Quadrature Methods for Singular Integral Equations of Mellin Type Based on the Zeros of Classical Jacobi Polynomials
Abstract
:1. Introduction
2. Preliminaries
2.1. Properties of Integral Operators with Mellin Kernels
- (a)
- the Mellin transform belongs to the space for every and is holomorphic in the strip
- (b)
- There exist real numbers p and q with such that and
- There exist real numbers p and q with such that and
2.2. Marcinkiewicz Inequalities
- (a)
2.3. The Algebra
- (a)
- is Fredholm if and only if for every where
- (b)
- If is Fredholm, then the index is equal to the negative winding number of the closed curve
3. The Collocation-Quadrature Method
4. -Algebra Framework
5. The Limit Operators of the Collocation-Quadrature Methods
- (a)
- If then
- (b)
- If then
- (B)
- For the function there are a positive constant and a real number such that
- (a)
- implies
or- (b)
- implies
6. The Stability Theorem
- (a)
- the kernel of the operator is trivial,
- (b)
- the curves
- (c)
- the kernels of the operators
7. Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Junghanns, P.; Weber, U. Banach algebra techniques for Cauchy singular equations on an interval. In Boundary Element Technology, XII; Southampton: Boston, MA, USA, 1997; Volume 1, pp. 217–256. [Google Scholar]
- Junghanns, P.; Kaiser, R. Collocation for Cauchy singular integral equations. Linear Algebra Appl. 2013, 439, 729–770. [Google Scholar] [CrossRef]
- Junghanns, P.; Roch, S.; Silbermann, B. Collocation methods for systems of Cauchy singular integral equations on an interval. Vychisl. Tekhnol. 2001, 6, 88–124. [Google Scholar]
- Junghanns, P.; Weber, U. Local theory of projection methods for Cauchy singular equations on an interval. In Boundary Integral Methods: Numerical and Mathematical Aspects; WIT Press/Computational Mechanics Publication: Boston, MA, USA, 1999; Volume 1, pp. 217–256. [Google Scholar]
- Junghanns, P.; Rathsfeld, A. A polynomial collocation method for Cauchy singular integral equations over the interval. Electron. Trans. Numer. Anal. 2002, 14, 79–126. [Google Scholar]
- Junghanns, P.; Rogozhin, A. Collocation methods for Cauchy singular integral equations on the interval. Electron. Trans. Numer. Anal. 2004, 17, 11–75. [Google Scholar]
- Junghanns, P.; Rathsfeld, A. On polynomial collocation for Cauchy singular integral equations with fixed singularities. Integral Equ. Oper. Theory 2002, 43, 155–176. [Google Scholar] [CrossRef]
- Junghanns, P.; Kaiser, R. A numerical approach for a special crack problem. Dolomites Res. Notes Approx. 2017, 10, 56–67. [Google Scholar]
- Junghanns, P.; Kaiser, R. On a collocation-quadrature method for the singular integral equation of the notched half-plane problem. In Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics; Birkhäuser/Springer: Cham, Switzerland, 2017; Volume 259, pp. 413–462. [Google Scholar]
- Junghanns, P.; Kaiser, R. A note on Kalandiya’s method for a crack problem. Appl. Numer. Math. 2020, 149, 52–64. [Google Scholar] [CrossRef]
- Junghanns, P.; Kaiser, R.; Mastroianni, G. Collocation for singular integral equations with fixed singularities of particular Mellin type. Electron. Trans. Numer. Anal. 2014, 41, 190–248. [Google Scholar]
- Capobianco, M.R.; Criscuolo, G.; Junghanns, P. On the numerical solution of a hypersingular integral equation with fixed singularities. In Recent Advances in Operator Theory and Applications; Birkhäuser: Basel, Switzerland, 2009; Volume 187, pp. 95–116. [Google Scholar]
- Junghanns, P.; Kaiser, R.; Potts, D. Collocation–quadrature methods and fast summation for Cauchy singular integral equations with fixed singularities. Linear Algebra Appl. 2016, 491, 187–238. [Google Scholar] [CrossRef]
- Junghanns, P.; Rost, K. Krylov subspace methods for Cauchy singular integral equations. Facta Univ. Ser. Math. Inform. 2004, 19, 93–108. [Google Scholar]
- Junghanns, P.; Rost, K. Matrix representations associated with collocation methods for Cauchy singular integral equations. Math. Methods Appl. Sci. 2007, 30, 1811–1821. [Google Scholar] [CrossRef]
- Mastroianni, G.; Frammartino, C.; Rathsfeld, A. On polynomial collocation for second kind integral equations with fixed singularities of Mellin type. Numer. Math. 2003, 94, 333–365. [Google Scholar] [CrossRef]
- Elschner, J. On spline approximation for a class of noncompact integral equations. Math. Nachr. 1990, 146, 271–321. [Google Scholar] [CrossRef]
- Laurita, C. A new stable numerical method for Mellin integral equations in weighted spaces with uniform norm. Calcolo 2020, 57, 25. [Google Scholar] [CrossRef]
- Mastroianni, G.; Monegato, G. Nyström interpolants based on the zeros of Legendre polynomials for a noncompact integral operator equation. IMA J. Numer. Anal. 1994, 14, 81–95. [Google Scholar] [CrossRef]
