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1. Introduction

Let A be the set of all algebraic numbers, and let |α| be the maximum of the absolute
values of the algebraic number α and all of its conjugates in the field A. Let C(z) be the
field of all rational functions with complex coefficients, and let K[z1, . . . , zn] be the ring of
all polynomials in z1, . . . , zn with coefficients in a ring K.

One of the main methods of transcendental number theory is the Siegel–Shidlowsky
method (see [1–3]). With its help, the transcendence and algebraic independence of the
values of the so-called E-functions (a subclass of entire functions of the first order, which
are closed with respect to differentiation and integration) are proved.

K. Siegel [1] called the entire function

f (z) =
∞

∑
n=0

cn
zn

n!
, cn ∈ A,

an E-function if:

1. for any ε > 0 |cn| = O(nεn), n→ ∞;
2. for any ε > 0, the least common denominator of c1, . . . , cn is O(nεn), n→ ∞;
3. f (z) satisfies a linear differential equation with the coefficients in C(z).

An example of E-functions is a class of hypergeometric E-functions l ϕq(~ν;~λ; αzq−l),
where

l ϕq(~ν;~λ; z) = l+1Fq

(
1, ν1, . . . , νl
λ1, . . . , λq

∣∣∣∣z) =
∞

∑
n=0

(ν1)n . . . (νl)n

(λ1)n . . . (λq)n
zn,

0 6 l < q, (ν)0 = 1, (ν)n = ν(ν + 1) . . . (ν + n− 1), ~ν = (ν1, . . . , νl) ∈ Ql ,~λ ∈ (Q \Z60)
q,

α ∈ A.
There is a large number of works in which the algebraic independence of the values of

various sets of hypergeometric functions at algebraic points is established (see [3]).
In [1], K. Siegel proved that every polynomial P ∈ A[z, f1(z), . . . , fn(z)], where

f1(z), . . . , fn(z) are hypergeometric E-functions or the functions obtained from them by
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replacing z with αz for α ∈ A, is an E-function satisfying a linear differential equation with
the coefficients in C(z). In the same article ([1], §2), K. Siegel formulated a conjecture that
the converse statement is also true.

In the author’s articles (see [4]) that were published in 2000–2005, the Siegel conjecture
was proved for E-functions satisfying linear homogeneous differential equations of an
order not higher than 2, and, in some cases, inhomogeneous equations of the second order.

In 2005, the author [5] proved a weakened version of the Siegel conjecture for all linear
differential equations of an order not higher than 2, including inhomogeneous ones. In the
same article, it was suggested that, in general, Siegel’s hypothesis is incorrect. As examples
of rebuttals, it was suggested to consider the E-functions

V(z) = Vλ,α(z) = eαz
∫ z

0
e−αt ϕλ(t)dt = z +

(
1

λ + 1
+ α

)
z2

2
+ . . . , (1)

satisfying the equations

y′′ + (−α− 1 + λ/z)y′ + (α− λα/z)y = λ/z, (2)

where α ∈ A, λ ∈ Q, −λ 6∈ N, and ϕλ(z) is the function introduced by A.B. Shidlowsky
(see [3], ch. 5, §2),

ϕλ(z) = 1F1

(
1

λ + 1

∣∣∣∣z) = 1 +
∞

∑
n=1

zn

(λ + 1) . . . (λ + n)
= λz−λez

∫ z
tλ−1e−tdt.

If λ > 0, then the lower integration bound is 0. Otherwise, the integral denotes the
antiderivative for the function tλ−1e−t, which is obtained after multiplying all of the terms
of the Taylor decomposition of e−t by tλ−1 and the termwise integration with a constant of
integration equal to zero (see [3], ch. 5, §2, formula (21)).

Recently, J. Frezan and P. Jossen [6], relying on the works of I. Andre ([7,8]), N. Katz [9],
T. Rivoal and S. Fischler [10], and other mathematicians, strictly proved that some E-
functions are not polynomials in hypergeometric E-functions. The resulting refutation
of Siegel’s conjecture makes it relevant to develop methods for studying the algebraic
and number-theoretic properties of functions that are not algebraically expressed through
hypergeometric E-functions.

2. On Algebraic Identities between the Functions V(z), ϕλ(z), and ez

The function ϕλ(z), introduced by A.B. Shidlowsky, satisfies the equation

y′ = (1− λ/z)y + λ/z (3)

and can be understood as an “inhomogeneous analogue” of the function ez.

