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Abstract: In this paper we formulate necessary conditions for the stability of certain quadrature
methods for Mellin type singular integral equations on an interval. These methods are based on the
zeros of classical Jacobi polynomials, not only on the Chebyshev nodes. The method is considered as
an element of a special C*-algebra such that the stability of this method can be reformulated as an
invertibility problem of this element. At the end, the mentioned necessary conditions are invertibility
properties of certain linear operators in Hilbert spaces. Moreover, for the proofs we need deep results
on the zero distribution of the Jacobi polynomials.
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1. Introduction

The present paper is part of the efforts done during the last three decades to establish
necessary and sufficient conditions for the stability of numerical methods for singular
integral equations by using so called C*-algebra techniques. The integral equations under
consideration contain strong singular integral operators of Cauchy and Mellin type. In
general, they are of the form

+b(x) /1 u(y)dy+c_<x)/1 H_(l—l—x)dy

a(x)u(x) moJo1 y—x -1 1+y/1+4+y

)

+c+(x)/11H+<i_;)1dyy+/111<(x,y)u(y)dy:f(x), -1<x<1,

where the functions 4,b,c+ : [-1,1] — C, f : (-1,1) — C, Hx : Rt — C as
wellas K : (—1,1) x (—=1,1) — C are givenand u : (—1,1) — C is looked for. As
usual, R and C denote the sets of real and complex numbers, respectively. Moreover, by
R = {t € R: t > 0} we refer to the set of positive real numbers. The minimal conditions
on the given functions are the piecewise continuity of the coefficient functions a,b, and c+
as well as the continuity of the kernel functions H+ (t) and K(x, y) . Moreover, the right-
hand side f should belong to a Hilbert space Li, g - Equation (1) is considered in this space

Lf‘, 8 and written shortly as
A = (az+bs+c,M;I_ +op MYy, +IC)u=f. )

For real numbers «, > —1, the Hilbert space Li, = Li, s(—1,1) is defined by the inner
product

8o = [ FORETO (),
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where 0% (x) = (1 — x)*(1 + x)P is a classical Jacobi weight. Hence the norm in Li/ﬁ is

givenby | fll, g = 1/(f, f)ap- We call a function a : [—1,1] — C piecewise continuous if

it is continuous at +1, the one-sided limits a(x + 0) exist forall x € (—1,1), and at least
one of them coincides with the function value a(x) . The set of these piecewise continuous
functions is denoted by PC := PC[—1,1].

For a continuous function H : (0,00) — C, i.e., H € C(R"), and a continuous
functionK : (—1,1) x (—1,1) — C the Mellin-type operator M and the integral operator
IC are defined by

(M) (x) = /_11H<ﬁ;>”1(2jy xe(-1,1), 3)
and .
(Ku)(x) = [ Kxyu@)dy, xe(-11), @

respectively. Moreover, S denotes the Cauchy singular integral operator defined in the
sense of a principal value integral as

_ 1 rtu(y)dy
(Su)(x) = i)y —x xe(-1,1).
Furthermore, the operator of multiplication by a bounded function a : [-1,1] — Cis
defined by

al:L3,—17s frraf, acPC.

Thus, 7 : Li,ﬁ — Li, B itself denotes the identity operator. If B : Lfc,ﬂ — Lfc,ﬁ is another
operator, then we use the abbreviation a8 for the product of the multiplication operator aZ
and the operator 5, i.e., a3 :=alB.

The numerical methods for the approximate solution of Equation (1), which are of
interest here, are collocation and collocation-quadrature methods, which we will describe
later on in more detail. Since we know that solutions of (1) usually contain singularities
at the endpoints of the integration interval, in these methods we look for an approximate

solution u, (x) to u(x) of the form
un (x) = P (x)p(x) = (1= x)P (1 +x)®pu(x), ®)

where pp, 79 > —1 are real numbers and p,(x) is a polynomial of degree less than n. In
case of a collocation method we choose a sequence of collocation points

—1<xpn <xpo1pn<...<x,<1, k=1,...,n, 6)

where n € N—the set of positive integers, and try to determine 1, (x) with the help of the
conditions

(Aun)(xjn) = fu(Xjn), j=1,....n, )

where f,, € v’0™P,, is an approximation to f, P,, denotes the space of algebraic polynomials
of degree less than 2, and v°0"™P,, is considered as a subspace of Li, g (i-e., equipped with
the norm of Li ).

To realize a so called collocation-quadrature method, in a first step we approximate the
integral operators Mﬁ and K with the help of a quadrature method of interpolation type

[ g0~ ¥ Mg, A= [ @, ®
- k=1 -
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where .

Con(x) = Ao k=1,
j=1jk in S
are the fundamental Lagrange interpolation polynomials with respect to the nodes x,, .
Thus, the Mellin type operator is approximated by

()0 = £ (172 ) )

k=1 (xkn) 1F Xk ) 1F X4

and the Fredholm integral operator K by

(Kt) (x) = ¥

K(xr xkn)u(xkn) .

In the second step, we again use the nodes xy, as collocation points and try to determine
uy(x) by solving

(aun + bSuy, —|—c_M;Hiun + C+MIH+un + ICnun)(x]-n) = fn(xjn) , j=1...,n. (9

Note that, in the collocation-quadrature method (9), the quadrature rule (8) is not applied
to (Suy)(x).

Both the collocation method (7) and the collocation-quadrature method (9) can be
written as an operator equation

Anty = fnr (10)

where A, : vP00P, — vP0 0P, is a linear operator (cf. (44) and (45)). The definition of
the stability of the method (10) or, in other words, of the stability of the sequence (A,) =
(Ay),= of the operators A, , includes the unique solvability of (10) for all sufficiently large
n and the uniform boundedness of the inverse operators A;; L. pPoP, —s pPO P, (see
Definition 1).

Now, the application of C*-algebra techniques is based on the idea to consider the
sequence (A;) as an element of a suitable C*-algebra and to translate stability into in-
vertibility modulo zero sequences of this element (see Section 4). To find necessary and
sufficient conditions for the stability of the sequence (Aj) it is necessary to segue to certain
C*-subalgebras and quotient algebras (cf. Proposition 2). In Table 1 we give an overview
on the efforts done in the literature during the last 25 years to equations of type (1) or (2),
where we ignore the Fredholm integral operator K .

Table 1. Cases already considered in the literature.

Equation (1) Method
[1] a,b e C[-1,1], 00, T € (—%, %), coll. with Jacobi nodes
b(£1)=0
[2-4] c+ =0 00 =Tp = % resp. pp = —Tp = %,
coll. with Chebyshev nodes
[5,6] c+ =0 00,0 € f%, % , coll. with Chebyshev nodes
[71 c+ #0 00,70 € —%, % , coll. with Chebyshev nodes
[8-11] cx #0 po=—7 € {+}},
coll.-quadr. with Chebyshev nodes
[12-16] c+ #0 numerical aspects, fast algorithms

The aim of the present paper is to extend the possible choices of py and 1y in com-
parison to Table 1, where here we restrict to collocation-quadrature methods and the case
a =1and b =0, i.e,, the Cauchy singular integral operator is absent in Equation (1). To
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reach this aim we use the zeros of classical Jacobi polynomials associated with weights
07 (x) as collocation and quadrature nodes, not only the zeros of Chebyshev polynomials.
Unfortunately, for this general choice of collocation and quadrature nodes here we are only
able to prove the necessity of the stability conditions. Their sufficiency will be the topic of a
forthcoming paper.

There exists a series of papers (see, for example, refs. [17-21]) devoted to the applica-
tion of the Nystrom method to Fredholm integral equations of the form

(Z+K1+K)u=f (11)

with non-compact integral operators K, for which the operators ./\/lljfl are respective
examples. Thereby, Equation (11) is studied in spaces of continuous or weighted continuous
functions. However, since the idea of proving stability and convergence of the Nystrom
method is essentially based on the concept of collectively compact operator sequences,
which works only for compact operators K1 + K>, in the mentioned papers there is assumed
that the norm of the operator K is less than 1 and that this is true uniformly also for the
approximating operators Ky, . Then, for Z + K1 and Z + K4, one can use the Neumann
series argument. In the present paper, we are not constrained to apply such a condition on
the norm of an operator.

2. Preliminaries
2.1. Properties of Integral Operators with Mellin Kernels

Let us start with collecting some statements on integral operators of interest here and
already proved in the literature.

Lemma 1 ([22], Proposition 3.13). Let B € (—1,1) and H € C(R™") . Moreover, we assume that
there are real numbers p,q with p < q such that # € (p,q) and such that

lim tPk(t) =0 and lim t7k(t) = 0.
t—+0 t—o0
Then, for all « € (—1,1), the integral operator My : Li,ﬁ — Li,ﬁ is bounded.
Note that M}, = RM;; R, where R : Li/ﬁ — Li’ﬁ is given by (Rf)(x) = f(—x).
Lemma 2 ([22], Lemma 3.8). Let «, € R. If the condition
1 1 1—x & 1+« B 2
/1/1<1_y> <1+y) |K(x,y)|“dydx < co

is fulfilled, then IC : Li,ﬁ — Li,ﬁ is a compact operatot.

The following corollary is an immediate consequence of the previous lemma.

Corollary 1. Leta,p € (—1,1) and n,{, ¢, x € R such that

1 1 1-— 1-—-
n < ;“,§<ﬂ and P < 2“,x< zﬁ.

If the function
(—L1) x (-1,1) — C, (x,y) — 0" (x)K(x,y)o¥(y)

is continuous and bounded, then the operator K : L2 g L2 B is compact.
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For p € R, we introduce the weighted L?-space L% = L%(R*) defined by the norm

1£ll,z = (/Ow F(O)P# dt) :

Lemma 3. Let H € 13, | and f € L%,2s—l for some s € R. Then v*$ (M f) is a bounded
function on (—1,1).

Proof. Forx € (—1,1), we have

|(1+x)*(Mpf)(x)]

<[ lasas
: (/11 HG L/) 2 éi,fz):; dy) E ( [.a +y)25‘1|f(y)|2dy>;

00 2
24251
= (o IHOPEa8) 1l s < 111
2

(I+y)°If(y)ldy

f||0,25—1 4

from which the assertion follows. [

Forn € Ngand H € C"(R"), we define the operators 9, M}, by

1
@M = [0 (FE) LUy

Let R = R(—1,1) and C = C(—1,1) denote the sets of all functions f : (-1,1) — C
being bounded and Riemann integrable as well as continuous on each closed subinterval
of (—1,1), respectively. For S € {R,C} and ¢, x € Rwith ¢, x > 0, by szp,x we refer to
the set of all functions f € S, for which the function v¥Af is bounded on (—1,1) . If we
introduce the norm

1100 = sup{o?* ()| f(x)] : =1 < x < 1},

then (gfm, Il Hw,x,oo) becomes a Banach space. Moreover, by gl/J,X we denote the set of all
functions f € S(—1,1), for which the finite limits

Jim (1-x)%f(x) and i (1+%)%f(x) (12)

exist, and by Sy , the subspace of §¢,X of those functions f € S(—1,1), for which the limits
in (12) are equal to zero if ¢ > 0 or x > 0, respectively. The spaces §¢,X and Sy, are closed
subspaces of g?p,x and, consequently, also Banach spaces. Finally, for ¢, xo > 0, set

0 _
Sll’of?(o - U SlPrX : (13)
0<9p<4pp,0<x<x0

Note that
0 _ _ I _ Qb
Syox0 = U Sex= U Sex= U  Syx
0<p<tho,0<x<xo 0<tp<po,0<x<Xo0 0<y<1p,0<x<x0 (14)

= {f€S(=1,1):3C > 0,3e > 0 with [f(x)| < Co* Y0+ X0 (x)¥x € (—1,1)} .
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Lemmad4. Leta,f < landn,{, ¥, x € R such that

0<%, and O§1/J<1_IX, 1_’8.

Moreover, assume the map
[-1,1] x [-1,1] — C, (x,y) — 0" (x)K(x, y)o¥X(y)

to be continuous. Then K : Li,ﬁ — 6,7,5 is a compact operatot.

Proof. Letu € L2 pand & > 0. Then, there exists a § = ¢ (e) > 0 such that

f(v”'glCu)(x) — (v”'glCu)(x’)‘

/ |04 (x)K(x,y) — "4 (x)K(x, )| |u(y)| dy
1 ;
<o [Lo 2 BB dy )l < constelul
-1 , ,

forall x,x" € [—1,1] with |x — x'| < ¢. Thus, the set

{v”’glCu Tu € Li,ﬁ, Hu||a/ﬁ < 1}

is equicontinuous. In the same way one can show
Sup{HKu”,],g’oo TS Li,ﬁ’ ”MH%‘B < 1} < const.

