k+l1 ∗ g
∣∣∣2)1/2

∥∥∥∥∥∥
Lp(Rm+1×Rn+1)

≤ Cp
µ

(q− 1)(µ− 1)
‖f‖Lq(Sm−1×Sn−1)‖h‖Υµ(R+×R+)

‖g‖Lp(Rm+1×Rn+1). (20)

Now, we interpolate between (19) and (20), and immediately obtain (18). This finishes
the proof of Theorem 1.

Finally, the proof of Theorem 3 can be obtained by following the above arguments,
invoking Lemma 8 instead of Lemma 7 and then adapting Yano’s extrapolation method.
Precisely, using Lemma 8, we get that∥∥Nl2,l1(g)
∥∥

Lp(Rm+1×Rn+1)

≤ C

∥∥∥∥∥∥
(

∑
j,k∈Z

∫ τ j+1

τ j

∫ τk+1

τk

(∣∣∣$s,t ∗Mj+l2,k+l1 ∗ g
∣∣∣)2 dsdt

st

)1/2
∥∥∥∥∥∥

Lp(Rm+1×Rn+1)

≤ Cp ln(τ)‖f‖Lq(Sm−1×Sn−1)‖h‖Υµ(R+×R+)

∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣∣Mj+l2,k+l1 ∗ g
∣∣∣2)1/2

∥∥∥∥∥∥
Lp(Rm+1×Rn+1)

≤ Cp
µ

(q− 1)(µ− 1)
‖f‖Lq(Sm−1×Sn−1)‖h‖Υµ(R+×R+)

‖g‖Lp(Rm+1×Rn+1) (21)

for all 2 < p < ∞, and∥∥Nl2,l1(g)
∥∥

Lp(Rm+1×Rn+1)

≤ Cp
µ2

(q− 1)2(µ− 1)2 ‖f‖Lq(Sm−1×Sn−1)‖h‖Υµ(R+×R+)
‖g‖Lp(Rm+1×Rn+1) (22)
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for all 1 < p < 2. Consequently, when we interpolate (19) with (21) and (22), we obtain (18).
The proof of Theorem 3 is complete.

4. Conclusions

In this work, we obtained suitable Lp estimates for a certain class of parabolic
Marcinkiewicz integral operators Mκ1,κ2

φ,ψ,f,h when f ∈ Lq(Sm−1 × Sn−1) with q > 1. Using
these estimates together with Yano’s extrapolation argument, we proved the Lp bounded-
ness of the aforesaid operator under very weak assumptions on f. Actually, we proved
our results when f ∈ L(log L)(Sm−1 × Sn−1) ∪ B(0,0)

q (Sm−1 × Sn−1) for some q > 1 which
are considered to be the best possible in their respective classes. Furthermore, we estab-
lished the Lp boundedness of our operator for the full range 1 < p < ∞ under stronger
conditions on f. Our results improve as well as extend numerous known results in the
Marcinkiewicz operators.
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