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Abstract: Using Mellin-Barnes contour integrals, we aim at suggesting a q-analogue (q-extension) of
the several variable Aleph-function. Then we present Riemann Liouville fractional q-integral and
q-differential formulae for the q-extended several variable Aleph-function. Using the q-analogue of
the Leibniz rule for the fractional q-derivative of a product of two basic functions, we also provide a
formula for the q-extended several variable Aleph-function, which is expressed in terms of an infinite
series of the q-extended several variable Aleph-function. Since the three main formulas presented in
this article are so general, they can be reduced to yield a number of identities involving q-extended
simpler special functions. In this connection, we choose only one main formula to offer some of
its particular instances involving diverse q-extended special functions, for example, the q-extended
I-function, the q-extended H-function, and the q-extended Meijer’s G-function. The results presented
here are hoped and believed to find some applications, in particular, in quantum mechanics.

Keywords: Mellin-Barnes contour integrals; fractional calculus; fractional q-calculus; q-several
variable Aleph-function; q-several variable I-function; q-Leibniz rule; q-extended H-function; q-
extended Meijer’s G-function

MSC: 26A33; 33C60; 33C99; 33D60; 33D70

1. Introduction and Preliminaries

Since the concept of fractional calculus emerged in 1695 as a result of a notable
communication between de L’Hôpital and Leibniz, fractional calculus has shown a stronger
capacity than classical calculus for exact and efficient reflection of complex real-world
occurrences. During the preceding four decades, fractional calculus has attracted a great
deal of attention and found numerous applications in a range of scientific fields (see,
e.g., [1–3]).

The fractional q-calculus is a q-extension of the conventional fractional calculus (see,
e.g., [4–7]). Al-Salam [8] explored certain fractional q-integral and q-derivative operators.
Al-Salam [9] presented the q-analogues of Cauchy’s formulas for multiple integrals. Fur-
thermore, Agarwal [10] investigated some fractional q-integral and q-derivative operators,
similar to those in [8]. Many authors have offered image formulas of various q-special
functions under fractional q-calculus operators (see, e.g., [11–15]). Purohit and Yadav [16]
introduced and investigated q-extensions of the Saigo’s fractional integral operators. Ku-
mar et al. [17] derived the fractional order q-integrals and q-derivatives for a two variable
basic counterpart to the Aleph-function and considered a related application and the q-
extension of the corresponding Leibniz rule. Many researchers have used these fractional
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q-calculus operators to evaluate the general class of q-polynomials, the basic analogue of
Fox’s H-function, the basic analogue of the I-function, and various other q-special functions
(see, e.g., [12–15,18]).

In this paper, Mellin-Barnes contour integrals are used to introduce a q-analogue of
the several variable Aleph-function, which is surely the first attempt. Then, we give the
fractional Riemann–Liouville q-integral and q-differential formulas for the q-analogue of the
several variable Aleph-function. Using the q-analogue of the Leibniz rule for the fractional
q-analogue derivative of a product of two basic functions, we also provide a formula for
the q-analogue of the several variable Aleph-function (see [19]), which is expressed as
an infinite series of the q-extended several variable Aleph-function. The three principal
formulae related with the q-analogue of the several variable Aleph-function, provided in
this article, are sufficiently broad that they may be reduced to a number of identities using
simpler special functions. Finally, we choose a single principal formula to illustrate some
of its particular cases, involving q-analogues of some special functions, such as q-analogues
of the I-function (see [20]), the H-function (see [21]), and Meijer’s G-function (see [22]).

Here and in the sequel, let C, R, R+, Z and N be the sets of complex numbers, real
numbers, positive real numbers, integers and positive integers, respectively. Furthermore,
let Z>0 := N∪ {0}, Z60 := Z \N, and Z<0 := Z60 \ {0}.

We recall some definitions and notations for q-theory and q-calculus. The q-number of
a ∈ C is given by

[a]q =
1− qa

1− q
(q ∈ C \ {1}; qa 6= 1). (1)

It is found that
lim
q→1

1− qa

1− q
= a.

The q-analogue (or q-extension) of n! then is defined by

[n]q! :=

{
1 if n = 0,

[n]q [n− 1]q · · · [2]q [1]q if n ∈ N,
(2)

from which the q-binomial coefficient (or the Gaussian polynomial analogous to (n
k)) is

defined by [
n
k

]
q

:=
[n]q!

[n− k]q! [k]q!
(n, k ∈ Z>0; 0 6 k 6 n). (3)

The q-binomial coefficient in (3) can be generalized as follows:[
α

k

]
q

:=
[α]q;k

[k]q!
(α ∈ C; k ∈ Z>0), (4)

where [α]q;k is defined by

[α]q;k := [α]q [α− 1]q · · · [α− k + 1]q (α ∈ C; k ∈ Z>0). (5)

The q-shifted factorial (a; q)n is defined by

(a; q)n :=


1 (n = 0)
n−1
∏

k=0

(
1− aqk

)
(n ∈ N), (6)

where a, q ∈ C, and it is supposed that a 6= q−m (m ∈ Z>0). It is easily seen from
(3) and (6) that

(q; q)n = (1− q)n [n]q! (n ∈ Z>0). (7)
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The q-shifted factorial for negative subscript is defined by

(a; q)−n :=
1

n
∏

k=1

(
1− aq−k

) (n ∈ Z>0), (8)

which gives

(a; q)−n =
1

(aq−n; q)n
=

(−q/a)n q(
n
2)

(q/a; q)n
(n ∈ Z>0). (9)

We also denote

(a; q)∞ :=
∞

∏
k=0

(
1− aqk

)
(a, q ∈ C; |q| < 1). (10)

It follows from (6), (8) and (10) that

(a; q)n =
(a; q)∞
(aqn; q)∞

(n ∈ Z), (11)

which can be extended to n = α as follows:

(a; q)α =
(a; q)∞
(aqα; q)∞

(α ∈ C; |q| < 1), (12)

where the principal value of qα is taken.
The q-gamma function Γq(a) is given by (see, e.g., [5] (p. 16 ); see also [23] (p. 490))

Γq(a) =
(q; q)∞

(qa; q)∞(1− q)a−1 =
(q; q)a−1

(1− q)a−1 (13)

(a ∈ C \Z60; 0 < q < 1).