Applying the Arzela-Ascoli theorem delivers the assertion. [

For z € C and a measurable function f : (0,00) — C, for which #*~1 f(¢) is integrable
on each compact subinterval of (0, ), the Mellin transform f(z) is defined as

f(z) = lim : FLF(E) dt, (15)

R—o0 JR-1

if this limit exists. Moreover, for { € Rand p < g,letI'z = {z € C:Rez = {} and

Ig={zc€C:p<Rez<gq}, Co(l¢)= {fGC(Fg): 11moof(§+i77):0}.

Lemma 5. Let p,q € Rwithp < qand f € L3 5e-1 N C(RT) for every & € (p,q) . Then

(@)  the Mellin transform f belongs to the space Co(T¢) for every ¢ € (p,q) and is holomorphic
in the strip T 4.

Moreover, if f(z) satisfies

sup{ (1+ [2)*"

ﬁ(z)’ 1z € rpo,qo} <
for all closed intervals [po, qo] C (p,q) and some T = T(po,q0) > 0, then
b) lim tPHEf(t) = d lim t77¢f(t) =

©F im0 =0 and i B =0

forevery e > 0.

Proof. From f € ng 1, P < ¢ < q,we can conclude that f € Lg 1, P <& <q(see[23]
(Lemma 3.4)). This implies f € Co(Tg), p < & < q(cf. [23] (page 7). By [22] (Lemma 2.14)
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we get that f(z) is holomorphic in the strip I';, and (a) is proved. For assertion (b) we
have only to refer to [23] (Corollary 3.3). O

For a function H € C(R™) and a real number &, we formulate the following conditions:
(Ap) There exist real numbers p and g with p < g such that H € L%’F1 (RT)N L%kl (RY),

¢ € (p.q),and
sup{ (1+ [2)"*"

H’(z)‘ 3Z€Fpo,qo} < 0

for all intervals [po, 0] C (p,q) and some T = T(po,q0) > 0.
(A1) There exist real numbers p and g with p < g such that H € L%p_l (RT)N L%q_l (RT),

¢ < (pyg), and

sup{ (1+1z))**"

ﬁ(s>(z)‘ 1z € rPoﬂo} <oo, se€{0,1},

for all intervals [po, 0] C (p,q) and some T = 7(po,q0) > 0.
We set
A=T+e My +ee My, (16)

where cx € L®(—1,1) and Hy € C(R™"). The following lemma is an application of [10]
(Theorem 4.12) to the operator in (16).

Lemma 6. Let o, p € (—1,1),cy € PC,and Hy € C(R"). If the function H = Hy satisfies
condition (Ag) for ¢ = §+, where {4 = 1% and {_ = # , then the integral operator A :
Li,/& — Li, 8 defined in (16) is Fredholm if and only if the closed curve

Iq:=T,UT}
does not contain the point 0, where
= {1 e (£1)He(Ex —it) it € ﬁ}.

In this case, the Fredholm index of A is equal to the negative winding number of the curve I 4,
where the orientation of I 4 is due to the above given parametrizations of Fj .

Lemma 7 ([10], Proposition 6.1). Let o, € (—1,1),a € C\ {0} and k € C(R™). If the
function H satisfies condition (Ag) for & = # , then the homogeneous equations (aZ + My )u =
0 in the space Li’ﬁ or (aZ + Mpy) * v = 0 in the space szaﬁﬂ have only the trivial solution.

2.2. Marcinkiewicz Inequalities

Forn € Npand a, > —1, by P, & (x) we denote the monic orthogonal polynomial
of degree n with respect to the weight v”"ﬁ(x) . Furthermore, let x}f}’f ,k=1,---,n,bethe
zeros of 13,'1‘ P (x) . It is well known that these zeros are real, simple, and contained in (—1,1).
Therefore, we can write

x,‘;’f = cos 9:”8 , GZf € (0, m),

n

and order them as follows

«, «, «, . % &,
—1<xnf<xnflln<---<x1nﬁ<l, ie., 0<01n’5<~~~<9nf<7r.
We set Gg;f =0and ngl , = taswell as xi’fl , = —land ng =1.

The monic Jacobi polynomials Dy P (x) satisfy the three-term recurrence relation (cf.
[24] (Chapter V, (2.7),(2.29))

PYP (x) = (x —an) ByP (x) — B2PYF (x), neN, (17)
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Ky = oy :(2n+a+[3)(2n+a+’3+2), neN,
=g = 4n(n+a)(n+p)(n+a+p)
Bn = Bn _\/(Z”J”"Jrﬁ1)(2”+1X+ﬁ)2(2n+o¢+ﬁ+1)’ nEN\{l},
and
_ B x+pB B 4(1+a)(1+B)
Xy = &g m, 181_ 1 _\/(2+“+IB)2(3+“+‘B)

By pz’ﬁ (x) we refer to the normalized (with respect to the inner product (., .),, p) polynomials

with positive leading coefficient. If we set

“h " 20T (a4 D)T(B 4+ 1)
: \// v (x dx_\/ T(x+p+2) '

then (see [24] (Chapter I, (4.10))

pi’ﬁ(x) = ’Yﬁ'ﬁﬁg'ﬁ(x) with 7P = (BoB1B2 - Bn) "

and from (17) we get
BuiphP (x) = (x — an)piP (x) = BupP (x), neN,

where p‘i/lg(x) =0and pg’ﬁ(x) =B, In view of
1
/ (1—x )p“lﬁﬂ( x)xko%P(x)dx =0, k=0,1,...,n—2,
1

we have g
(1= )Pt P () = Aup®P (%) + BaphP (x) + CupP (%)

with certain real numbers A, , B, , and C;, . Together with (20) this yields

1= ] i) = (A= S22 ).

(18)

(19)

(20)

(21)

(22)

Let B, = ﬁﬁﬁ and 6, = B2 P With the help of the relations (18) and I'(z + 1) = zI'(z)

we get

50:2\/ (x+1)(B+1)
Bo (@t p+3)(atp+t2)

Furthermore,

& _ | kk+a+p+2) 1o
Biy1 \V(k+1)(k+a+B+1)’ =12,...
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Using the orthogonality properties of pﬁ’ﬁ (x) and (19) we obtain, forn > 1,

An = An(a,B)
= [ AR R (P )

=7, ﬁl / ”H’l .B‘H n*lvﬂé+1,ﬁ+l (JC) dx

Tn /Sl 6001 - - 5n 1

=Tl
YV Bopa

dod1 2+a)2+p)2+a+p+1) L pe>
Bop1 4+zx+,8 4—|—Dc+,3—1(4+0c+,3+1) B )

0 01
BoB1 B ﬁn 1

W\/ n+a+ B

2+atp)(n—1)

. dn—1)n+a)(n+p)(n+a+p+1)
Cn+a+p—-1)2n+a+p)?2n+a+p+1)

n>2

(n+a)n+B)(n+a+p)(n+a+p+1)
2n+0c+,B 2n+a+p—-1)2n+a+p+1) ’

and, forn =1,

(a+1)(B+1)

)
Ar=hwp) =g = \/(a+ﬁ+2)(zx+ﬁ+3>’ 24

as well as

1
Cn :/—1( >pz+iﬁ+l(x)pzfl( ) uc,/S(x) dx

1
= _«Y"’;i‘}rﬁ"‘l [1 xn—l—l 0‘5 (x) aﬁ( ) dx

a+1,+1

_ T __:80,31"',571-5-1 __ﬁn,Bn-s-l neN
= Y = , .

Yoty 0001+ 01 Ay

Hence, relation (22) can be written in the form
1B+1, _a,
P D) = e 1= ()] P ), (25)

where

1 A,
Ba YR
A,

Cp =

An +

2n+a+[3\/ n+a+ﬁ+l)(2n+zx+,3—1) v 1

(n+a)n+B)(n+a+p)2n+a+p+1)’
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and

1 —

x+B+2 (06+/3+2)
2 (a+1)(B+1)(a+B+3)°

In what follows, by C we will denote a positive constant, which can assume different values
at different places, and we will write C # C(x,n,...) to indicate that C does not depend on
the parameters x, n,...If A = A(x,n,...) and B = B(x, n,...) are two positive functions
depending on certain variables x, #, ... , then we will write A ~, . B if there is a constant
C #C(x,n,...) > 0such that

CilB(x,n,...) < A(x,n,...) <CB(x,n,...) Vx,mn,...
Let )&ﬁ’ﬁ (x) stand for the n-th Christoffel function with respect to the weight v*#(x), i.e.,
-1
n—1 2
AMP (x) = (]2(;) [p;*'ﬁ(x)} ) , xe[-1,1].

It is well-known that

1
WD = [ G e dx,

where EZ;{E (x) are the nth fundamental Lagrange interpolation polynomials
xp n X — xe"ﬁ
x
KZf(x) — P (x) _ ]ntx,ﬁ

(x - xl’i‘f) (Pﬁ'ﬁ)/(xz,}ﬁ) j=1,j#k fo — i

with respect to the nodes x;:f ,k=1,...,n.Forx € [-1,1]andn € N, let p(x) := V1 — x2,
L) | 1 e DY (viree 1)
x € [-11],An(x) = T—I—ﬁ,andvn’ (x):= ( 1—x+n> ( T+x+ n) . Then
(cf. [25] (Theorem 5))
AP ()

Bn(x)23," (x)
Since Jacobi weights are so-called doubling weights (see, for example, [26] (Section 3.2.1,
Exercise 3.2.4), we also have (see [27] (Theorem 1))

~xn 1. (26)

x'x’ﬁ — x“’ﬁ
“Ai(tk)“r" 1, k=011, te [’f;ffrxﬁffl,n}  neN, 27)
n

which can equivalently be written as (see [28] (Theorem 3.2) and cf. [26] (Exercise 3.2.25))

oL —of Nk,n%/ k=0,...,n,neN. (28)
Note that, due to (28),
wf & k
0P = ]; (O =675,) ~on 70 k=1 n1, (29)
and
T — 0% :i(‘)ﬁﬁm—f)ﬁf) Nk,n”_Tk‘Ll, k=0,...,n. (30)

j=k
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Hence, fork=1,...,n

" P B k
V1—xg :ﬁsin%wkn kn ~kn o 31)

and ef .
V1+ fo = V2cos 6% = \/Esin% ~p TT— G,f’n ~kn H_Tk—i_l (32)
as well as
LMot i )
which implies, due to (28),
x,‘ff x,oéfl,n ~tkon @ , k=1,...,n—1,te [x,’ffl n,x;fnﬁ} . (34)

Lemma8. Forn e N, k=1,--- ,n,andw,B,v,6 > —1, we have

1 1 ,0
va—s-z,ﬁ—i-z (xz )

AP Gl) gy (35)

Proof. In view of (26) we have

aﬁ 1_(xl'(yn5) 1 75 1 2u o 1 2p
1’1 (an)’\-’k,n f‘f’ﬁ ( 1-— kn +l’l) (\/1+xkn +1’l> 7

and it remains to take into account

1 (1), 32)
\/1:|:xz;f<\/1:|:xkn+— g 1:|:x

(33)
\/1— xkn <\/1— xkn E < Cy/1 xkn

and

O
Lemma 9 ([29], Theorem 2.6). Let 2yg +a > —1,260 + B > —1, and consider a system
1 =xp <xp_1p < - <x1,=1

of nodes xy,, = cos O, , Oy € [0, 7], satisfying O, — Ok—1,n ~kn %for k=2,...,nandn € N.
Moreover, let m be a fixed positive integer. Then there exists a positive constant C # C(n,Q),

such that
n
Y AF
k=1

holds true for all Q € Py, , n € N, where Py, denotes the set of all algebraic polynomials of degree
less than n .

N 2
UZO,AO (xkn ) Q(xkn)

< C[lomQf7 , (36)

Corollary 2. Assume 2o+ a > —1,260 + B > —1, and consider a system
=1 <xpn <xp_1p < <x1, <1
of nodes xi, = o8 O, , Oy € [0, 7], satisfying Oy — O_1,4 ~kn = fork=1,--- ,n+1and

n € N, where 9,11, = 7 and 6y, = 0. Moreover, let m be a fixed positive integer. Then there
exists a positive constant C # C(n, Q) , such that (36) is satisfied for all Q € Py, n € N.
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Proof. Obviously

Uﬁfz( ) ~xn vﬁ’ﬁ(x) and  Api2(x) ~xn Ay(x), x€[-1,1], n € N.