Lemma 1 ([3], ch. 5, §3; Lemma 4 in [11]). Let λ0 ∈ Z>0, λ1, . . . , λm ∈ C \ Z, m > 0, and
λi − λj 6∈ Z, i 6= j; the numbers β1, . . . , βn ∈ C are linearly independent over Q, α1, . . . , αn ∈
C \ {0}, αi 6= αj, i 6= j. Then, the (m + 1)n functions

ϕλ0(βiz), ϕλj(αiz), j = 1, . . . , m, i = 1, . . . , n (4)

are algebraically independent over C(z).

Taking into account the identities ϕ0(z) = ez and

ϕλ(z) =
zl

(λ + 1) . . . (λ + l)
ϕλ+l(z) + 1 +

l−1

∑
n=1

zn

(λ + 1) . . . (λ + n)
, (5)

where l ∈ N, the conditions of Lemma 1 are necessary and sufficient.
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From Lemma 7 in [12], a stronger version of Lemma 1 follows.

Lemma 2. Under the conditions of Lemma 1, the functions (4) are algebraically independent over C
together with the functions zξ1 , . . . , zξp , where the numbers ξ1, . . . , ξp ∈ C are linearly independent
over Q, ξ1 ∈ Q, p ∈ N.

Theorem 1. The following identities hold:

V0, α(z) = eαz
∫ z

0
e−αtetdt =

1
1− α

(ez − eαz), α 6= 1; V0, 1(z) = zez; (6)

Vλ, 1(z) = ez
∫ z

0
e−t ϕλ(t)dt =

z
1− λ

ϕλ(z) +
λ

1− λ
(1− ez), λ 6= 1; (7)

V1/2, 2(z) = e2z
∫ z

0
e−2t ϕ1/2(t) dt = zϕ2

1/2(z); (8)

V3/2, 2(z) = −
4
3

z3 ϕ2
3/2(z)− (4z2 + 2z)ϕ3/2(z)− 3z− 3 + 3e2z; (9)

V−1/2, 2(z) =
1
4z

ϕ2
−1/2(z)− (1 +

1
2z

)ϕ−1/2(z) +
1
4z

+ e2z. (10)

All other functions Vk+1/2, 2(z), k ∈ Z, are also uniquely represented as c e2z + P0, where
c ∈ Q \ {0}, P0 is a second-power polynomial in ϕk+1/2(z) with the coefficients in Q[z, z−1].

Proof. Identities (6) are proved through direct computation. The validity of identity (8) can
be established as follows. If we multiply both parts of it by e−2z, differentiate with respect
to z, and divide by e−2z, then, taking (3) into account, we get the correct identity of the form
ϕ1/2(z) = ϕ1/2(z). By performing these actions in reverse order, due to V1/2, 2(0) = 0, we
get (8).

Identity (7) is proved similarly to (8).
From identity (5), for l = 1, by using integration by parts and (3) successively, we get

Vλ,2(z) = e2z
∫ z

0
e−2t ϕλ(t)dt =

1
λ + 1

e2z
∫ z

0
e−2ttϕλ+1(t)dt− 1

2
(1− e2z),

I =
∫ z

0
e−2ttϕλ+1(t)dt = −1

2

∫ z

0
tϕλ+1(t)de−2t =

= −1
2

(
e−2ttϕλ+1(t)

∣∣∣z
0
−
∫ z

0
e−2t(ϕλ+1(t) + tϕ′λ+1(t))dt

)
=

1
2

I − λ

2

∫ z

0
e−2t ϕλ+1(t)dt− 1

2
e−2zzϕλ+1(z) +

λ + 1
4

(1− e−2z),

I = −λ
∫ z

0
e−2t ϕλ+1(t)dt− e−2zzϕλ+1(z) +

λ + 1
2

(1− e−2z),

Vλ, 2(z) = −
λ

λ + 1
Vλ+1, 2(z)−

1
λ + 1

zϕλ+1(z)− 1 + e2z, (11)

Vλ+1, 2(z) = −
λ + 1

λ
Vλ, 2(z)−

1
λ

zϕλ+1(z) +
λ + 1

λ
(−1 + e2z). (12)

From Formula (12), by induction on n, we easily obtain the formula

V2n+1
2 , 2(z) = (−1)n(2n + 1)V1

2 , 2(z)+

+(−1)n+1(2n + 1)
(

1− 1
3
+

1
5
− · · ·+ (−1)n+1

2n− 1

)
e2z + L, n = 1, 2, . . . ,
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where L is a linear combination of the functions 1, zϕ3/2(z), . . . , zϕ(2n+1)/2(z) with the
coefficients in Q. From here, by using Formulas (5) and (8), for V(2n+1)/2, 2(z), we obtain the
expression described in the statement of the theorem. This expression is defined uniquely
by virtue of Lemma 1.