It is found from (11) and (13) that

(a; q)n =
Γq(a + n)(1− q)n

Γq(a)
(a ∈ C \Z60; 0 < q < 1; n ∈ Z). (14)

The following notations are used:

(x− y)n :=
{

1 (n = 0)
(x− y)(x− q y) · · ·

(
x− qn−1 y

)
(n ∈ N). (15)

It is found from (15) that

(x− y)n = xn(y/x; q)n (n ∈ Z>0; x ∈ C \ {0}). (16)

Generally,

(x− y)ν := xν (y/x; q)ν = xν (y/x; q)∞
(y/x qν; q)∞

(ν ∈ C \Z60; x ∈ C \ {0}), (17)

the second equality of which follows from (12).
Jackson [24] proposed an integral represented and defined by

∫ b

a
f (t)dqt :=

∫ b

0
f (t)dqt−

∫ a

0
f (t)dqt, (18)
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where ∫ x

0
f (t)dqt := x(1− q)

∞

∑
k=0

qk f
(

xqk
)

, (19)

provided that the series at the right-hand side of (19) converges at x = a and x = b.
If x ∈ R+, the q-integral of f on [x, ∞) is defined by

∫ ∞

x
f (t)dqt = x(1− q)

∞

∑
k=1

q−k f
(

xq−k
)

. (20)

A q-integral of f on [0, ∞) is defined by

∫ ∞

0
f (t)dqt = (1− q)

∞

∑
k=−∞

qk f
(

qk
)

. (21)

Both (19) and (20) are inverse operations of the q-derivative

Dq f (x) =
f (xq)− f (x)

x(q− 1)
. (22)

For the q-integrals given above and others, one may consult [5] (Section 1.11), [25]
(Section 1.3), [26] (Chapter 19)).

The q-analogue of the Riemann–Liouville fractional integral operator of a function
f (x) is given by (see [8,25] (Equation (4.24)))

Iα
q { f (x)} = 1

Γq(α)

∫ x

0
(x− tq)α−1 f (t)dqt

=
xα−1

Γq(α)

∫ x

0
(tq/x; q)α−1 f (t)dqt

(23)

(<(α) > 0; |q| < 1).

The q-analogue of the Kober fractional integral operator of a function f (x) is defined
as (see [10] (Equation (1)))

Iη,α
q { f (x)} = x−η−α

Γq(α)

∫ x

0
(x− tq)α−1tη f (t)dqt (<(α) > 0, η ∈ R, |q| < 1). (24)

Using (17) and (19) in (24) yields (see [10] (Equation (2)))

Iη,α
q { f (x)} = 1− q

Γq(α)

∞

∑
k=0

qk
(

qk+1; q
)

α−1
qkη f

(
x qk

)
(η ∈ R, |q| < 1), (25)

which may be valid for all α ∈ C and
(

qk+1; q
)

α−1
=
(

1− qk+1
)

α−1
.

Setting η = 0 in (24), in view of (23), we obtain

I0,α
q { f (x)} = x−α Iα

q { f (x)}. (26)

The q-analogue of the Weyl fractional integral operator is given by (see [8]
(Equation (2.1)))

Kα
q{ f (x)} = q−α(α−1)/2

Γq(α)

∫ ∞

x
(t− x)α−1 f

(
tq1−α

)
dqt (27)

(α ∈ C \Z60, |q| < 1),

and K0
q{ f (x)} = f (x).
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The q-analogue of the generalized Weyl fractional integral operator is defined as
(see [8] (Equation (3.2)); see also [18,27] (Equation (5)))

Kη,α
q { f (x)} = q−η xη

Γq(α)

∫ ∞

x
(t− x)α−1t−η−α f

(
t q1−α

)
dqt (28)

(α ∈ C \Z60, η ∈ C, |q| < 1).

Employing (20) in (28) offers (see [27] (Equation (6)))

Kη,α
q { f (x)} = 1− q

Γq(α)

∞

∑
k=0

qkη
(

1− qk+1
)

α−1
f
(

x q−k−α
)

. (29)

It follows from (25) and (26) that

Iα
q { f (x)} = xα(1− q)

Γq(α)

∞

∑
k=0

qk(1− qk+1)
α−1 f

(
xqk
)

. (30)

We find (see [13]), in view of (12) and (13), that

Iα
q
{

xλ−1} =
Γq(λ)

Γq(λ + α)
xλ+α−1

= (1− q)α

(
qλ+α; q

)
∞(

qλ; q
)

∞
xλ+α−1

=
(1− q)α(

qλ; q
)

α

xλ+α−1.

(31)

Indeed, setting f (x) = xλ−1 in (30), with the aid of (17), we obtain

Iα
q
{

xλ−1} =
xλ+α−1

Γq(λ)
(1− q)

∞

∑
k=0

qλk

(
qk+1; q

)
∞(

qk+α; q
)

∞

=
xλ+α−1

Γq(λ)
Bq(λ, α),

(32)

where Bq(λ, α) is the q-Beta function (see, e.g., [23] (p. 495)). Now, recalling (see, e.g., [23]
(p. 495))

Bq(λ, α) =
Γq(λ) Γq(α)

Γq(λ + α)
(33)

to use in (32) yields the desired identity (31).