Using (26) we get
/\ﬁfg( ) xn )tz"B(x), Vxe [—1,1].

Now, we consider the following system of nodes

Xnizni2 = =1 Xip2: =1 Xeping2 = X, k=1,
If we apply Lemma 9 to this system, we immediately arrive at our assertion. [

In the particular case xy, = XZ;;J and 9 = dp = 0, from (35) and Corollary 2 we get

1 18
Ly o) Qg ] <cClQfs, neN, apyé>-1,  (37)

forall Q € Py, and with C # C(n, Q) .

Lemma 10 ([29], Theorem 2.7). If a,8,7v,0 > —1 and —% <a—7q,B—-6< %, then there
exists a positive constant C # C(n, Q) such that

cllQl, < D”(xkn)]@(xkn)

Corollary 3. Ifa,f,v,0 > —1and
(a) —% <a—7,B-0< %,
then there exists a positive constant C # C(n, Q) , such that

2
, QeP,, neN. (38)

5
o) ﬁ<,2m+zﬁ+2 X ‘Q x]? ' <clQl2,

forall Q € Py, n € N, where the second inequality holds true without condition (a).
Proof. Relation (37) and Lemma 10 together with (35) deliver the assertion. [

2.3. The Algebra alg T (PC)

By alg 7 (PC) we denote the smallest C*-subalgebra of the algebra £(¢?) of all linear
and bounded operators on the Hilbert space > generated by the Toeplitz matrices

[e)

T(g) = [ & ]9

with piecewise continuous generating functions

B =3, &t
LeZ

defined on the unit circle T := {t € C: |t| = 1} and continuouson T \ {£1}.

Of course, alg 7 (PC) is a C*-subalgebra of the C*-algebra L1(¢?) C L({?) generated
by all Toeplitz matrices T(f) with piecewise continuous generating function f : T — C.
It is well known (see Chapter 16 in [30]) that there exists an isometrical isomorphism smb
from the quotient algebra L (¢2)/K(¢?) (K(¢?)—the ideal in L(¢?) of compact operators)
onto the algebra (C(M), ||.||,,) of all complex valued and continuous functions on the
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compact space M = T x [0, 1], where the topology on M is defined by the neighborhoods
(cf. Theorem 16.1 in [30])

U, 5(e'0,0) := {(ei”,/\) Mo—0<n <1y, 0< AL 1} U {(ei”O,A) 0<AKL e},
U, (e, 1) := {(ei”,/\) o< <fo+38,0<A< 1} U {(ei’ZO,A) e<A< 1},

U, 5, (60, Ag) := {(ei’m,)\) Ag—d <A< /\0+52}
with0 <9 <Ag<1—-0<1,0<d<2r,and0<e<1.

Proposition 1 ([30], Theorem 16.2, [31], Theorem 4.97). The mapping smb has the following

properties:

(@) R € algT (PC) is Fredholm if and only if smbgr(t,A) # 0 for every (t,A) € T x [0,1],
where smbg := smb(R).

(b) IfR € alg T (PC) is Fredholm, then the index is equal to the negative winding number of the
closed curve

Tg: = {smbg(e®,0): 0<s < 7} U{smbg(—1,5): 0<s<1}
. (39)
U {smbg(—€*,0): 0 <s < mw}U{smbgr(1l,s): 0<s <1},
where the orientation of I'g is due to the above given parametrization.

Lemma 11 ([9], Lemma 2.10). Let H € C(R"). If H fulfils condition (A1) for & = L, then, for
every s > 0, the matrix
M= (e
k+s)k+s]io

defines an operator M € L(£2) , which belongs to the algebra alg T (PC) , and its symbol is given by

~

H(%—i—%logﬁ) : t=1,

mby (£, A) =
o { 0 L teT\{1}.

3. The Collocation-Quadrature Method
We consider the integral Equation (cf. (16))

Au=(I+c- My +e M +K)u=f, (40)

wherec+ € PC, f € Li,ﬁ , Hr € C(R"), and the kernel function K(x,y) of the integral
operator K (cf. (4)) is supposed to be continuous on (—1,1) x (—1,1). In order to get
approximate solutions, we use a polynomial collocation-quadrature method. To introduce
that method, we need some further notations. Letn € Nand v, J,p, T > —1 be real numbers.
For u : (—1,1) — C, the Lagrange interpolation operator L) is defined by

n
/0 8N 7,0
Lyu=") u(xz1 )E;Yn ,
j=1

0 7,0
e = —2 W X
jn - YN (VO (1N 0 70
(x - xjn )(p” ) (xjn ) k=1k#j xjn Xk
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To the integral operators M?_EI and KC, we associate the quadrature operators

s . =83 (7
M C(-1,1) — C(-1,1), ”HkZ/\Z,’fH< 17 )(v u)( )
=1

,0
1F xZn 1F xkn

and

Ky:C(—1,1) — C(-1 ul—>ZA75 (-, x2) (077 0u) (x17), (41)

n

respectively. For certain p, T > —1, the collocation-quadrature method seeks for approxi-
mations u, € Li 8 of the form

pa T-p
T2

Uy = Opy = P, Pn € Py

to the exact solution of (40) by solving
((I+ C,M;,I_L + ch/\/lf{,H+ + ICn)un) (xkn ) = fn(xkn ), k=1,...,n, (42)

where P, stands for the set of all algebraic polynomials of degree less than # and the
functions f, : (—1,1) — C are continuous and satisfy 9! f,, € P, as well as

tim || — full s = 0. 43)

n—>o00

We set
pni=0p", n=0,1,2,...

Note that (p,), -, forms a complete orthonormal system in Li B Using the weighted
fundamental Lagrange interpolation polynomials

9(x)0 (%)

7 (x) =
k )
! B(x]")

we can write u; as
—1

Un = 2 Xjnpj = Egkn kn -

If we introduce the Fourier projections

n—1
ﬁn : Li,ﬁ — Li,‘B’ u+— Z;)(u, ﬁ]>a"3ﬁ]
]:

and the weighted Lagrange interpolation operator
Ly = oLy e
then the collocation system (42) can be written as
Aptty = fu (44)

with N
A= LY (T4 - My +cs My +Ku)La. (45)
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Note also that, with the introduced notations, the assertion of Corollary 3 remains true for
Q €im Ly, ie.,

Zva+2/3+ X7 ‘Q xk5‘ <ClQllzg, Qeim Ly, neEN, (46)

n

if—% <p—7T1T-06< %.Indeed,forQ:ﬁPEim L, , we have

T & [ ) ) 2 2
aﬁ* <;kzlvﬂ+2/r+z(xzn)‘p xzn)’ <C||P||p,T— wp

and ) )
+ ,T+ % zx+ +1 %
oPT2 2 ‘P xkn)‘ 3B z ‘Q xkn)‘ .

It is well known that, in the investigation of numerical methods for operator equations, the
stability of the respective operator sequences plays an essential role.

Definition 1. We call the sequence (Ay) in (44) stable (in Li,ﬁ) if, for all sufficiently large n, the

operators Ay : im L, —> im L, are invertible and if the norms || A, 1L, || a2 ) are uniformly
«p

bounded.

If the method is stable and if A, L, converges strongly to A € L(L /3) then the
operator A is injective. If additionally the image of A equals L? B then (43) implies the

Li,ﬁ-convergence of the solution u, of (44) to the (unique) solution u € Li 8 of (40). This
can be seen from the estimate

Lot = unlap = | AT L (ALt = At

a,

< |47

(Ao = Aully g+ 1f = fo

a,ﬁ) .

E(Li’ﬁ)

4. C*-Algebra Framework

In order to investigate the stability of the collocation-quadrature method, we use
specific C*-algebra techniques. With the help of those tools, we are able to transform our
stability problem into an invertibility problem in an appropriate C*-algebra. The sequence
(A,) is considered as an element of such a C*-algebra. To define that algebra, we need
some operators and spaces.

Letn € Nand

X =Ly Xe=X=0 V=2r, £2=0 =P,

where
PH:EZ%EZI (gj);ozo?—)(50,...,6,1_1,0,...).

Let the operators F,, € L£(im P,,) be given by

]Fn(é()/ Cl/ e /gn—llol .. ) - (}Fn)il (601 61/ .. /‘:n—l/o/ .- ) = (Cn—ll 57172/ .. /50/ 0/ .. ) .
Moreover, for t € T := {1,2,3}, we define E,Y) :im £, — im Eslt) by

eV =r,, &¥:=v, &¥:=F,V,
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All operators c‘,}(lt) are invertible with
(5151))71 = £n|im Ly
_ Z a1 B 1
(5,52)) 1 \/ﬁkz Crqu 2 %72 4(xkn )gz’; ,
=1
(3)y-1 . —e 1 61 7.0
(&) =Vn Y GuqvTzTE T2 (xkn )G
k=1
Moreover,

") uweim£L,, t=273.

Whence, in view of (46), the following lemma is proved.

2 1 & 1 5 5
ul|,, = EkZlUHZIﬁJrz(xZ” )’u(xzn )

Lemma 12. The operators E,Sj ) :im £,, — im E,(f) ,n €N, t=1,2,3,are uniformly bounded

together with their inverses if —% <p—7T-06< % .

-1
Lemma 13. For r,t € T with r # t, the operators et = 5,27) (é’,(lt)) Eff) converge together
with their adjoints weakly to the zero operator if —% <p—71-6< %

Proof. Since the operators &' are uniformly bounded, it suffices to verify the convergence
on a dense subset. At first, we consider the operator E%’l = VuL, .Letk,m € Ny be arbitrary
but fixed and 1 > max{m, k} as well as e = (5;x)i>, € %,k € Ny . Using (31), we get

~ 1 ey 1p 1 5
[(VaLupm,ex) ] = n~203 2 H 1 ()7, )

Py, < Cn e

Taking into account p > —1, we conclude the weak convergence of EX! to the zero operator.
Similarly, using (32) instead of (31), we get

+%,§+i(xvi5 ) 70

~ _1 a ~
‘(annﬁnpm/ewﬂ’ =n 202 pm(xnfk,n

Hence, £3! converges weakly to the zero operator. Fix k € N and p(x) = 8(x)(1 — x2)p(x)
with p(x) being a polynomial. Then, for all sufficiently large n € N,

_ ~ 1 a1 —271
<Vn 11Pnek/p>,x =niv 2w s (xk+ln)<glzjrln’ﬂvlrlp>%ﬁ

)6

1 p 1 7 1 0 ,0 6..1,1
=niy 2 4 2 4(xz+ln)<€lz+l,n’vp Tt p
[4

= n%y*i*@f?”( 7.0 )<[f‘S

Y0 p—y,1—8,.1,1
xk+1 n k+1n’ S” v v p>

7,0

1 1 1
. 1 i 7,0 Y6, 0—y,1—5,1,1 7,6
=niy = & 2 4(xk-i-l n) /\k+ln(8” v vrp (xk-i-l n)

(for the definition of S,/ o , see (51) below). Choose ¢, x € R such that

71 - y, 3. _p, 1
2 4<‘P<mm{1+%2+4’7 22

and
é—1< < min 1—|—(5§—|—§(5—E—|—1
2 1°4 T’ T 2T
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1 1
which is possible since % —1 <7~ g + 5 is equivalent to p — ¢y < % . In virtue of [32]

(2.2) there is a constant C # C(n, k, f) such that

‘(S;['df) (xz;l‘s)’vtl"x(xzif) < Csup{o¥X(x)|f(x)|: =1 <x<1}In(n+1), neN.

Note that, due to (35),
0 8010
Mo A 1 o
y+lotl o vy T y+lstl .6 nk =1,...,n,
o1 20T (7)Y ()
Consequently,

’<V;1Pnek, ’7>“,,5’

1 i1 s Tyl 5 5 5 p—nyT— 5
Y=5+1—I0—F+5—X (Y YX (s V00—, T—5,.1,1 4e
<Cn 2077274 2 ()oY ) (S vp ) ()

€))
< CnP W Inm4+1) — 0

because of 2ip < 2y —p + 1. Thus, & converges weakly to zero. Analogously, we get the
same for 52'3 .