Similarly to (11), we get

V− 2n+1
2 , 2(z) = (−1)n(2n + 1)V1

2 , 2(z)+

+(−1)n(2n + 1)
(

1− 1
3
+

1
5
− · · ·+ (−1)n

2n + 1

)
e2z + L, n = 0, 1, 2, . . . ,

where L is a linear combination of the functions 1, zϕ−1/2(z), . . . , and zϕ−(2n+1)/2(z), with
the coefficients in Q. From this, we come again to the statement of the theorem. Formulas (9)
and (10) are special cases of the reasoning used. Theorem 1 is proved.

Theorem 2. Under the conditions of Lemma 1, the function Vλ,α(z), λ 6∈ Z, can be expressed
as a polynomial P in functions (4) with the coefficients in C[z, z−1] only in the case of m = n =
1, λ1 − λ ∈ Z, α1 = 1, α ∈ {1, 2}, 2λ ∈ Z for α = 2, P = ceαz + P0, where c ∈ C, and P0 is a
polynomial not higher than the second power in the function ϕλ(z). If λ ∈ Z>0, then for α 6= 1, P
is a linear form with the coefficients in C[z, z−1] of the functions ez and eαz, and for α = 1, it is of
the functions ez and 1. In addition, if λ ∈ Z>0, α 6= 1, then λ = 0.

Proof. We express, if necessary, the function ϕλ0(z) via ez (according to the identities (5)
and ϕ0(z) = ez), and we assume that

Vλ,α(z) = eαz
∫ z

0
e−αt ϕλ(t)dt = P = P1eγ1z + · · ·+ Pseγsz + P0,

where s > 0, P0, . . . , Ps are non-zero polynomials in the functions ϕλj(αiz), j 6= 0; the
numbers γ1, . . . , γs ∈ C \ {0} are different. Multiplying this equality by e−αz, differentiating
with respect to z, and dividing by e−αz, we get

ϕλ(z) = (P′1 + (γ1 − α)P1)eγ1z + · · ·+ (P′s + (γs − α)Ps)eγsz + P′0 − αP0. (13)

If λ 6∈ Z, then according to Lemma 1 P′k + (γk − α)Pk = 0, i.e., Pk = cke(γk−α)z, ck 6= 0.
Hence, in view of Lemma 1 γk = α, Pk = ck, s = 1. If λ ∈ Z>0, α 6= 1, then another case
γk = 1, s = 2 is possible.

Thus, it is proved that for λ 6∈ Z,

Vλ,α(z) = P = ceαz + P0, (14)

and for λ ∈ Z>0,
Vλ,α(z) = P = ceαz + P1ez + P0, (15)

where c ∈ C, P0, P1 are polynomials in the functions ϕλj(αiz), j 6= 0.
Let the equality (14) be

P0 = Pk ϕk
λ1
(α1z) + Pk−1 ϕk−1

λ1
(α1z) + · · ·+ P1 ϕλ1(α1z) + P∗,

where k > 1, P∗, P1, . . . , Pk are polynomials in the functions ϕλj(αiz), except for ϕλ1(α1z),
with the coefficients in C[z, z−1].

Then, by multiplying the equality (14) by e−αz, differentiating with respect to z, and
dividing by e−αz, we get

ϕλ(z) =
(

P′k +
(

kα1 − α− kλ1

z

)
Pk

)
ϕk

λ1
(α1z)+
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+

(
P′k−1 +

(
(k− 1)α1 − α− (k− 1)λ1

z

)
Pk−1 +

kλ1

z
Pk

)
ϕk−1

λ1
(α1z) + . . . .

If λ1 − λ 6∈ Z, then according to Lemma 1, the coefficients at ϕt
λ1
(α1z) should be

zero. Hence,

P′k =
(

α− kα1 +
kλ1

z

)
Pk, Pk = cke(α−kα1)zzkλ1 , ck 6= 0.