2. q-Analogue of the Several Variable Aleph-Function

Dutta and Arora [28] introduced and investigated a q-analogue of the one variable
Aleph-function defined by means of Mellin-Barnes type contour integral. Ahmad et al. [29]
applied (13) or (36) to the q-analogue of the one variable Aleph-function in [28] to give an al-
ternative definition for the q-analogue of the one variable Aleph-function. Sahni et al. [30] in-
troduced and investigated the q-analogue of the several variable I-function. Kumar et al. [17]
presented and explored a q-analogue of the two variable Aleph-function (see [31]). By
modifying the techniques employed in the cited works here, we introduce a q-analogue of
the several variable Aleph-function as given in Definition 1.

For simplicity, we put

G(qa) :=

[
∞

∏
j=0

(
1− qa+j

)]−1

=
1

(qa; q)∞
. (34)
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It is remarked that

(i) G(qa) has simple poles at a = −n (n ∈ Z>0) with their residues

Res
a=−n

G(qa) =
1

(q−n; q)n (q; q)∞ log q−1 . (35)

(ii) In view of (13),

G(qa) =
(1− q)a−1

(q; q)∞
Γq(a) (36)

(a ∈ C \Z60; 0 < q < 1).

Definition 1. Let `, r, r(k) ∈ N (k = 1, . . . , `). A q-analogue of the `-variable Aleph-function
ℵ(z1, · · · , z`; q) is defined as follows:

ℵ(z1, . . . , z`; q) := ℵ0,n:m1,n1,··· ,m` ,n`

µi ,νi ,τi ,r:µ
i(1)

,ν
i(1)

,τ
i(1)

,r(1) ;··· ;µ
i(`)

,ν
i(`)

,τ
i(`)

,r(`)


z1
...

z`

; q

∣∣∣∣∣∣∣∣[(
aj; α

(1)
j , · · · , α

(`)
j

)]
1,n

,
[
τi

(
aji; α

(1)
ji , · · · , α

(`)
ji

)]
n+1,µi

:
[(

c(1)j

)
,
(

γ
(1)
j

)]
1,n1

,[
τi

(
bji; β

(1)
ji , · · · , β

(`)
ji

)]
1,νi

:
[(

d(1)j

)
,
(

δ
(1)
j

)]
1,m1

,[
τi(1)
(

c(1)ji(1) , γ
(1)
ji(1)

)]
n1+1,µ(1)

i

; · · · ;
[(

c(`)j

)
,
(

γ
(`)
j

)
1,n`

]
,
[
τi(`)
(

c(`)ji(`) , γ
(`)

ji(`)

)]
n`+1,µ(`)

i[
τi(1)
(

d(1)ji(1) , δ
(1)
ji(1)

)]
m1+1,ν(1)i

; · · · ;
[(

d(`)j

)
,
(

δ
(`)
j

)
1,m`

]
,
[
τi(`)
(

d(`)ji(`) , δ
(`)

ji(`)

)]
m`+1,ν(`)i


=

1

(2πω)`

∫
L1

· · ·
∫

L`

π`ψ(s1, · · · , s`; q)
`

∏
k=1

θk(sk; q) zsk
k ds1 · · ·ds`, (37)

where ω =
√
−1,

ψ(s1, · · · , s`; q)

:=

n

∏
j=1

G
(

q
1−aj+

`
∑

k=1
α
(k)
j sk
)

r
∑

i=1
τi

 µi
∏

j=n+1
G
(

q
aji−

`
∑

k=1
α
(k)
ji sk
) νi

∏
j=1

G
(

q
1−bji+

`
∑

k=1
β
(k)
ji sk
)

,
(38)

and
θk(sk; q)

:=

mk
∏
j=1

G
(

qd(k)j −δ
(k)
j sk
) nk

∏
j=1

G
(

q1−c(k)j +γ
(k)
j sk
)

r(k)

∑
i(k)=1

τi(k)

{
ν

i(k)

∏
j=mk+1

G
(

q
1−d(k)

ji(k)
+δ

(k)

ji(k)
sk
) µ

i(k)

∏
j=nk+1

G
(

q
c(k)

ji(k)
−γ

(k)

ji(k)
sk
)}

× 1
G(q1−sk ) sin(πsk)

,

(39)

provided that

(i) here and elsewhere, an empty product is interpreted as unity;
(ii) z1, . . . , z` ∈ C \ {0};
(iii) n, µi, νi, mk, nk, µi(k) , νi(k) ∈ Z>0 which satisfy 0 6 n 6 µi, 0 6 mk 6 νi(k) , and 0 6 nk 6

µi(k) ;
(iv) τi, τi(1) , . . . , τi(`) ∈ R+;
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(v) the values of α
(k)
j , α

(k)
ji , β

(k)
ji , δ

(k)
j , δ

(k)
ji(k)

, γ
(k)
j and γ

(k)
ji(k)

are assumed to be positive for stan-
dardization purposes, the definition of the basic analogue of the several variable Aleph-function,
provided above, will still make sense, even if some of these values are zero;

(vi) a(k)j , a(k)ji , b(k)ji , d(k)j , d(k)ji , c(k)j and c(k)
ji(k)

are assumed to be complex numbers.

(vii) the contours Lk in the complex sk-planes (k = 1, . . . , `) are of the Mellin-Barnes type, running

from −ω∞ to ω∞ (if necessary) with indentations, such that all the poles of G
(

qd(k)j −δ
(k)
j sk
)

(j = 1, . . . , mk) are separated from those of G
(

q1−c(k)j +γ
(k)
j sk
)

(j = 1, . . . , nk) and

G
(

q
1−aj+

`
∑

i=1
α
(k)
j si
)
(j = 1, . . . , n).