Lets,t € {2,3} with s # t. The weak convergence of £ follows by the relations
EX = Vy(Fu Vo) Py = Fy = F,V, WP, = 37 and (Fuer,en) = (ey_1-gem) = 0
if n > m 4k + 1. Finally, note that with £/ also (Eﬁ’t> ' converges weakly to the zero

operator, which follows immediately from the definition of the weak convergence. The
lemma is proved. O

For all what follows we assume thatp —y,7— 0 € (— %, %) . By § we denote the set

of all sequences (A;) := (Ay),2, of linear operators A, : im £, — im L, for which the
strong limits

—1 -1 *
Wi(Ay) = lim e A, (55,”) £y and  (Wi(A)" = lim (E,S”AH (5,5”) cff))

exist for all t € T.If we provide § with the algebraic operations
Al (Aﬂ) + )\2(81’1) = (/\lATZ + /\ZBH)/ )\1/)\2 S (C/

(An)(Bn) = (AuBy), (An)" = (A3),

and the supremum norm

1CAD 5 = supllAnLallz ez )0
n>1 /

one can easily check, that § becomes a C*-algebra with the identity element (£,,) .

Corollary 4. Let Ty € L(X;), t € T be compact operators, i.e., Ty € IC(X¢) . Then the sequences
1
(Aff)) with A,(f) = (Sr(lt)) E,(f)ﬁé’,(lt) belong to § , where

ALY () L 0t (P40 () L) 0, n—ee,

strongly in Xy forr € T,r # .
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Proof. This is due to

-1 -1 * * *
el A (&) L) = e Tiely and (5,5”,4,2”(5,&’)) 5,2’)) = (V)T (&),

the compactness of 7; : X; — X; and the weak convergence of E,Z't as well as (Eﬁ’t> ' to
the zero operator if r # t (see Corollary 4). O

Corollary 5. The mappings Wi : § — L(X;), t € T, are unital *-homomorphisms with norm 1.

Proof. Of course W; : § — E(X(t)),t € T are*- homomorphisms. The relation
[IVH| L(xwy = 1 follows from the fact that *~-homomorphism are bounded by 1 and that
IWe(La)ll p(xoy =1 O

The convergence

—1
eV AV (&) L) =Ll — T in Xe (evenin £(Xy))

together with Corollary 4 deliver that

-1
3= { (Z(a&”) £Y7ed +cn) L(C)EN, TTeEK(X), te T}

teT

is a subset of §, where 91 C § is the two-sided closed ideal of § of all sequences (A;) € §

Proposition 2 ([33,34], Theorem 10.33). The set J forms a two-sided closed ideal in the C*-algebra
§. Moreover, a sequence (Ay) € § is stable if and only if the operators Wi(Ay) = X — X,
t € T, and the coset (Ay) +3J € §/J are invertible.

5. The Limit Operators of the Collocation-Quadrature Methods

In this section, under certain conditions, we prove that the sequence (A;) of the
collocation quadrature method, defined in (45), belongs to the algebra § from the previous
section. We do this by determine the limit operators W (A, ), t = 1,2,3, and proving that
also the sequences of the respective adjoint operators converge strongly.

The following Lemma is due to [35] (Satz I11.2.1). Recall the definition of R%,X in (13)
and the equalities (14).

Lemma 14. Let y,0 > —1.
(a) IffERHYH(S,then lim ZA75 xZn / F(x)o"° (x

®) FfER), ., then hch%f fH =0.
2

2

Lemma15. Letp,x € R, a,B,7,6 > -1, undfeR ie.,

]+uc 1+ﬁ’

1+8

fEI<CA-0TF 1+ 7, xe(-11)
for some € > 0 (cf. (14)). Then we have

v‘p'XEZ"Sv_w'_Xf — f in Li,ﬁ,
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forn — oo, if

1 3
—§<0c+21,b—'y<E and o« +2¢ > -1,

as well as , 3
—5 <,B+2)(—5<§ and B+2x > —1.

Proof. Let 5; > 0 be arbitrary chosen and n € N. Since a +2¢,+2x > —1 and
[0 %X (x) f(x) ’20“+2¢'5+2X( ) < C(1—x?)%~1, we can choose a polynomial p(x), such

that || f —v¥

By using Corollary 3 for a + 2 and B + 2 instead of & and S, relation (35) for v, § instead
of «, 3, and Lemma 14, (a) we get

wp = o ¥ xf — p”zx+2¢,ﬁ+2x < 61.Forn > degp, we have

gl <2(forserions

wp TP

forscitors-rs -, = [erevess o)

a2, B+2x

3\(‘1

n 1 1 ) —,— o 2
Z l/7+06+2,2)(+ﬁ+2(xz"10)‘(0 PXf— p) (%, )‘

n : 2
< C Y AL A (07 ) o)
k=1

Lo e 2 112
— C/_1|(v ¥ Xf—p)(x)| 0?02 P (x) dx :CHf—v ¥ XpHMS
for n — o0 and some constant C # C(n, f, p) , where we took into account
01+%1+5(x)v2¢+“—%2?<+ﬁ—5(x)]v‘l/"‘x(x)f(x)]z <C(1—22)%
and
,01+’y,1+5(x)02¢+a7w,2)(+ﬁ715(x)‘p(x)|2 < Cvl+2¢+tx,l+2x+ﬁ(x) < C(l _ x2)51

with e; = min{1 +2¢ +«a,1+ 2x + B} > 0, which shows the applicability of Lemma 14,
(a). Thus,

lim supHvl/"XC% v <2(C+1)4

n—o0

Since this is true for all 5; > 0, we get the assertion. [J

The following corollary is an immediate consequence of the previous lemma and

concerned with the case i = p Lox= # .

Corollary 6. Let a,B,7v,0,0,T > —1.If f € R?M 11 and p—v,T—9 € (—%,%), then
e

o~y )

LY'f— fin Li,ﬁ

Lemma16. Let 0 < ¢ < 1%“,ng< #,andu—%ﬁ—ée (—1 %).Moreover,let

27

L1 x [-1,1] — C, (xy) = flxy)oP*(y)
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be a continuous function. Then

r}g%osup{||£2’5f(x,-)— ‘—1§x§1}:O.

<x’ ')Ha,ﬁ .

Proof. Fix ¢y, xo such that ¢ < ¢y < H"‘ and x < xo < ﬁ . By assumption f* € Cy x,
forall x € [—1,1], where f*(y) := f(x, y) Moreover,

lim || f* — fonIIJ(JIXO,OO =0 forall xye€[-1,1].

X— X

Suppose the assertion of the lemma is not true. Then, there are an ¢ > 0 and a sequence
ny < np < --- of natural numbers, satisfying

sup{HﬁZ;ffx_fx op : —1§x§1}22£ forall ke N.

Hence, for every k € N, there is an x; € [—1,1] such that Hﬁzlfka — fXk ; > ¢, and we
43

can assume that xy — x* € [—1,1] for k — 0. Due to our assumptions we have

1
Mo = J [ o d < o
-1

and, by Lemma 15 (choose p = x = 0Oand usea — vy, -6 € (—%, %)) and the Banach-
Steinhaus theorem,

)
M :=su Ly :neNy <o
1 p{ || n CVJO'XO‘}L;‘B

Moreover, there is an kg € N such that

|ewer =), <5 and |ro-r

3

e
< N
Yoxoco  3max{Moy, M;}

forall k > k.

For k > ko, we get the contradiction

e < | Lk po - pr

®p
< H‘Czl,f(ka _fx*>Ha’ﬁ n Hﬁzl,féfx* _fx* )

ot

_ ka

F7= 5

ng‘f"k—f"* + 5 M <e,
l/}(],X[),OO 3

l/}(),)((],oo
and the lemma is proved. [
Lemma17. Leta, B € (—=1,1) and n,{, ¢, x € R such that

1 1 1-— 1-—
0§n<#,0§§<%ﬁ and 0§¢<Ta,0§x<T’B.

Moreover, let the map

FLUX =L (o) = o7 (0K ()P ()
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be continuous. If p — v, T — 6 € (—%, %) holds true, then

1 ~’Y/5 _ —
nlg%o‘ﬁn KL= LaKLal, @) —0. (48)
Th (NW 3 wi
at means ( L, lCﬁn> € J with
Wi (LY KLy) =K and Wi(LY°KLy) =©, te {23} (49)

Proof. By Corollary 6 we have Ly’ f— finL? 8
compactness of the operator K : L2 g (~Z,7,§ (see Lemma 4) and the strong convergence
Li=L;, — Zin Lﬁ/ B this leads to the limit relation (48). Hence, ZZ’éKﬁn =LKL, +Cy

with (C,) € 9Tand consequently, by definition, (EZ"SICEn> € J.Corollary 4 yields (49). O

for all f € (NZ,M . Together with the

Define

1 1
Q= {(a)l,wz) eR?:wy,wp > —1, —3 <w]—wy < =, wy <2w2+1}

2
(50)
’ 1 3
U (wl,a)z) eER:wy,wy > —1, 5 <w —wy < 50
Furthermore, for 7,5 > —1,by S,/ * we refer to the Fourier operator given by
P = 5 5
Si°f = ];) (fp]),sp]" - (51)

From [36] (Theorem 1) we infer the following lemma.

Lemma 18. Let w, 8,7,8,> —1. Then, there is a constant C # C(n, f) such that, for all n € N
and f € L2 g the inequality

’)/,5 <
SIA||, 5 < €l g
holds true if and only if
.1 . f1
oc—'y|<m1n{2,l+'y} and |,B—(5|<m1n{2,1+(5},
which is equivalent to

1 1
—§<(x—'y,/3—(5<§, x<2y+1, and B<26+1. (52)

Corollary 7. Leta € PCand w, B,7,5,v0,60 > —1.1If

1 3
—§<tx—%ﬁ—5<§ (53)
and . ,
—-<a—79,B—-0 < a<2y+1, B<25p+1 (54)

2 2’

are satisfied, then L°aS1"" — aT strongly in 12 5
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Proof. The set P of all algebraic polynomials is dense in L2 ap - Moreover, for every p ep,

we have £ a8 p=Ly ap for all sufficiently large 1 and, by Lemma 15, £}’ ap — ap
in L2 %p - Additionally, in view of Corollary 3 and Lemma 18, for f < L2 p We can

| astoull s < &3 o )| (as1 ) ()|

2
< [lall? Zv**z P (S0 ) ()|
< CllallZ |8 F |1 5 < CllallZlullz -

Hence, the operators EZ’(SLISZ 0% . Li g Li g/ 1€ N, are uniformly bounded. Now, the
Banach-Steinhaus theorem gives the assertion. [

In the following Corollary we apply the previous Corollary to operators of the form

190707“507-{[:2'5[1830'60ﬂflvpf'yo’rf‘sol' = U'YO*%%*T;JﬁZ’b‘aS"lo'&OU#*’YorT%ﬁfﬁoz‘
Corollary 8. Let a € PCand «, B,,5,%v0,00,0,T > —1. Then,

9010 PO L0 51000 9130 =100 s o7

strongly in Lfc, 8 if

1 3
—§<2'yo—p—'y,250—21'—5<§, (55)
and , ;
—§<p—'yo,'r—(50<§, p<2v+1, T<2+1. (56)

Proof. The claimed strong convergence is equivalent to the strong convergence of the
operators EZ"SQSZ 0% t6 47 in L%%f p26—7" Fora = 29— pand B = 26y — 7, the conditions
a, B > —1,(53) and (54) are equivalent to (55) and (56). Hence, Corollary 7 is applicable. [

Lemma19. Leta,f € (—1,1)and n,{, ¢, x € R such that

14a +[5

1-— 1-—
0<17<T 0<< and O§¢<T&,ng<7ﬁ,

2
and such that the function
[-1,1] x [-1,1] — C, (x,y) = 075 (x)K(x,y)v¥X(y)

is continuous. Let (p,7), (t,6) € Q. Then lgn ‘EZ"SICnEn - L,KL,
n—oo

’C(Li/ﬁ) = 0. That means

(cf. Lemma 17) (EZ’(SICnEn) € J with

Wi (LY KnLy) =K and Wi(LVKuLy) =0©, te {23} (57)
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Proof. First of all, we notice that K : Li i Li 8 and KC : Li g 6,7/4 are well-defined

and compact (cf. Corollary 1 and Lemma 4). Choose 779 € (17, 152) and ¢o € (¢, #) .By
using Corollary 6 we get

HZZ"Sicnﬁn — LKLy

£(12y)
7,6 57,0 37,0
<t~ ) e = £k
B ;o —
< ClKnLn =Kl iz, )+ [EH 0L = LK

Since, due to Lemma 17, ENZ"SICEH — L, KL,

— 0 holds true, it suffices to verify
c(i2y)
the convergence

KnLy — KL — 0. 58
H n~n nH’C(Li,,B’CVo/Co) ( )
We define r,s € {0,1} by
0 : _l< _ <l’ 0 : —l<T—5<l,
ro 25P7TS and s = 2 NGO
1 I<p—-v<3, 1 fI<t-6<3.