According to Lemma 1, this is only possible if α = kα1, kλ1 ∈ Z. Hence,

P′k−1 =

(
α1 +

(k− 1)λ1

z

)
Pk−1 − ckkλ1zkλ1−1, Pk−1 6= 0.

Solving this equation with the method of variation of parameters, we get

Pk−1 = c0zkλ1 ϕλ1(α1z) + c1eα1zzkλ1 z−λ1 , c0, c1 ∈ C,

which contradicts Lemma 2. Therefore, the polynomial P0 does not depend on the functions
ϕλj(αiz), except, perhaps, ϕλ(z), and in this case, λ1 − λ ∈ Z, k 6 2, α1 = 1, α ∈ {1, 2},
2λ ∈ Z for α = 2.

Similarly, let the equality (15) be

P1ez + P0 = Pk ϕk
λ1
(α1z) + Pk−1 ϕk−1

λ1
(α1z) + · · ·+ P1 ϕλ1(α1z) + P∗,

where k > 1, P∗, P1, . . . , Pk are polynomials in the functions ez and ϕλj(αiz), except for
ϕλ1(α1z), with the coefficients in C[z, z−1]. Let us repeat the reasoning carried out for
equality (14). Here, due to the fact that Pk may depend on ez, another case, α = kα1 +
1, kλ1 ∈ Z, Pk = ckezzkλ1 , ck 6= 0, arises. In this case,

Pk−1 = c0zkλ1 ez ϕλ1(α1z) + c1eα1zezzkλ1 z−λ1 , c0, c1 ∈ C,

which contradicts Lemma 2.
Thus, we can assume that in equality (15), P1, P0 ∈ C[z, z−1]. If λ = m ∈ Z>0,

then, from equality (13), with s = 2, γ1 = 1, γ2 = α, taking (5) into account, we get
m!/zm = P′1 + (1− α)P1. However, since P1 = zn1 + · · ·+ znk , n1 > · · · > nk, then with
α 6= 1, this is possible only in the case of m = 0. Then, from (13), P′0 = αP0, from which
P0 = 0. Theorem 2 is proven.

3. On the Algebraic Independence of the Functions V(z) and V ′(z) and Their Values

Lemma 3 (Theorem 2 in [4]). A function f (z) is an E-function satisfying a linear differential
equation of the second order (generally speaking, inhomogeneous) with coefficients in C(z), and the
functions f (z) and f ′(z) are algebraically dependent over C(z) if and only if either

f (z) = P2 ϕk(αz) + P1 ϕk(σαz) + P0,

or
f (z) = P2 ϕ2

λ(αz) + P1 ϕλ(αz) + P0,

where P0, P1, P2 ∈ A[z], k ∈ Z>0, λ, σ ∈ Q, α ∈ A.

Lemma 4. The E-functions Vλ,α(z) and V′λ,α(z) are algebraically dependent over C(z) if and only
if λ = 0, α ∈ Q, λ = 1/2, α = 2, or λ ∈ Z>2, α = 1.

Proof. The sufficiency of the conditions of Lemma 4 follows from identities (6)–(8) and
Lemma 3.
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Let us prove the necessity of these conditions. If the E-functions V(z) and V′(z) are
algebraically dependent, then, according to Lemma 3,

V(z) = eαz
∫ z

0
e−αt ϕλ(t)dt = P2 ϕk(α1z) + P1 ϕk(σα1z) + P0 (16)

or
V(z) = eαz

∫ z

0
e−αt ϕλ(t)dt = P2 ϕ2

λ1
(α1z) + P1 ϕλ1(α1z) + P0, (17)

where P0, P1, P2 ∈ A[z], k ∈ Z>0, λ1, σ ∈ Q, α1 ∈ A.
The following reasoning can be somewhat simplified by using the statement of

Theorem 2, but here, the proof is carried out directly.
If equality (16) holds, then, in view of (5), we can assume that k = 0, ϕk(z) = ez,

P0, P1, P2 ∈ A[z, z−1], σ 6∈ {0; 1}. Then, by multiplying the equality (16) by e−αz, differenti-
ating with respect to z, and dividing by e−αz, we get

ϕλ(z) =
(

P′2 + (α1 − α)P2
)
eα1z +

(
P′1 + (σα1 − α)P1

)
eσα1z + P′0 − αP0. (18)

According to Lemma 1, λ = m ∈ Z>0. In addition, one of the brackets is zero on the
right-hand side of equality (18). Without loss of generality, consider that P′1 +(σα1− α)P1 =
0. Then, P1 = 0 or α = σα1, P1 ∈ A. In both cases, taking (5) into account, equality (18) has
the form

m!
zm ez − m!

zm

(
1 +

m−1

∑
n=1

zn

n!