(viii) for large values of |sk|, the integrals converge if <(sk log(zk)− log sin(πsk)) < 0 (k =
1, . . . , `).

For simplicity and convenience, the following notations are used:

V := m1, n1; · · · ; m`, n`; (40)

W := µi(1) , νi(1) , τi(1) , r(1); · · · ; µi(`) , νi(`) , τi(`) , r(`); (41)

A :=
[(

aj; α
(1)
j , · · · , α

(`)
j

)]
1,n

,
[
τi

(
aji; α

(1)
ji , · · · , α

(`)
ji

)]
n+1,µi

; (42)

B :=
[
τi

(
bji; β

(1)
ji , · · · , β

(`)
ji

)]
1,νi

; (43)

C :=
[(

c(1)j ; γ
(1)
j

)]
1,n1

,
[
τi(1)

(
c(1)

ji(1)
; γ

(1)
ji(1)

)]
n1+1,µ

i(1)

;

· · · ;
[(

c(`)j ; γ
(`)
j

)]
1,n`

,
[
τi(`)

(
c(`)

ji(`)
; γ

(`)

ji(`)

)]
n`+1,µ

i(`)

;
(44)

D :=
[(

d(1)j ; δ
(1)
j

)]
1,m1

, τi(1)

[(
d(1)

ji(1)
; δ

(1)
ji(1)

)]
m1+1,ν

i(1)

;

· · · ;
[(

d(`)j ; δ
(`)
j

)]
1,m`

,
[
τi(`)

(
d(`)

ji(`)
; δ

(`)

ji(`)

)]
m`+1,ν

i(`)

.
(45)

It is noted in passing that the q-analogue of the `-variable Aleph-function ℵ(z1, · · · , z`; q)
in Definition 1, when ` = 2, is easily seen to reduce to the q-analogue of the 2-variable
Aleph-function ℵ(z1, z2; q) in [17].

3. Main Results

This section will establish Riemann–Liouville fractional q-integral and q-differential
formulae for the q-extended several variable Aleph-function.

Theorem 1. Let <(η) > 0, <(λ + η) > 0, |q| < 1, ρj ∈ N (j = 1, . . . , r), <
(

sk log(zk)

− log sin(πsk)
)
< 0 (k = 1, . . . , r) and Iη

q {·} be the Riemann Liouville fractional q-integral
operator (23). Furthermore, restrictions and notations in Section 2 are assumed to be satisfied. Then
the following formula holds true:

Iη
q

xλ−1ℵ0,n:V
µi ,νi ,τi ;R:W

 z1xρ1

...
zrxρr

; q

∣∣∣∣∣∣
A : C

B : D


 = (1− q)η xλ+η−1

× ℵ0,n+1:V
µi+1,νi+1,τi ;R:W

 z1xρ1

...
zrxρr

; q

∣∣∣∣∣∣
(1− λ; ρ1, · · · , ρr), A : C

B, (1− λ− η; ρ1, · · · , ρr) : D

.

(46)
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Proof. Let I be the left-hand side of Equation (46). By making use of (23) and (37),
we obtain

I =Iη
q

{
xλ−1 1

(2πω)r

∫
L1

· · ·
∫

Lr
πrψ(s1, · · · , sr; q)

×
r

∏
i=1

θi(si; q)zsi
i x∑r

i=1 ρisi dqs1 · · ·dqsr

}
.

(47)

Interchanging the order of integrals in (47), which may be verified under the restric-
tions in Section 2, we get

I =
1

(2πω)r

∫
L1

· · ·
∫

Lr
πrψ(s1, · · · , sr; q)

×
r

∏
i=1

θi(si; q)zsi
i Iη

q

{
x∑r

i=1 ρisi+λ−1
}

dqs1 · · ·dqsr,

which, upon using (31), yields

I =
1

(2πω)r

∫
L1

· · ·
∫

Lr
πrψ(s1, · · · , sr; q)

×
r

∏
i=1

θi(si; q)zsi
i

(
q∑r

i=1 ρisi+λ+η ; q
)

∞(
qρisi+λ; q

)
∞

dqs1 · · ·dqsr.

(48)

Now, by interpreting the q-Mellin-Barnes multiple contour integrals in terms of the
basic analogue of the several variable Aleph-function in Section 2, we get the desired
result (46).

In view of (49), Theorem 1 easily gives Theorem 2, which provides the Riemann–
Liouville fractional q-derivative of the q-analogue of several variable Aleph-function. Since
the solution conditions do not change for a fractional integral, the most plausible idea
of a fractional derivative is to apply derivatives of real non-negative integer order n =
b<(η)c+ 1 to a fractional integral, which is always possible, but the swapping of derivative
and integral is forbidden in the general case. Here is n times q-analogue of derivative (22):

Dη
q { f (x)} :=

(
f (qx)− f (x)

x (q− 1)

)(n) {
In−η
q f (x)

}
. (49)

By this definition (49), a fractional integral (or derivative) of any complex order η
is valid for −∞ < <(η) < ∞. Thus, not only power laws, but even Aleph-functions
can become objects of a fractional derivative (or integral) of any complex order η except
for |η| = ∞.

As another trial, Agarwal [10] defined a q-fractional derivative as follows
(see also [25] (p. 114)):

Dα
q{ f (x)} := I−α

q { f (x)} = 1
Γq(−α)

∫ x

0
(x− tq)−α−1 f (t)dqt

=
x−α−1

Γq(−α)

∫ x

0
(tq/x; q)−α−1 f (t)dqt

(<(α) < 0; |q| < 1).

This may be an encrypted writing of a fractional integral only.