Recall that the application of the operator K, to a function u € C(—1,1) can be written as
(see (41))

(o)) = [ 7 [~ K e, ] () 07 ) dy.

We define

Rod) (0) = [ 23 [0 77K, )00~ () (970 () 0774 3 dy
(Ru) o = [, £ J) (#7)

- s ) )

Let u, = dp, € im Ly, ie., pn € P, . Due to the algebraic accuracy of the Gaussian rule, in
caseof r +s < laswellasin caseof degp, <n—1landr =s =1, we have

N 1
(Koien) (x) = /,1 L [0 K )80 | () (0 pu) () 07 () dy = (Kot ().
Incaseofdegp, =n—1landr =s =1, wewrite p, = sanﬂ’(sH + pp—1 withdegp,_1 <

16+1 1 10+1 1
S Ay, and e,p) 10T = (S,Z’Jr o gt 'H])pn . We get, due to

n—1
. . . ~ =0 41,041
the previous considerations, KCyyuy, = ,K,0p, ', + Ku0p,—1 . Moreover,

n—1,ie,py,_1 =
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(Rutp ")) = [ 11 Lok (x, )80~ () (1= )Pl () 07 () dy

1
= Au(1,0) [ £ [o7 7K (w007 ) P (1) 97 () dy

,0

/\'yé —y,— 'y&K ¥,0 o v,0 pn 1(x;<yn)

Z v xkn) (%, x0) (xkn)il ( ,ﬂ;)
— Kk

n

RIS P 0 Oy Lo+ 7,8

= An(7,8)en(1,8) Y Ady o~ T (VK (x, )8 (e oy ()
k=1

= An(’y,5)cn(')/, ) (’Cnﬁprﬁ_l 5+1) (x) = Kn (Icnﬁprﬁ_l 5+1) (x)

n+y+6+1
2nFy+o+1’

orthogonality properties of pj*(x) and pZ’fl(x) . Consequently, for u € Lfc,ﬁ , we have
’%nZnu = I(:nﬁnu, Whel‘e

with x,, = where we took into account relations (21) and (25) as well as the

Kn

~ Ly : r+s<1
£ =
n 19[L (SZH,&H . Swﬂ §+1> + 87+1 5+1} 1L, + r=s=1.

We show, that £, as well as £}, converge strongly in L2 ap to the identity operator. For

the convergence of L, , it suffices to show that, in case r = s = 1, 98 oty T

strongly in Li,ﬁ , which is equivalent to S/ Lo

equivalent to

— T strongly in Lp -, being again

1 3 1 3
§<p—'y<§ and §<T—5<§, (60)

by Lemma 18. In the present situation, the last conditions are equivalent to the conditions
which are satisfied in case r = s = 1. Since, for f,g € L2 Y

(8877871, Dup = (ST°971F, B0t TE0g) |

(gt e g )

o+a +B 5 p+tx

= (f, 07 T AT S s

- g>,x,‘5 ,

we have to check if
_ * p+zx T+ﬁ p+1x 1 THB 5 3
(l982+1,§+119 11) B R S”l o1 et -1, R =617 T in Li 5

1,0+1
S;l)/‘i‘ +

strongly, which is equivalent to — Z strongly in L3 y+2—p2042—7 - Dueto Lemma 18,

this is again equivalent to (60). As a consequence of these considerations we have that

HICZH - KL, H ) — 0if n — oo. Hence, in order to prove (58) it suffices to

Jim | (% =) 2

2
£ (La,ﬁ'cimréo
show that

=0. 61
E(Li,ﬁ,cqo’go) (61)
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We have

(R = K) Ea) ()]

p—u p—u T—

1 . -~
< [ o )| 3 [K( o T T ] ) - Kl )T T T )
-1

[

2y+2r—p2o+2s—7" WP

S CH (‘C;{’é o I)K(x, ‘)U%_Y—V,-[;J_(s_s

Hence, in order to show relation (61) we can try to apply Lemma 16 for oy =2y +2r — p
and By = 26 + 2s — T instead of a and S, respectively, as well as for

f(x,) = PR (K (x,y)o" 2 T 05 (y)
Since (p,v) € Q and
2y —p r=20,

a=p+2[r—(o—7)] > prr=l3<p-y<l,
p—1 r:1,1§p—’y<%,

we have ag > —1 and, analogously, Bp > —1. Moreover,

040'72{27_()6(_%’%) +r=0,

such that kg — 7y and, analogously, By — J belong to the interval (— 'y %) . The conditions

- 1
p—a _ 1ta

T—B 1+pBo
2 2 <

2 2

Yo:=9+y+r—

and xp:=x+d+s—

are equivalent to i < 1+sz and x < # . This all together implies that the function

Flary)otas(y) = o ()K (x, )t 71T a 0 y) = o (1)K (x, )0 (y)

is continuous on [—1,1]? and that Lemma 16 is applicable to f(x,y) with 1o and xg instead
of i and x . Hence,

(R )&,

L (Li,ﬁ'cﬂo/éo)

—a B
S Sup{ H (L:Z,é — I) UWUrgO (X)K(x, -)’UPT_'Y_Y/T—é—S

—1<x<1
29+2r—p,20+25—T

— 0 if n— o00.
For the proof of (57) it remains to refer to (49). O

Corollary 9. Let a,p € (—1,1) and p,q € Rwith p < # < q,as well as H € C(R™)

such that
imtPH(t) =0 and lim t7H(t) =0.
t—0 t—o0
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Moreover, let ¢ € R with —1 < a+2¢ < 1and x1, x2 = [-1,1] — [0,1] be continuous
functions which vanish in a neighbourhood of the point 1 and are identically 1 in a neighbourhood of
the point —1. Then, for (p,7y), (T,6) € Q, we have

(LW ’5050(./\/1” i~ XaM, o) 0 En) 3,
where the limit operators are given by
Wi (ﬁZ (M, — xaM,, yx2)o §,0£n> =09 (My — xaiMpgxa)o T

and

Wi (E77080 (M = i My o) o #0Ls) =0, t€ {2,3).

Proof. Due to our assumptions, the following functions are continuous on [—1, 1]2 ,

(59) = 1o B (15 ) 135 (1] -],
(x,y) — UC+§J7(x)vX§,0(y)H<1 i ;) 1}_}/ x1(x)[1—x2()],

(59) = oo P (T ) e 1= mle),

where { = max{—¢,0}, x = max{¢,0}, and y := max{p,0}, ¢ := max{1 —¢,0} . Since
Ly 5UCO(M71H XM x2) 0Ly
= L0001 = y) My (1= x2)o 802,
+ LY 0 My (1= x2)o 0Ly + LY 080 (1 — x1) M, yxao 0L,
and

1 1 1- 1-
0<§<% 0<y< erﬁ, and 0§X<T“,0§¢<Tﬂ,

we are able to apply Lemma 19. O

Analogously we can prove the following corollary.

Corollary 10. Let a, € (—1,1) and p,q € Rwith p < % < g, as wellas H € C(R")
such that

limt?H(t) =0 and lim t'H(t) =0.

t—0 t—00

Moreover, let ¢ € Rwith —1 < p+2¢ < 1and x1, x2 : [-1,1] — [0,1] be continuous
functions which vanish in a neighbourhood of the point —1 and are identically 1 in a neighbourhood
of the point 1. Then, for (p, ), (T,0) € Q, we have

(575 O (M = xaM xa) o™ éﬁn) €3,
where the limit operators are given by

W (ﬁ’yé Og(M — XanHXZ) €£n> = Uo’g(M;_LI - XlMEXZ)UOﬁéI

and

w(a” O (M — i M ) o %,):o, e {2,3).
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In what follows we identify an element (o, ...,&,-1,0,...) € im P, with the respec-
tive element | & ]Z;S € C" and the linear operator A, : im P, — im P, with its matrix

representation A, = | aj }jzzl € C"™" e,

n—1

n—1
Anl &k ]Z;; = l k;)”j-&-1,k+1€k 1

j=0

For example, we have the representation
VL d Kn LV

b Sy a4 1B 1 %) %) S\ & _1_p_1 0
= [ Ao s K e bbb

Let us formulate the following condition for a positive kernel function.

(B) For the function H : R — R™, there are a positive constant ¢y and a real number

k such that
(@) 0<t<simplies H(t)* < cpH(s)s*
or

(b)  0<t<simplies H(t)t* > cpH(s)s".

Corollary 11. Leta, f € (—1,1) and H € C(R™) be a positive function, which satisfies condition
(Ay) for ¢ = # and condition (B). Then, for A, = EZ";M;’ 1 Ln the sequences of operators

-1
E}(f)An (6}5”) E,(f) Xy — X, t € {1,2,3}, n € N, are uniformly bounded in case of

(0, 7), (1,6) € Q.
Proof. Due to Lemma 12 it suffices to prove the assertion for t = 2. Furthermore, in
view of Corollary 9 in combination with Lemma 5,(b), we have only to prove the uniform
boundedness of the operators HY :im P, — im P, with (cf. also (62))

Hil( = Vnzz/éxM;HXEn(Vn)_l

) S NPT S S W 8 8 "
X(x;1 Ix (A vt et (i) )H T+ 200\ p-3-3-5-4(x)7)

_ jn jn Ykn
§(x 10 7,0 7.0 ’
00 (x,7) 1+ x, 1+ x; et
where x : [-1,1] — [0,1] is a continuous function, which vanishes in a neighbourhood of

the point 1 and is identically 1 in a neighbourhood of the point —1. We use the notation
mE = [ W]
" [ ik } j

view of the choice of the function x : [-1,1] — [0,1] and (47),

. Let us note that the entries h;;;x of the matrix Hf are positive and, in

N 5
(1+x]7n)z+4 1+x]7n

B3 0
n(l_q_x;(’;'f)z*z 1+xZn

with a constant Cy # Cy(j, k,n) . Due to (31), there is a constant C; # Cy(k,n) > 0, such

that ) )
(n+1-k < b n+1—k
C; (n ) <l+x; <G — ) - (63)
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We conclude, by additionally using condition (B),

. 1 7O\ ¢ 7.6 70\ "
C n <n+1—]>ﬁ+2 L+, - LT+, T+x;,
— — /0 0 0
nnt+l—k\n+1-k 1+ T+ ) \ 1+ b

Ca n+1l—j Ptz , (n+1—j)2 .
H{Cl =5 ) = M jms1x
n+1—k\n+1—-k (n+1—k)? nAd=pn
if condition (B),(a) is in force, and

1
C n+1-j\P"2 (1 (n+1-j)?
< b J L U DI I
" _n+1—k(n+1—k> <c12 (n+1— k)2 11k (65)

nx
hjk

IN

if condition (B),(b) is fulfilled, where C; # C4(j, k,n),d € {a,b} . As a consequence of these
estimates we have
| 22y < N13nB Tl £ g2 - (66)

n -1 .
where HY = [ h;»ik L’,k:l'd € {ab},and J, = [ &—1-jx ]]7;( o Ford € {a,b}, consider

the function g; : R* — R with

" c‘}\/lxﬁJ“%H(Cl2 x?) : d=a,
8alXx) =
c?\/[xﬂ+%H(Cl_2x2> : d=b.

Due to our assumptions, there exist p,q € R with p < g such that H € L%p_l(RJr) N
L%qfl(Rﬂ and ¢ = # € (p,q) . From that, we derive

2 + 2 +
el L(RY)NL2 (R+)

2(2p—p-1%) (29-B-3)-1

and 1 € (2p — B— 1,29 — Bp— 1). Moreover, the Mellin transforms of g,(x) and g;(x) are
up to a multiplicative constant equal to C; H (# + %) and C} H (# + %) , respectively.

1
Furthermore, p < ZTH; + % < ¢. Thus, g, fulfils condition (A;) for { = % Because of
HY = [k-lTl Q4 (%)L/kio the uniform boundedness of the operators Hf : /2 — (2 is
a consequence of Lemma 11, inequality (66) and the fact that the norm of the operators
Jn: 02 — isequaltol. O

Analogously to the previous one, we can prove the following corollary.