)
=
(

P′2 + (α1 − α)P2
)
eα1z + P′0 − αP0.

Applying Lemma 1 again, we get α1 = 1. In the case of α = σα1, we have P′2 +
(1− σ)P2 = m!/zm. Since P2 ∈ A[z, z−1], σ 6= 1, this is possible only if m = 0, P2 =
1/(1− σ), ϕλ(z) = ϕ0(z) = ez. In the case of P1 = 0, similarly, we get α 6= 1, λ = m = 0,
or α = 1, λ = m 6= 1.

If equality (17) holds, then by multiplying it by e−αz, differentiating with respect to z,
dividing by e−αz, and taking (3) into account, we get

ϕλ(z) =
(

P′2 +
(

2α1 − α− 2λ1

z

)
P2

)
ϕ2

λ1
(α1z)+

+

(
P′1 +

(
α1 − α− λ1

z

)
P1 +

2λ1

z
P2

)
ϕλ1(α1z) + P′0 − αP0 +

λ1

z
P1.

From here, λ − λ1 ∈ Z. Then, in view of (5), we can assume that in (17) λ1 = λ,
P0, P1, P2 ∈ A[z, z−1]. If λ1 = λ ∈ Z>0, then we return to the case of (16). Let λ 6∈ Z>0.
Then, α1 = 1,

P′2 +
(

2− α− 2λ

z

)
P2 = 0, P′1 +

(
1− α− λ

z

)
P1 +

2λ

z
P2 = 1,

implying that P2 = 0 or α = 2, P′2 = 2λ
z P2, P2 = cz2λ, c ∈ C \ {0}, 2λ ∈ Z.

If P2 = 0, then

P′1 =

(
α− 1 +

λ

z

)
P1 + 1, P′0 − αP0 +

λ

z
P1.

Hence, in the case of α 6= 1,

P1 =
1

1− α
+

c1

z
+ · · ·+ cm

zm , ci ∈ A, m ∈ N.

However, then, −mcm = λcm, λ = −m, which is not possible. In the case of α = 1
P1 = z/(1− λ), P′0 = P0 + λ/(1− λ), P0 = −λ/(1− λ), which contradicts (7).
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If P2 6= 0, P1 = 0, then 2cλz2λ−1 = 1, λ = 1/2, c = 1, P0 = 0, and we come to (8).
Hence, only the case P2 6= 0, P1 6= 0, α = 2, λ− 1/2 ∈ Z, λ 6= 1/2 remains. In view of
Lemma 3 and Theorem 1, Lemma 4 is proven.

Theorem 3. Let λ ∈ Q \Z<0, α ∈ A, ξ ∈ A \ {0}. Then, for the algebraic independence of the
numbers Vλ,α(ξ) and V′λ,α(ξ), it is necessary and sufficient that (λ, α) 6= (1/2, 2), (λ, α) 6= (0, r),
and (λ, α) 6= (k, 1), where r ∈ Q, k ∈ Z>2.

The proof follows from Lemma 4 and Shidlovsky’s theorem ([3], ch. 3).

4. Conclusions

1. One of the conditions for the applicability of the method of the article in [6] is the
algebraic independence of the investigated function, f (z), from f ′(z) and f ′′(z) over
C(z). However, in view of (2), this condition for the function Vλ,α(z) is not met.
Nevertheless, Theorem 1, as follows from Theorem 2 and Lemma 4, describes all cases
in which the function Vλ,α(z) can be represented as a polynomial in the functions
ϕλ1(z) and eα1z with the coefficients in Q[z, z−1].

2. In addition to the identities of Theorem 1, we can also note the identity

Vλ, 0(z) =
∫ z

0
ϕλ(t)dt =

∞

∑
n=0

zn+1

(n + 1)(λ + 1) . . . (λ + n)
= z 1 ϕ2(1; 2, λ + 1; z).

3. Theorem 3 provides necessary and sufficient conditions for the algebraic independence
of the values of functions, not all of which, apparently, are algebraically expressed
in terms of hypergeometric functions. By using the methods in the articles of [4,12],
Theorem 3 can be generalized to larger sets of functions.
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