Theorem 2. Let −∞ < <(η) < ∞, n = b<(η)c+ 1, <(λ + η − n) > 0, 0 < |q| < ∞, ρj ∈ N
(j = 1, . . . , r), <

(
sk log(zk) − log sin(πsk)

)
< 0 (k = 1, . . . , r) and Dη

q {·} be the Riemann
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Liouville fractional q-derivative operator (49). Furthermore, restrictions and notations in Section 2
are assumed to be satisfied. Then the following formula holds true:

Dη
q

xλ−1ℵ0,n:V
µi ,νi ,τi ;R:W

 z1xρ1

...
zrxρr

; q

∣∣∣∣∣∣
A : C

B : D


 = (1− q)−η xλ−η−1

× ℵ0,n+1:V
µi+1,νi+1,τi ;R:W

 z1xρ1

...
zrxρr

; q

∣∣∣∣∣∣
(1− λ; ρ1, · · · , ρr), A : C

B, (1− λ + η; ρ1, · · · , ρr) : D

.

(50)

The results (47) and (50) demonstrate with (49) that for λ = 1 the following identity is
valid: Iη

q

(
Dη

q ( f (x))
)
= f (x), where the arbitrary function f (x) is shown to be a q-analogue

of the several variable Aleph-function. This idea goes back to Riemann in 1847, when he
defined an iterated integral for positive integer η only to avoid integration constants.

4. Leibniz Type Rule for Derivatives and their Extensions and Applications

The classical Leibniz rule or formula of elementary calculus is

Dn{u(x)v(x)} =
n

∑
k=0

(
n
k

){
Dkv(x)

}{
Dn−ku(x)

}
, (51)

where n ∈ Z>0, u and v are assumed to be n-fold differentiable on some interval. A
number of extensions of (51) and their applications have been explored (see, e.g., [25,32,33]
(Chapter 6), [34–37] (pp. 73–79), [38]). Liouville [36] presented the Leibniz rule for fractional
q-derivatives (see also [25] (Equation (6.1)))

Dη
q {u(x)v(x)} =

∞

∑
k=0

Γ(η + 1)
Γ(η − k + 1) k!

Dη−k
q {u(x)}Dk

q{v(x)}, (52)

where η ∈ C \Z<0. Watanabe [32] extended (52) as follows:

Dη
q {u(x)v(x)} =

∞

∑
k=−∞

Γ(η + 1)
Γ(η − ξ − k + 1) Γ(ξ + k + 1)

Dη−ξ−k
q {u(x)}Dξ+k

q {v(x)}, (53)

where η ∈ C \Z<0 and ξ ∈ C holds fixed.

Remark 1. The formula (52) is a very slightly corrected version of [25] (Equation (6.1)), where
k! at the denominator of the summation on its right side may be missed. The case ξ = 0 of (53)
produces (52). Osler [33] presented the precise convergence conditions of the series in (52) for the
functions u(x) and v(x) (see [33] (p. 664)) by strengthening the contention in Watanabe [32]: the
series in (52) converges wherever u(x) and v(x) are analytic centered at 0.

Assume that u is continuous on [0, X] (X ∈ R+) and v is analytic on [0, X]. Then the
Leibniz formula for fractional integrals is given as follows (see, e.g., [37] (p. 75)): For η > 0
and 0 < x ≤ X,

Iη
q {u(x)v(x)} =

∞

∑
k=0

(
−η

k

)
Iη+k
q {u(x)}Dk

q{v(x)}. (54)

Agarwal [34] provided the Leibniz rule for the fractional q-derivatives for a product of
two analytic functions, which is recalled in the following lemma (see also [38] (Equation (1))).



Axioms 2023, 12, 51 10 of 16

Lemma 1. Let the same restrictions for (54), except for one, be assumed. Here, both u and v are
analytic on [0, X]. Then

Dη
q {u(x)v(x)} =

∞

∑
n=0

(−1)n q
n(n+1)

2 [q−η ; q]n
(q; q)n

Dη−n
q {u(xqn)}Dn

q {v(x)}. (55)

The following theorem establishes a Riemann–Liouville fractional q-derivative of a
product of two functions u(x) and v(x) in (57).

Theorem 3. Let <(η) < 0, |q| < 1, ρj ∈ N (i = 1, . . . , r) and <(sk log(zk)− log sin(πsk)) <
0 (k = 1, . . . , r). Furthermore, restrictions and notations in Section 2 are assumed to be satisfied.
Then the following Riemann–Liouville fractional q-derivative formula holds true:

ℵ0,n+1:V
µi+1,νi+1,τi ;R:W

 z1xρ1

...
zrxρr

; q

∣∣∣∣∣∣
(1− λ; ρ1, · · · , ρr), A : C

B, (1− λ + η; ρ1, · · · , ρr) : D


=

∞

∑
n=0

(−1)n qnλ+ n(n−1)
2 [q−η ; q]n

(q; q)n
(
qλ; q

)
n−η

× ℵ0,n+1:V
µi+1,νi+1,τi ;R:W

 z1xρ1

...
zrxρr

; q
∣∣∣∣ (0; ρ1, · · · , ρr), A : C

B, (n; ρ1, · · · , ρr) : D

.

(56)

Proof. By choosing

u(x) := xλ−1 and v(x) := ℵ0,n:V
µi ,νi ,τi ;R:W

 z1xρ1

...
zrxρr

; q

∣∣∣∣∣∣
A : C

B : D

 (57)

to use Lemma 1, we get

Dη
x,q

xλ−1 ℵ

 z1xρ1

...
zrxρr

; q

∣∣∣∣∣∣
A : C

B : D




=
∞

∑
n=0

(−1)n q
n(n+1)

2 [q−η ; q]n
(q; q)n

Dη−n
x,q

{
(xqn)λ−1

}
Dn

x,q{ℵ(z1xρ1 , · · · , zrxρr ; q)}.