Corollary 12. Leta, p € (—1,1) and H € C(R™) be a positive function, which satisfies condition

(Ay) for & = 152 and condition (B). Then, for A, = ZZ"SMI 1Ln , the sequences of operators
-1

E,Et)An (E,(It)) E,(f) Xy — X, t € {1,2,3}, n € N, are uniformly bounded in case of

(0:7), (%, 6) € Q.

Remark 1. Let || = |6| = }. Then the assertions of Lemmas 11 and 12 remain true, if we only

assume that H € C(R™) satisfies condition (A1) for o = # resp. & = L& Thus, we do not
need both the positivity of H and condition (B).
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Proof. First of all, we notice that only the verification of (66) is necessary. Moreover, it is
well known that

. l . . 1 .
11 ]—3 11 11 — 5 11
2/772 2 22 __ ] 2r2_] 2 2/72 ]
9],1 = 7T, 0].” = +17r, Gjn = T, 0].” = 77T
n n 7’1"'2 7’l+§

Hence, we can give up the usage of a cutting-off function x, and the matrices H,, = H}
have the form H,, = P, HP, or J,,HJ, with

B \/E ] (T-‘r% ]'2 ~|oo

H=| Y2(I I

R ()

va (i—%)H%H((f—%)Z) ] -
k=3 \k—3 (k=3)°) 1

where 0 € {a, B} . Finally, we have only to recall Lemma 11. O

or

H =

Lets > —1 and J; be the Bessel function of the first kind and of order s. We have

(£)2r+s

]S(x) — i (_1)7 2

, x>0.
= 1! T(s+r+1)

It is well-known, that J; has countable infinitely many positive simple zeros, which accu-
mulate only at infinity. We denote these zeros in increasing order by 9, ;, k = 1,2,... By
using Legendre’s duplication formula we get

2 . 2
]%(x)zy/asmx and ]_%(x)—\/acosx,

1p%,k:k7'c and tpf%,k:(k—%)n.

such that

Lemma 20 ([37], Theorem 4.1). For k € N fixed, the nodes x,’ff = cos 9,':,’? (0< G:f < ) of

the Jacobi polynomial pﬁ’ﬁ (x) admit the representation

il = Bg o (),

n

a4+ B+1\? 1—a2—3p2
cZ’ﬁ:\/<n+ g )—i— B ’B.

where

The relation pﬁ’ﬁ(cos ) = (—1)”p€’“(cos(n —0)) yields 9,0;’1[3 =m- fo‘kﬂ,n . Hence,
aB B
Yen = " Xn—kt1n- (67)

Corollary 13. For k € N fixed, we have

B — Ppk -5
Gz—k—&-l,n =7 — B + O(n ) .
n
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Lemma 21. Let j,k € N, and {4, be real numbers which satisfy {1 + (o = 1. Moreover, let
H € C(R"). Then, for n tending to infinity, we have

200,88 B 1— %P e 12
v27(x n ) (xkn ) i x]n . \/E(Qbo;{) H<|:l)bar]:| )
n(l— xknﬁ) 1—x, p (Pop)?~ & 2%

1, a, Q2 T , 2
2 @) ) (1 + xzf,-+1,n) L VR)h ( [ g, ] )

, ), 2—
n(l + xsz+1,n) I+ xsz-&-l,n (lpﬁ’k) 2 l/J‘B’k

and

Proof. The first relation is a consequence of

V2 'O(x;‘nﬁ)v (x;ff) H(l —x;‘n )

B B
(1—x'x ) 1 x,‘fn

sin® (6, /2) sinfz (6 /2) (6322 (6P
(057720 (6 /2)% sin (64 /2) (nopf)2 G

H sz(g;x’;ﬁ/z) (92‘;:3/2)2 (1’19;;;13)2
(05722 sin(6F /2) (n6F)?2

=2

and Lemma 20. By applying (67) we get the second one. [

For an arbitrary a € PC, let us compute the sequence of the adjoints of the operators
EZ’(saﬁn : Li i Li B We define integers r,s € {0,1} as in (59) and obtain, for functions

fgelyy,
7,0
(Lh aﬁnf,g>a’ﬁ =

(
= (L]
(
(

6 4— -
LYo taL,f,0 1g>m

5 9—1 o—7—1T—6—s9—1
4 aﬁ”f’v ¢ g>7+r,(5+s

E’Y,
_ Y0 o—1 Y+r.0+s po—y—r1—5—s9—1
={(Ly°0 aLlyf,S) v ¢ g>7+m+s

/6 9—1 g +r,6+s_p—y—r1—0—59—1
={(Ly°0 taLl,f, oS, A O

In case of r +s5 < 1, we can proceed as follows using the algebraic accuracy of the Gaussian
rule

~ n
(EX°aLaf,8)yp = Yo A (97 aLf ) ()0 (1) (ST oo rrmosg1g) (1)
k=1

n
— Z )\Zn ( lﬁnf) (xkn ) (xzné) (ES;IY+7’,5+SUP*’Y*7/T*575lgflg) (xzné)
k=1

rs pYO= oY+1.0+s_o—y—r1—6—s g—1
= (0 1Lof, v LYa S, o7 97'g) s

< nf Yo TT—pO+s— Tﬁvé—S’H—ré-i-s p—Y—1,T—0—s 49— g> wp

<f L, 0077~ p.0+s— TﬁWts S’Y+75+Svp Y1, T=6-5 g g> p-
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Hence,
~, *
(EZ’éaEn) _ Enﬂv"/ﬁ-r—p,&-&-s—rczﬁa S}’qy+7,5+svp—7—r,r—5—sl9—lz ) (68)

If r = s = 1 we use relations (21) and (25) as well as the orthogonality properties of the
polynomials p}° (x) and an( x) . With gg = o¢ =7~ 1791910 we get

(L7°aLuf,8), 5 = (LH°07 0L, oM ST Ng0),
= (L0 aLuf, 0 ST ).
7,6 g—1 1,1 4+1,64+1 +1,0+1
+<Ln 0 alyf,v <g Pn 1 >7+1,5+1pn—1 >%5

— +1—0,04+1-7 pY0—= oY +L0+1_p—y—1,7—-0—19—1
= (f, L, 97T F Lylasyt ooy 97 1g).

09— 1,6+1 %)
A (L0 aLnf, (80 00 ) i)
and

00 1,641 5
An(%5)<ﬁz O aluf, (g0, P " >7+1"5HPZ*1>75

n
) YAk (0710Lnf ) G 80 11" ) s PR )

= Au(y,0)cn(y, 90 Z/\ ( 1‘C”f)(xkn)

Y+1,6+1 Y+Lo+1 7,0
<g pn 1 >7+1,5+1UL1 (xkn )pn 1 (xkn )

_ S 1,641 1,641
:An(7/5)cn(7/5)<ﬂ YLuf, LY av <g PZ+1 i >7+1,5+1P3f1 " >%5

= u{f, Lad? P L a M (7T ST ) gg)
a,

05— — 1,0+1 1,0+1 —y—1T1—6—1.0—
:Kn<f,£nl907 0,6 TEZ’%@“ (S,?’“ O+ —SZZ"” )Up r-lt-6-1y 1g>

7

B

_ nt+y+o+1
where k, = 505

. Consequently, in case ¥ = s = 1 we have
~, * <
(EfaLy)" = Lo 0o Lo ST Igpmr Ao 11T
(69)
65— ,57 1,1 +1,6+1 +1,6+1 —y—1,7-0-19-1
+ K L 907PATT LI (ST ST o ma e tg T

It is easy to see that LroaL, converges strongly to aZ in Li 8 (see the beginning of the
proof of Lemma 22 below). Let us discuss the convergence of the adjoint operators. At first,
we consider the operators on the right hand side of (68). For yg = vy +rand dp = 6 +s,
the conditions (55) and (56) are equivalent to —% <y—p+2r6—1+25 < % as well
as —3 < p—7y-—rT—56—5 < 3, p <2y+1,T < 25 +1, respectively. Hence, by
definition (59) of the numbers r,s € {0,1}, we can apply Corollary 8 together with the
strong convergence of £, — Z in Li, 8 and get the strong convergence

Lygo" 1P g YO pp Tyl a7 in L2, (70)
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—~, *
forr,s € {0,1}. In particular, we have the strong convergence of (EZ"SLIE”) forr+s<1.
From (70) we also get the strong convergence of

L01H1pA 1T £y STl oyl To g1y
i
= (LatorHImPAHITT LG S 1m0l

N G i s A e 3

~, *
Thus, due to formula (69), to prove the strong convergence of the operators (EZ"SaEn) in
case r = s = 1, it remains to show that the operators

00T pYI= 1,041 1641 0my1T—6—1 a0
Cp = 00V PO T LI g1 (834r ot —ngl’ + )UP r-lr=o-lg-ly

converge in L2 8 strongly to the zero operator. Up to now we know that the operators
~, *

(EZ’(saEn) and Enﬂv"”l’f’"s*l’lrﬁ;,y"sﬁ SZjll’HlvP"Y’l'T’é’lﬁ’lI are uniformly bounded.

Thus, in view of relation (69), also the operators Cj, : Li g— Li g are uniformly bounded,

and it suffices to show their convergence on a dense subset of L2 B Such a subset is the
space {07 +17P2FT1-T9P : P € P} because of the relations

Hf _ U'y+1fp,z5+17Tl9P

Upf'Y*l,T*&*lﬁflf _ PH vf c Li/ﬁ/

wp H 2y+2—p2642—T

29+2—-p>—-1,20+2—-7> —1(notethatp — 7, 7— 6 < %),andthedensityofPinLilﬁ.
These results can be used for the proof of the following lemma. Nevertheless, we will give
a shorter proof of the strong convergence of the adjoint operators.

Lemma 22. Leta € PCand (p,7y), (7,6) € Q). Then we have the strong convergences
LYal, — aTl and (EZ’éaﬁn)* —aZ

in the space Li,ﬁ .

Proof. Since £, = 98779717 and consequently ZZ’éaﬁn = ﬁﬁ;”éaSﬁ’Tﬂ’ll , The strong
convergence of LY°aL, to aT in L2 g is equivalent to the strong convergence of L]°aSH"

toaZ in Lg,T . To prove this, we can apply Corollary 7 fora = yg =pand =y = 7.
Let us turn to the convergence of the adjoint operators. We define integers r,s € {0,1}

~ *
as in (59). Since we already know that these operators (EZ’éaEn) : Li,ﬁ — Li,ﬁ are

uniformly bounded it suffices to prove their convergence on a dense subset of L? p- As
such a subset we can take the set

Xys = {ﬂzﬂ“*PIHHP Pe P}, (71)

since 27y +2r — p,26 +2s — T > —1for (p,y), (7,6) € QY and P is dense in L%’y+2rfp,25+257"r

as well as

Hf _ lgv'y-i-r—p,&-&-s—rp Vf c Li,ﬁ .

— Hﬁ—lvp—'y—r,r—é—sjc o PH
B 2y+42r—p,20+25—T
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For f € L2 wpr8 = Y01+ =PAFTSTTP with P € P, and all sufficiently large 1, we obtain

(LY aLf,g), 5= (L0 alnf,07'g), = (LY°07 aLyf, 07 #4T577P)

p,T
<£7‘519 alyf, D”P Z)\ (19 aﬁnf) (xkn) (xzn‘s)m
= k_Zl AL (671Luf ) (Yo (1) @P) (7)) = (07671 L, f, L3 aP),

= <£nf, 1907+77P’A+S*T£Z'5ﬁp> _ <f’ Enﬂv'y+rfp,5+sffﬁz,5ﬁp>

ap B’

It remains to show that 8v7+7~P4+s—T 195 p converges to ag in L2 B/ which is equivalent

7,0
to L, aP » abin L2"y+2r 0,20+2s—T *
etersa :=2y+2r—p,B:=20+2s—71,aswellas ¢ = x = 0, and taking into account
that the conditions

. This follows from Lemma 15 by choosing the param-

1
) <’y—|—2r—p,(5+25—r<§ and 2y+2r—p,20 +25s > —1

are satisfied for (p, ), (7,6) € Q) by the definitionof r,s € {0,1}. O

For H € C(R™), we define the integral operator

Wan = [ () I e ),

We have the following relation
Ni =My, with Hy(t)=H@E )", teR*, (72)
Furthermore, one can easily show that the adjoint operator of M : ﬁ — L2 @B 18 equal

to (Mﬁ) =y ﬁNﬁv“ﬁI.