- Monegato, G. A stable Nyström interpolant for some Mellin convolution equations. Orthogonal polynomials and numerical analysis (Luminy, 1994). Numer. Algorithms 1996, 11, 271–283. [Google Scholar] [CrossRef]
- Monegato, G.; Prössdorf, S. On the numerical treatment of an integral equation arising from a cruciform crack problem. Math. Methods Appl. Sci. 1990, 12, 489–502. [Google Scholar] [CrossRef]
- Junghanns, P.; Kaiser, R. A note on the Fredholm theory of singular integral operators with Cauchy and Mellin kernels. In Operator Theory, Analysis and the State Space Approach; Birkhäuser/Springer: Cham, Switzerland, 2018; Volume 271, pp. 291–325. [Google Scholar]
- Junghanns, P.; Kaiser, R. A note on the Fredholm theory of singular integral operators with Cauchy and Mellin kernels, II. In Operator Theory, Functional Analysis and Applications; Birkhäuser/Springer: Cham, Switzerland, 2021; Volume 282, pp. 353–392. [Google Scholar]
- Chihara, T.S. An introduction to orthogonal polynomials. In Mathematics and Its Applications; Gordon and Breach, Science Publishers: New York, NY, USA, 1978; Volume 13. [Google Scholar]
- Mastroianni, G. Some weighted polynomial inequalities. In Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions, Delft, The Netherlands, 31 October–4 November 1994; Volume 65, pp. 279–292. [Google Scholar]
- Junghanns, P.; Mastroianni, G.; Notarangelo, I. Weighted polynomial approximation and numerical methods for integral equations. In Pathways in Mathematics; Birkhäuser/Springer: Cham, Switzerland, 2021. [Google Scholar]
- Mastroianni, G.; Totik, V. Uniform spacing of zeros of orthogonal polynomials. Constr. Approx. 2010, 32, 181–192. [Google Scholar] [CrossRef]
- Mastroianni, G.; Vértesi, P. Some applications of generalized Jacobi weights. Acta Math. Hungar. 1997, 77, 323–357. [Google Scholar] [CrossRef]
- Mastroianni, G.; Russo, M.G. Lagrange interpolation in weighted Besov spaces. Constr. Approx. 1999, 15, 257–289. [Google Scholar] [CrossRef]
- Krupnik, N.Y. Banach algebras with symbol and singular integral operators. In Operator Theory: Advances and Applications; Iacob, A., Translator; Birkhäuser Verlag: Basel, Switzerland, 1987; Volume 26. [Google Scholar]
- Böttcher, A.; Silbermann, B. Analysis of Toeplitz Operators, 2nd ed.; Prepared jointly with Alexei Karlovich; Springer Monographs in Mathematics; Springer: Berlin, Germany, 2006. [Google Scholar]
- Luther, U.; Mastroianni, G. Fourier projections in weighted L∞-spaces. In Problems and Methods in Mathematical Physics (Chemnitz, 1999); Birkhäuser: Basel, Switzerland, 2001; Volume 121, pp. 327–351. [Google Scholar]
- Prössdorf, S.; Silbermann, B. Numerical analysis for integral and related operator equations. In Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs]; Akademie-Verlag: Berlin, Germany, 1991; Volume 84. [Google Scholar]
- Prössdorf, S.; Silbermann, B. Numerical analysis for integral and related operator equations. In Operator Theory: Advances and Applications; Birkhäuser Verlag: Basel, Switzerland, 1991; Volume 52. [Google Scholar]
- Freud, G. Orthogonale Polynome; Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 33; Birkhäuser Verlag: Basel, Switzerland, 1969. [Google Scholar]
- Muckenhoupt, B. Mean convergence of Jacobi series. Proc. Am. Math. Soc. 1969, 23, 306–310. [Google Scholar] [CrossRef]
- Gatteschi, L. On the zeros of Jacobi polynomials and Bessel functions. In Proceedings of the International Conference on Special Functions: Theory and Computation, Turin, Italy, 10–12 October 1984; pp. 149–177. [Google Scholar]
- Mastroianni, G.; Milovanović, G.V. Interpolation processes—Basic theory and applications. In Springer Monographs in Mathematics; Springer: Berlin, Germany, 2008. [Google Scholar]
- Szego, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society, Colloquium Publications: Providence, RI, USA, 1975; Volume XXIII. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junghanns, P.; Kaiser, R. Quadrature Methods for Singular Integral Equations of Mellin Type Based on the Zeros of Classical Jacobi Polynomials. Axioms 2023, 12, 55. https://doi.org/10.3390/axioms12010055
Junghanns P, Kaiser R. Quadrature Methods for Singular Integral Equations of Mellin Type Based on the Zeros of Classical Jacobi Polynomials. Axioms. 2023; 12(1):55. https://doi.org/10.3390/axioms12010055
Chicago/Turabian StyleJunghanns, Peter, and Robert Kaiser. 2023. "Quadrature Methods for Singular Integral Equations of Mellin Type Based on the Zeros of Classical Jacobi Polynomials" Axioms 12, no. 1: 55. https://doi.org/10.3390/axioms12010055
APA StyleJunghanns, P., & Kaiser, R. (2023). Quadrature Methods for Singular Integral Equations of Mellin Type Based on the Zeros of Classical Jacobi Polynomials. Axioms, 12(1), 55. https://doi.org/10.3390/axioms12010055