(58)

From (31) and (49), we obtain

Dη−n
x,q

{
(xqn)λ−1

}
=

qn(λ−1) (1− q)n−η(
qλ; q

)
n−η

xλ+n−η−1. (59)

Setting λ = 1 in (50) and replacing η with n, we derive

Dn
x,q{ℵ(z1xρ1 , · · · , zrxρr ; q)}

= (1− q)−n x−n ℵ0,n+1:V
µi+1,νi+1,τi ;R:W

 z1xρ1

...
zrxρr

; q

∣∣∣∣∣∣
(0; ρ1, · · · , ρr), A : C

B, (n; ρ1, · · · , ρr) : D

. (60)

Finally, substituting (59) and (60) for the right-hand member of (58) and replacing
the left-hand member of (58) by the right-hand side in (50), and simplifying the resulting
identity, we are led to the desired formula (56).
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5. Particular Cases

This section discusses some specific instances of Theorem 3.

Corollary 1. Let the restrictions in Section 2 and Theorem 3 be accordingly and suitably modified. Then

I0,n+1:V
µi+1,νi+1;R:W

 z1xρ1

...
z`xρ`

; q

∣∣∣∣∣∣
(1− λ; ρ1, · · · , ρ`), A1 : C1

B1, (1− λ + η; ρ1, · · · , ρ`) : D1


=

∞

∑
k=0

(−1)k qkλ+
k(k−1)

2 [q−η ; q]k
(q; q)k

(
qλ; q

)
k−η

× I0,n+1:V
µi+1,νi+1;R:W

 z1xρ1

...
z`xρ`

; q

∣∣∣∣∣∣
(0; ρ1, · · · , ρ`), A1 : C1

B1, (k; ρ1, · · · , ρ`) : D1

.

(61)

Proof. If τi, τi(k) (k = 1, . . . , `) → 1, then the q-analogue of the several variable Aleph-
function reduces to the q-analogue of the several variable I-function (see [20]; see also [30]).
Furthermore, when τi, τi(k) (k = 1, . . . , `)→ 1, the A, B, C and D in Section 2 are replaced,
respectively, by

A1 :=
[(

aj; α
(1)
j , · · · , α

(r)
j

)]
1,n

,
[(

aji; α
(1)
ji , · · · , α

(r)
ji

)]
n+1,µi

; (62)

B1 :=
[(

bji; β
(1)
ji , · · · , β

(r)
ji

)]
1,νi

; (63)

C1 :=
[(

c(1)j ; γ
(1)
j

)]
1,n1

,
[(

c(1)
ji(1)

; γ
(1)
ji(1)

)]
n1+1,µ

i(1)

;

· · · ;
[(

c(`)j ; γ
(`)
j

)]
1,n`

,
[(

c(`)
ji(`)

; γ
(r)
ji(`)

)]
n`+1,µ

i(`)

;
(64)

D1 :=
[(

d(1)j ; δ
(1)
j

)]
1,m1

,
[(

d(1)
ji(1)

; δ
(1)
ji(1)

)]
m1+1,ν

i(1)

;

· · · ;
[(

d(`)j ; δ
(`)
j

)]
1,m`

,
[(

d(`)
ji(`)

; δ
(`)

ji(`)

)]
m`+1,ν

i(`)

.
(65)

Then Theorem 3 reduces to Corollary 1.

Corollary 2. Let the restrictions in Section 2 and Theorem 3 be accordingly and suitably modified. Then

ℵ0,n1+1:m2,n2;m3,n3
µi+1,νi+1,τi ,r:µ

i(1)
,ν

i(1)
,τ

i(1)
,r(1);µ

i(2)
,ν

i(2)
,τ

i(2)
,r(2)

( z1xρ

z2xσ
; q

∣∣∣∣∣∣
(1− λ; ρ, σ), A2 : C2

B2, (1− λ + η; ρ, σ) : D2

)

=
∞

∑
k=0

(−1)k qkλ+
k(k−1)

2 [q−η ; q]k
(q; q)k

(
qλ; q

)
k−η

× ℵ0,n1+1:m2,n2 :m3,n3
µi+1,νi+1,τi ,r:µ

i(1)
,ν

i(1)
,τ

i(1)
,r(1);µ

i(2)
,ν

i(2)
,τ

i(2)
,r(2)

( z1xρ

z2xσ
; q

∣∣∣∣∣∣
(0; ρ, σ), A2 : C2

B2, (k; ρ, σ) : D2

)
.

(66)

Proof. If ` = 2, the q-analogue of the `-variable Aleph-function in Section 2 reduces to the
q-analogue of the two variable Aleph-function (see [31]). In this case, the A, B, C and D in
Section 2 are replaced, respectively, by
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A2 :=
(
aj, αj, Aj

)
1,n1

,
[
τi
(
aji, αji, Aji

)]
n1+1,µi

; (67)

B2 :=
[
τi
(
bji, β ji, Bji

)]
1,νi

; (68)

C2 :=
(
cj, γj

)
1,n2

,
[
τi(1)

(
cji(1) , γji(1)

)]
n2+1,µ

i(1)
;
(
ej, Ej

)
1,n3

,
[
τi(2)

(
eji(2) , γji(2)

)]
n3+1,µ

i(2)
; (69)

D2 :=
(
dj, δj

)
1,m2

,
[
τi(1)

(
dji(1) , δji(1)

)]
m2+1,ν

i(1)
;
(

f j, Fj
)

1,m3
,
[
τi(2)

(
f ji(2) , Fji(2)

)]
m3+1,ν

i(2)
. (70)

Then Theorem 3 reduces to Corollary 2.