Lemma 23. Let a,f € (—1,1),p < # < qand H € CY(R") satisfy H € Lﬁp_l ﬂL%q_l
as well as H' € 13 2p41 1) quﬂ If the operators ZZ’éM;Hﬁn : Li,ﬁ — Li,ﬁ are uniformly
bounded for some vy, 6 with (p,7y), (7,8) € Q, then we have the strong convergences

LY MyyLy — My and (ZF My yLa)” — (Mp)" in L3,

Proof. Due to the Banach-Steinhaus theorem, it suffices to show the convergence on a
dense subset of L2 g - We consider functions g(x) of the form

g(x) =9(x)(1-2*)?p(x), x€(-11), (73)
where p(x) is an arbitrary polynomial. By choosing x € (p, b ) N (O L ) and taking

:n € N < co. Consequently, since

Corollary 6 into account, we get sup{ HZZ‘S )
#

‘ﬁ(CO,X,Lﬁ
g€im Ly,

|20 Masns = Mg, = |27 (Mo — Mig) + £ Mg — Mg

< €[ My s — Mig

o HZZ"SM;Jg - M7

B ’
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At first, we consider the term HM;Hg - ./\/lI}gHO .For f : (—1,1) — C, we denote by

’ X,
R (f) the error

1 n

%) 6 8
RY(F) = [ e () dy = Y AL A
- k=1

From [38] ((5.1.35)) follows

P < S [ 1wl ey, &

n

where ¢(x) = v/1 — x2 and the constant does not depend on f and 1. We have

(M, 138)(x) — (Mug)(x) = R¥’(fy), x € (~1,1)

with

fxy) =H G i;) fOJ(ry y) and  go(y) =" (y)g(y).-

With the help of Lemma 3, we get

[ 1wl wewa < [ (1) 2E0L,
Y (1+x\ [(L+x)e(y)lgy)] ! 1+x\ [0 ()eW)go(v)]
+/1H<1+y>‘ 1 +y)3 dy+/1H(1+y) 1+y e dy

1 1+xY\| dy 1
<el['|n L
- { -1 (l—l—y) 1+yJr -1

<C(1+x)% xe(-1,1).

H,(l—f—x) 1+x dy
1+y/|14+yl1+y
Thus,

1
Tllsup{vo'x(x)/_1 |f,/c(y)|v'y"s(y) 1—y2dy: —1<x< 1} —0, n— o0,

and (74) delivers nlgrc}oHM;Hg - /\/lI:[gHO,X’00 =0.

Secondly, we deal with ‘

ENZ’JM}_{g - MﬁgHa g Again by Lemma 3 we can estimate

M)l <c [

1+x\| dy _
H Y e X
(1+y> Tty (1+x)

and get M ¢ € ES,X , which implies, due to Corollary 6,

lim
n—oo

ZZ"SMI;g—MI;gHW - 0. (75)

Let us turn to the strong convergence of the adjoint operators. Let f € L2 B/ define

r,s € {0,1} as in (59), and take g from the dense subset X;; defined in (71), what means
g = 0V PO TTYP with P € P. We set

x,y€(-1,1),

n(x,y) ::H<1+x> 1

1+y)1+y’
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and get, for all sufficiently large n,

<ZZ"5MZ,H£"J('8>“,,5

P e g
= (L1’8 Manﬁnf,v”P>w

WO 0 (M lonf ) G0 P71

m

I
=

1

-
I

L) Y AL KL (7L ) () (o PY )

mn

I
1=
>
N

(%Y
SN

-
Il
—_

i)\w(v 0L, ) xkn i X ,xkn)(v”ﬂ 1P)( )

k=1

= LA () () D (1 02 (0 eoBg) (1)
k=1

21:21)\;’7’15(07"56,1]‘) X ( 7v“ﬁg) 2

o
:ki Al (vr'sﬁ_lﬁnf) xkn (v T TOTSON v"‘ﬁg) (xkn)
=1

where

n,

14279 (07 %u)(x %5)
— :C(— — 10 jn Xjn
N y:C(-1,1) — C(-1,1 ”HE /\ ( T ) T .

In case of r + 5 < 1, we use the algebraic accuracy of the Gaussian rule and obtain
YO N g~ _ /orse—1 V0 —y—r,—6—s - ap
(EF° My yLaf, g>w = (007 Luf, L0 ON o g>%§
_ <l9_2[rnf/ vr,sﬂﬁz,ﬁﬂ—lvp—7—r,T—(S—sv—a,—ﬁNn—’Hva,ﬁg>’WS

_ <fr Env'y+r—p,(5+s—TZz,tsvp—'y—r,T—&—sU—zx,—ﬁN—iva,ﬁg>
n,H B

Thus,
(EZ"SM;ch)*g:cnm”fpf““m”" O A
(76)

p+a T+/S _ +/S _
_Lvy+r——5+s E'Y, — Y—t, 155 «, /3/\/'4) g

ifr+s<1.Incaseofr =s =1, we write

<ZZ'5M;,H£”f’g>a,ﬁ = k; /\Z;f (Ul,l (SZH"SH B S;l,jll,ﬂl) lﬁnf) (xkn ) N(x;z,f)
- (77)

n
,0 1,6 1 0
+ Z )LZn (vl,lsgj‘l i 1‘C”f) (xkn ) N(x;cyn )’
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where we used the abbreviation N(x) = (0*7*1'*‘5 LN oth g) (x) and where, for the

second sum in (77), we get

i/\zn(s( 11S'y+15+1 1£nf>(xz,’f)< 1,6 TN leﬁg>(xkn)

1,04+1 4—1 Y0, —y—1,—6—1 - B
= (STt L f, LY 7 L0 N
< n-1 nfr L nHC 8/ 1601

- 1,0+1 —y—1,—6— —
_ <19 1£nf,vl'183f1’5+ LYy 1= L=0=1g N 7le,/8g>
nH 7.0

) 1,19V +Lo+1 py,d o—1 p—y—17-6-1,—a,—B A/— ..0p
_<19 Luf, 098] LY 9 o v Nnﬂv I's s

_ YH1—p,0+1-7 g Y +106+1 p7,0 g—1_0—y—1,7—6—1_,—a,— T
= <f, Lo P 08, T Ly 0T 0P v ﬁNn,ﬁv e X
For the first sum in (77) we use the relations

(Z)Ll (S;ly—‘rl’(”l - S;lyi—ll,zﬂl) 1£nf) (xkn )

_ -1 'y+15+1 11 y+1L,0+1, 7,6
= (7L, i) P )

@ < g, f,pTt 6+1>

and conclude with the help of (21)

v,0
7+1,5+1p” 1 (%)

n -
3 AT (1 (877 ST 0 ) () N

k=1
n —_
_ -1 7+1 o+1 AT, 10 (10 7.0
= < Lufipu- >7+15+1k21 kn P2 () N (i)

_ -1 Y+1,8+1 I
- < LnfrPna Y1541 Pty L 70

/!

14— -1 7+1(5+1> < 1,1, 7+L6+1 .6
=clA < c LYON
n n nf p 1,541 Pu-1 n ",
_ -1 7+1 5+1 THLOHL 1
=1 (07 Luf p) T o
Y+1,6+1 Y+1,6+1

_ 1 Y+1,6+1 Y+1,0+1Y\ -1 7.0
- <($n SSIT) R, LN

_ _ 1,0+1 1,0+1 )
= (07 Laf, (ST = ST e N>7+1 .

which is equal to

K;1 <f, Envy+lfp,§+lf'rl9(81’1y+l,(5+l B SZ+11 5+1)£7019 oYL T=6— 1h>

B
with h = v’“"ﬁj\f;ﬁv“'ﬁ g . That means, together with (76)—(78),

(C’Yr MnH‘C”) g = Ly vy—l—r——&-&-s —S E% ——'y r, ﬁ —0— Sy~ ﬁ./\/‘

(78)
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where
A : r+s<1,

1 y+1,6+1 v+1,0+1 y+1,6+1
Kn (S” B Snfl + Snfl

Sn:
r=s=1.

If we apply Corollary 8 witha = 1,99 = 7y +7r,and 9 = J + s, then we see that
zﬂ*”T"s*S’ﬂgnvm’” it s-sg converges in L2 B strongly to the identity operator.

Hence, it remains to show the convergence

T+ﬂ +B

U"/-}-r—#ﬁ-‘rs E’Y/ - /T —b—s _’X ﬁN fv"‘ﬁg—>v & ‘BNHU g (79)

in L2 - For this, we can take g from the subset XY, = {801+ PO+ 722D . P € P} of Xys,

which is also dense in L2 wp At first we remark that, since the conditions of Lemma 15 are
satisfied for p =y +r — M and x =6+s— ﬂ , we have, forall f € R?M g s
v

2 7

pta

—ete T+/5
oVt O+s—

P+“ +B

LT TR f i 12, (80)
Choose ¢y € (14 —g, HB) N (0, #) N (B, #) . With the help of (80) we can estimate

+B

Ty

< CfJo PN, Py — ot PNy

max{0,a},ipg,00

pta

+ HU’Hrf— O+s— T+ﬁ

E’Y{S P+0¢ —r— }’7’87() Sy~ ‘BN Z)‘X'Bg—v «, ﬁN vaﬁgH

We have
(Wg00g) (x) — (Ni7og) (1) = RY(F), x € (~1,1),

with

Set Hy(t) = H'(t"1)t72,t € R4 .Since 1+ B —q < g < 1+ B — p holds true, we get
2p —1 < 1428 -2y < 2q — 1. Hence, due to our assumptions H € L%p—l N qu_l

and H' € L%PH N quﬂ , we have H € L3 2(p—yo)+1 ANd H' € Ly(g_y,)+3- Consequently,

Hl,HzeL 2 (po—f)— 1,where Hj is defined in (72). By
—p 1 _y—p oty 5.1 5 _
STt 2t = > o =1t S =1,
Bt 1_9o-7 p+9 5.1 5_
s TOtst24 5 = 2 Gotsty > s —s—ltsto=1,
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and again using Lemma 3 we obtain

[ 1R w)ew) dy

! 1+ |0 (y) g L+y\ [0 (V) e8|
!
S/1H<1+x) (1+x <1+x) T+x ay
< o 14+y\|[1+y dy 1
- 14+x/|14+x1+x 7
<cC

(115)M

1+x dy /
— H;
[ 2(1+y) 1+y+ -1

CA+x)Pf ¥, xe(-1,1).

Thus,
isup{ 040=F (x) - / |fr(y )|dy:—1<x<1}—>0, n— oo,

Relation (74) yields

i o4 (G - )|

n—oo

max{0,a},1p,00
As above we see that v~ PN v%F g belongs to éfn ax {0} 0 7 and (80) delivers

+B

. a4 ot TR s s — —a— -
lim L O PNgo“Pg — v ﬁNHU""ﬁgH =0
n—oo g(,‘B

va+r—#,é+s—
The lemma is proved. O

The proof of the following lemma is analogous.
Lemma 24. Let o, f € (—1,1), p < 2 < gand H € Cl(]R+) satisfy H € L%p—l N qufl
as well as H' € 13, NL3, ;. If the operators LY My, n i LG g — L g are uniformly
bounded for some 7y, 6 with (p,7y), (T,6) € Q, then we have the strong convergences

ZZ’JM:;Hﬁn — M}, and (EZ"SMIHEH)* — (M})" in Laﬁ

The following lemma is a version of the dominated convergence theorem and will be
useful in proofs of the strong convergence of operator sequences in the Hilbert space 2.

Lemma 25. Let &5 € (2, = (C;i) 0 |C]”| <IylVji=0,12,...,Yn>ngand

j
. n_ xngi
nhrr.}o(,‘j —CJV]—O,LZ,...
. n__ _
Then nhngo||{;' ¢l =0.

For what follows we set

(81)
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Moreover, we need the limit relations (see Lemma 20)

. 200 2
S . 7 N LN S 7,527<1/’%k)
Jim (1 =) = fim =S (00) = 5 &)
and ([39] (15.3.11))
- 2‘573“(47 v
: 1. [76 _ 7.
nlgrolon7+ )LZH i — (83)
I (0|

which are true for all ¢, > —1 and fixed k € N.