Corollary 3. Let the restrictions in Section 2 and Theorem 3 be accordingly and suitably
modified. Then

I0,n1+1:m2,n2;m3,n3
µi+1,νi+1,r:µ

i(1)
,ν

i(1)
,r(1);µ

i(2)
,ν

i(2)
,r(2)

( z1xρ

z2xσ
; q

∣∣∣∣∣∣
(1− λ; ρ, σ), A′2 : C′2

B′2, (1− λ + η; ρ, σ) : D′2

)

=
∞

∑
k=0

(−1)k qkλ+ k(k−1)
2 [q−η ; q]k

(q; q)k
(
qλ; q

)
k−η

× I0,n1+1:m2,n2;m3,n3
µi+1,νi+1,r:µ

i(1)
,ν

i(1)
,r(1);µ

i(2)
,ν

i(2)
,r(2)

( z1xρ

z2xσ
; q

∣∣∣∣∣∣
(0; ρ, σ), A′2 : C′2

B′2, (k; ρ, σ) : D′2

)
.

(71)

Proof. If ` = 2 in Corollary 1, then the q-analogue of the `-variable I-function reduces to
the q-analogue of the 2-variable I-function (see [20]). Let

A′2 :=
(
aj, αj, Aj

)
1,n1

,
[(

aji, αji, Aji
)]

n1+1,µi
; (72)

B′2 :=
[(

bji, β ji, Bji
)]

1,νi
; (73)

C′2 :=
(
cj, γj

)
1,n2

,
[(

cji(1) , γji(1)

)]
n2+1,µ

i(1)
;
(
ej, Ej

)
1,n3

,
[(

eji(2) , γji(2)

)]
n3+1,µ

i(2)
; (74)

D′2 :=
(
dj, δj

)
1,m2

,
[(

dji(1) , δji(1)

)]
m2+1,ν

i(1)
;
(

f j, Fj
)

1,m3
,
[(

f ji(2) , Fji(2)

)]
m3+1,ν

i(2)
. (75)

Then Corollary 1 reduces to Corollary 3.

Corollary 4. Let the restrictions in Section 2 and Theorem 3 be accordingly and suitably
modified. Then

H0,n1+1:m2,n2;m3,n3
µ1+1,ν1+1:µ2,ν2;µ3,ν3

 z1xρ

z2xσ
; q

∣∣∣∣∣∣
(1− λ; ρ, σ), A′′2 : C′′2

B′′2 , (1− λ + η; ρ, σ) : D′′2


=

∞

∑
k=0

(−1)k qkλ+
k(k−1)

2 [q−η ; q]k
(q; q)k

(
qλ; q

)
k−η

× H0,n1+1:m2,n2;m3,n3
µ1+1,ν1+1:µ2,ν2;µ3,ν3

 z1xρ

z2xσ
; q

∣∣∣∣∣∣
(0; ρ, σ), A′′2 : C′′2

B′′2 , (k; ρ, σ) : D′′2

.

(76)

Proof. Let r = r(1) = r(2) = 1. Then the q-analogue of the two variable I-function in
Corollary 3 reduces to the q-analogue of the two variable H-function (see [39]). In this
case, let

A′′2 := (ai, αi, Ai)1,µ1
; (77)
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B′′2 := (bi, βi, Bi)1,ν1
; (78)

C′′2 := (ei, Ei)1,µ2
, (gi, Gi)1,µ3

; (79)

D′′2 := ( fi, Fi)1,ν2
, (hi, Hi)1,ν3

. (80)

Then Corollary 3 reduces to Corollary 4.

Corollary 5. Let the restrictions in Section 2 and Theorem 3 be accordingly and suitably
modified. Then

G0,n1+1:m2,n2;m3,n3
µ1+1,ν1+1:µ2,ν2;µ3,ν3

( z1xρ

z2xσ
; q

∣∣∣∣∣∣∣
(1− λ; ρ, σ),

(
aj
)

1,µ1
:
(
ej
)

1,µ2
,
(

gj
)

1,µ3(
bj
)

1,ν1
, (1− λ + η; ρ, σ) :

(
f j
)

1,ν2
,
(
hj
)

1,ν3

)

=
∞

∑
k=0

(−1)k qkλ+
k(k−1)

2 [q−η ; q]k
(q; q)k

(
qλ; q

)
k−η

× G0,n1+1:m2,n2;m3,n3
µ1+1,ν1+1:µ2,ν2;µ3,ν3

( z1xρ

z2xσ
; q

∣∣∣∣∣∣∣
(0; ρ, σ),

(
aj
)

1,µ1
:
(
ej
)

1,µ2
,
(

gj
)

1,µ3(
bj
)

1,ν1
, (k; ρ, σ) :

(
f j
)

1,ν2
,
(
hj
)

1,ν3

)
.

(81)

Proof. Take

(αi)1,µ1
= (Ai)1,µ1

= (βi)1,ν1
= (Bi)1,ν1

= (Ei)1,µ2
= (Gi)1,µ3

= (Fi)1,ν2
= (Hi)1,ν3

= 1

in Corollary 4. Then the q-analogue of the two variable H-function in Corollary 4 reduces to
the q-analogue of the two variable Meijer’s G-function (see [22]). Then Corollary 4 reduces
to Corollary 5.

Corollary 6. Let the restrictions in Section 2 and Theorem 3 be accordingly and suitably
modified. Then

ℵm,n+1
µi+1,νi+1,τi ,r

(
zxρ; q

∣∣∣∣∣ (1− λ; ρ),
(
aj, Aj

)
1,n · · ·

[
τi
(
aji, Aji

)]
n+1,µi(

bj, Bj
)

1,m · · ·
[
τi
(
bji, Bji

)]
m+1,νi

, (1− λ + η; ρ)

)

=
∞

∑
k=0

(−1)k qkλ+
k(k−1)

2 [q−η ; q]k
(q; q)k

(
qλ; q

)
k−η

× ℵm,n+1
µi+1,νi+1,τi ,r

(
zxρ; q

∣∣∣∣∣ (0; ρ),
(
aj, Aj

)
1,n · · ·

[
τi
(
aji, Aji

)]
n+1,µi(

bj, Bj
)

1,m · · ·
[
τi
(
bji, Bji

)]
m+1,νi

, (k; ρ)

)
.

(82)

Proof. The q-analogue of the two variable Aleph-function reduces to the q-analogue of the
one variable Aleph-function, which is defined by Ahmad et al. [29] (see also the case r = 1
in Theorem 3). Then Theorem 3 reduces to Corollary 6.

Corollary 7. Let the restrictions in Section 2 and Corollary 6 with τi → 1 be accordingly and
suitably modified. Then

Im,n+1
µi+1,νi+1,r

(
zxρ; q

∣∣∣∣∣ (1− λ; ρ),
(
aj, Aj

)
1,n, · · · ,

(
aji, Aji

)
n+1,µi(

bj, Bj
)

1,m, · · · ,
(
bji, Bji

)
m+1,νi

, (1− λ + η; ρ)

)

=
∞

∑
k=0

(−1)k qkλ+
k(k−1)

2 [q−η ; q]k
(q; q)k

(
qλ; q

)
k−η

× Im,n+1
µi+1,νi+1,r

(
zxρ; q

∣∣∣∣∣ (0; ρ),
(
aj, Aj

)
1,n, · · · ,

(
aji, Aji

)
n+1,µi(

bj, Bj
)

1,m, · · · ,
(
bji, Bji

)
m+1,νi

, (k; ρ)

)
.

(83)



Axioms 2023, 12, 51 14 of 16

Proof. If τi → 1 in (82), then the q-analogue of the one variable Aleph-function reduces to
the q-analogue of the one variable I-function (see [40]). Then the identity (83) may follow
from (82).

Corollary 8. Let the restrictions in Section 2 and Corollary 7 with r = 1 be accordingly and
suitably modified. Then

Hm,n+1
µ+1,ν+1

(
zxρ; q

∣∣∣∣∣ (1− λ; ρ),
(
aj, Aj

)
1,µ(

bj, Bj
)

1,ν, (1− λ + η; ρ)

)

=
∞

∑
k=0

(−1)k qkλ+
k(k−1)

2 [q−η ; q]k
(q; q)k

(
qλ; q

)
k−η

Hm,n+1
µ+1,ν+1

(
zxρ; q

∣∣∣∣∣ (0; ρ),
(
aj, Aj

)
1,µ(

bj, Bj
)

1,ν, (k; ρ)

)
.

(84)

Proof. Setting r = 1 in Corollary 7, one finds that the q-analogue of the one variable
I-function reduces to the q-analogue of the one variable H-function (see [41]). In this case,
we get the Formula (84).

Corollary 9. Let the restrictions in Section 2 and Corollary 8 with
(

Aj
)

1,µ =
(

Bj
)

1,ν = 1 be
accordingly and suitably modified. Then

Gm,n+1
µ+1,ν+1

(
zxρ; q

∣∣∣∣ (1− λ; ρ),
(
aj
)

1,µ(
bj
)

1,ν, (1− λ + η; ρ)

)

=
∞

∑
k=0

(−1)k qkλ+
k(k−1)

2 [q−η ; q]k
(q; q)k

(
qλ; q

)
k−η

Gm,n+1
µ+1,ν+1

(
zxρ; q

∣∣∣∣ (0; ρ),
(
aj
)

1,µ(
bj
)

1,ν, (k; ρ)

)
.

(85)

Proof. Take
(

Aj
)

1,µ =
(

Bj
)

1,ν = 1 in Corollary 8. Then the q-analogue of the H-function
may reduce to the q-analogue of the Meijer’s G-function. In this case, we may obtain the
Formula (85).

6. Conclusions

The importance of our findings in this article may rest in their manifold generality.
By specializing the various parameters as well as the variables in the q-extended several
variable Aleph-function, we may obtain a large number of results, involving a remark-
able variety of useful analogues of basic functions (or a product of such basic functions),
which are expressible in terms of q-analogues of diverse special functions of one and sev-
eral variables, including the q-extended I-function (see [20]), the q-extended H-function
(see [40,41]), the q-extended Meijer’s G-function (see [22]), the q-extended generalized
hypergeometric function (see [4,5]), and Mac Robert’s E-function. There are several ways
to define Mac Robert’s E-function in terms of the generalized hypergeometric function or
the Meijer G-function (see [42] (Chapter V)). In this regard, Mac Robert’s E-function may
be q-extended by means of q-generalized hypergeometric function or q-Meijer G-function.
Therefore, the formulae obtained in this research are of a fairly broad nature and may be
helpful in a number of intriguing issues that have appeared in the literature of pure and
applied mathematics and mathematical physics.

For further research, as well as some other properties and identities for the q-analogue
of the several variable Aleph-function ℵ(z1, · · · , z`; q) in Definition 1 to be found, the
results offered in this article are hoped and believed to find some applications, in particular,
in quantum mechanics (see [4,43,44]). Furthermore, it may be interesting to make q-
extensions of some of the results in the following articles [45,46]. Further, instead of
u(x) = xλ−1 in (57), choosing that u(x) is another q-analogue of the several variable
Aleph-function like v(x), what does look like the resulting identity in Theorem 3?
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