Lemma 26. Let the conditions of Corollary 11 be satisfied. Then the strong limits of the operators
VLl My, LaVi P 2 — 2 and - (VaL} ' My, LoV 1Pu)" 2 — 12

as well as

Fu Vg My g La Vi oy Py s 2 — 2 and  (FyVa Ly Moy LoV By Pa) 2 — 2

exist, where W) (ENZ/‘SM;HE,J = 0and

1 B+3 12 o0
Wi (LM L) = [%]} 4 g [%1] 1 : 84
3( o ) l Vs Yok |5 (sp) | Yo ikt e

Proof. Due to Corollary 11 and the uniform boundedness of the operators (S,St) ) N (see
Lemma 12), all sequences of operators under consideration here are uniformly bounded.
Thus, in view of the Banach-Steinhaus theorem, it suffices to verify the convergence on
the set {e;, = (5j,m)}io :m = 0,1,...} C ¢*. Moreover, in view of Corollary 9 and
Lemma 5 we can replace the operators M, ', by x M ', xT, where x : [-1,1] — [0,1] isa
continuous function, which vanishes in a neighbourhood of the point 1 and is identically 1
in a neighbourhood of the point —1.

Fix k € N. Regarding the proof of Corollary 11, for n > k, we have
FnVnzz'(SXM;HX»CnVn_an,Pnek—l

_ |: WX } "
n+1—jn+1-k j=1

7,0 7,0 n
X(xn-i—l—j,n)n /\n+lfk,7‘l n,— X(x7,§ )
- 1 1 5 — — _
oYt 30+3 (x%é ) n+1—jn+1—k n+l—kmn
n+1—kn =1

with b;.’k’f defined in (81) and the entries h;k’x of the matrix HY defined in the proof of
Corollary 11. For fixed j, Lemma 21 yields ({1 = f + %, o=—p+ %)

NBta 12
Xy b () )—>72(%']) H<[%]} ) if n— oo,

_j i1 X (g
nt1—j,n) Onp1 =1k X Xnp1—kn (s )PH3 Yok
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v,0
since limy, 00 X

=i = = —1. Moreover, taking into account (82) and (83) we get
nA°

_\2
<n5+l /Az;'l‘r>
n+1—kn
(5 - 1 §+l
VIFI8+E (T ) s\YT2[ 5 5y 1072
n+1—kn (1+xkn) n?2(1—x)

2

_{ ‘”%m] L2
|5 ()] . [(%,k)z]’”z |5 (Wse) "ok
2

if n — oo. Due to (64) and (65), respectively, we can estimate

nx
Wk = h]k/ (85)

where [ h;-ik } ,001 = H"%;_; € (%, since H € L(£?) (cf. the end of the proof of Corollary 11).
]:

Hence, it remains to apply Lemma 25 with §]’-’ = hZi‘ i l—k and 77; = h]’@l g fork=1,2,...

to get formula (84).

On the other hand, since lim; e x = 1 and x(x) = 0 in a neighbourhood of the

point 1, we have x(x) Xy ) =0 forall suff1c1ently large n . Hence,
S _ ) )
(vn.cz XM X Vs 1IP’nek_1)j =KX —0 forall jeN

if n tends to infinity. Moreover, again due to the choice of x(x), we have h;?k’x = 0 for all
n>ng=np(k)andj =1,...,n. Consequently, if we set

M::rnax{h]k)C n=1,. no,jzl,...,n},

thenh?k’x < fi-1,j €N, where fj =M,j=0,...,ng—land f; =0,j =no,no+1,...,
such that f = [ f; ]] o € {*. Thus, the apphcatlon of Lemma 25 with ¢ = nt i and
1j = fj yields W, (ﬁn Mn,H’C’”) = 0. The proof of the strong convergence of the adjoint

oprators follows the same ideas by using that (H”l ) ' belongs to L(£?) (see (85)). O
In the same way we can prove the following.

Lemma 27. Let the conditions of Corollary 12 be in force. Then the strong limits of the operators
VLW M LV Py 2 — 2 and - (VaLf MGy LoV ' Pu)" 2 2 — 2

as well as

FuVaLy M LaVi Py s 2 — 2 and  (FyVu Ly M LoV By P) o 2 — (2

exist, where W5 (ZZ’JMIHL‘H) = 0as well as

e+l 4 72 *©
(2 mze) = | [] ([52])
ke 1,07,]( ]’ly(w'y,k)‘ 7
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Lemma 28. Let a € PCand (p,),(7,6) € Q. Then the strong limits of the operators
Vil aL, Vi Py 2 — 2 and  (VuL} aly Vi 'Pu)": 2 — 12
as well as
FuVa Ly alLy Vi By Py 2 — % and (B VuLy al,Vy \FyPy)" : 02 — 2

exist, where N N
Wh(LY%aL,) = a()1 and Ws(LY aLly,) = a(—1)1

as well as 1 : (> — (2 is the identity operator.

Proof. We are only going to show the first two convergences. The proof of the other
convergences can be done in the same way. In view of Lemmas 12 and 22 it suffices to
show the convergence on a dense subset of the space 2. Lete, = (25]-,,,[)]?”:0 ,m € Ny, For
n>m+1,wehave

n

,0
Simer | =a(eyem. (86)

Va Ly aLlyVy Pem = [ a(x" 1
=

m,—&-l,n)

'y’il ,) — a(1) as n tends to infinity, we obtain Wz(ZZ"SaCn) = a(1)I. Moreover,

from (86) we infer VHEZ al,y 177,1 = dlag{ (xkn‘s) ]kn—l . Hence,

Since a(x

(VnEZ"SﬂEnV{an) = diag[ “(er/f) ]knzl ’

and the strong convergence of these adjoint operators follows as before. [J

6. The Stability Theorem
We recall that A, = EZ’(S (I + c,/\/l;’H_ + c+M,J{’H+ + ICn)Cn .

Theorem 1. Let «, € (—1,1),c+ € PC,and H = Hy € CY(R™) be positive functions,
satisfying condition (A1) for & = &4 and real numbers p = p+,q = q+, where {1 = 1%

and G = 1+ﬁ ,as well as HY, € sz N qu 1 and condition (B), respectively. Moreover, let

K:[-1,1] x [=1,1] — C be a function, which fulfils the requirements of Lemma 19. Then (A )
belongs to the algebra § for all vy, 6 with (p, ), (T,0) € Q. If this is the case, then for the sequence
(Ay) to be stable it is necessary that the operators

Wi(An) =T+c-Mp +ei M +K:17 5 — L7,
and

1 42 R
Wh(Ap) =T+ c4(1 )[ {Iz]] ]?)‘ZH-s-([z:ﬂ ) ] L
k o k| 15 (P & ’

jk=1

Ps, Pti 4 Y5, ” 2 2
Ws(A;) =1 (-1 _ f /-
3( ) e ( ) [ |:lp5,k:| ’ é(¢5,k)| ( |:l/)(5 k:| jk=1 7

are invertible.
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Proof. At first let XC be the zero operator. We notice that
(Zgﬁ (T+c-M,y + C+MIH+)£n)
= (La) + (EF L) (L0 My L) + (L00er L) (L1 Mipyy L)
From Corollaries 11 and 12, Lemmas 22-24 follows
Ap — THc My + C+J\/l;§+ =Wi(A,) and (An)" — (Wl(An))*.

Lemmas 26-28 deliver the existence of

ll]%j:|tx+% 4 . |:1/J’}’,]:|2 0o
Wa(Ap) =1+ci(1) [ Lp%k o ]%(lp%k)‘z \ L ,

and

Ws(An) =T+c_ (1) [%J]M : " G%J]z) °°
n) — c_(— - ’
’ Vo Psk ]&(%,k)’z Yok

jk=1

as well as the strong convergence of the sequences of the respective adjoint operators.
Hence (A,) € §. This allows us to apply Proposition 2, which immediately delivers
the assertion. If the integral operator K does not vanish, then the assertion follows in
combination with Lemma 19. O

In case of Chebyshev nodes, we can formulate the following theorem.

Theorem 2. Let w,f € (—1,1), c+ € PC,and H. € C'(R") be positive functions, satisfying
condition (A1) for { = &+ and real numbers p, g+, where & = 1+sz, ¢ = #, and
let H, € L%Pi+1 N L%QiJrl . Moreover, assume that K : [-1,1] x [-1,1] — C fulfils the
requirements of Lemma 19. Then, (Ay) belongs to the algebra § for all y,§ with |y| = |6| = 1 and
(p,7), (T,6) € Q). In that case, for the sequence (Ay) to be stable it is necessary that

(a) th‘e {cernel of the operator Wy (An) = T+c- My + C+ME+ + K Li,ﬁ — Li,ﬁ is

trivial,
(b)  the curves

{1 fe (-1)H_(_—it): te @} and {1 Fo (D)Hy (&4 —it) it e R}

do not contain the point 0 and their winding numbers are equal to zero,
(c)  the kernels of the operators

qatd 2
W2<An>zl+c+<l>[ ] RELE ] ] e
l/J'y,k l/"'y,k jk=1

1B+3 12 ©
W3(«4n)=I+c(—1)l [%’} ! 27 g V“} ] 02— 2
Yok ¥s Ps -

/!

are trivial.

If KC is the zero operator and one of the functions c+ vanishes, then condition (a) is automatically a
consequence of condition (b), which due to Lemma 7.
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Proof. In view of Remark 1, in comparison with Theorem 1 we can omit the positivity
of the Mellin kernel functions H+ and condition (B), and we only have to show that
the operators Wi (Ay), Wa(Ay), and W5(A,) are invertible. Since K : L2 o L2 op 19

compact (cf. Lemma 4), we can make use of Lemma 6. Thus, conditions (a) and (b) deliver
the invertibility of the operator Wi (A,) : L “, i L2 wp It remains to check the invertibility

of Wi(An), Ws(Ay) : £2 — 2. Without loss of generality, we assume that y = § = %

Then, 1 .
Wa(Ar) = 1+c+<1>[ ﬂi]+H+<m2> ] ,
k=1

win =t 21 (1) ]

We consider the function g+ : Rt — R with
XFIH, (x2) : d=+,

8a(x) = xﬁJr%Hi(xz) S od=—.

Due to our assumption we have Hy € L%piil(RJr) N L%qi,1(R+) and ¢+ € (p+,g+)-
From that, we derive

1 1 1
2 + 2
8+ € Loy, oy B0y gy and 5 € @py —a— 35,204 —a—3)
as well as
g €12 (RT)NL2 and 16(2;7__‘3_1207__/3_}).
229 -1 200 —p-1)-1 > 5 5

Moreover, the Mellin transforms of g (x) and g_(x) are equal to

~ (z+a 1 ~ (z4+p 1
H+< > +4) and H( 5 +4>,

2*:3

respectively, and p < 2” + <gyandp_ < + < q— . Thus, g+ fulfils condition

(Ap) for & = 1. This allows us to apply Lemma 11. Consequently, Wh(Ay), Wi(Ay) €
alg 7 (PC) with

D, a,) = {1 e (DH (&4 +it) s t € @}

and ) B
Dwsan) = {1+C (- 1)H—(C_+it):teR}.

In view of condition (b), the curves I'yy,(4,), Iy, (4,) do not contain the point 0 and their
winding number is zero. From Proposition 1 we derive that W5(.A,) and W5(A,) are
Fredholm operators with vanishing index. Thus, condition (c) delivers the invertibility of
those operators. [

7. Final Remarks

Finally, let us discuss the progress we have made in the present paper for possible
representations of endpoint singularities of the approximate solution (cf. (5))

U (x) = (1= 2) (1 4 x) pn(x) (87)
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in comparison with the paper [7]. Recall that for our method we can choose the parameters
v,6 > —1 for the nodes x;f , the parameters a, f € (—1,1) for the space L‘Z;,ﬁ , and the

o .

parameters p, T > —1 for the orthonormal system (vf0®ph*) ™ '

2
n La,ﬁ , where

o« T
0o = 5 and T = 5

e

In[7],thecasey =d=p=1= % together with a, B € (—1,1) is considered. That means
that the range for pg and 19 is given by the interval (— %, %) . If, in the present paper, we

choose vy =6 = % , then for the choice of p and T we have to fulfil the condition

(:2). () ea -

1 1
Q= {(wl,wz) ERZ:wl,wz > —1, _E <w —wy < E, w1 <2(U2+1}

where (cf. (50))

1 3
U{(wl,a)2) ERZZa)l,wz > —1, 5 <w) —wy < 2}.

Condition (88) is equivalent to p, T € (0,1) U (1,2), such that, for pg and 19 we have the
possible ranges

0o € {P;“ o€ (0,1)U(L,2),a€ (—1,1)}

- U 7)) = (2)

and

€ {T;'/S:re (0,1)U(1,2),8 € (—1,1)}

- U85 (1)

These possible ranges for pg and 1y can be extended, if we do not fix y and & . We see that,
for every p > —1and 7 > —1, there exist ¥ > —1 and § > —1 such that (p,y) € Q and
(1,6) € Q). Consequently, for every pg > —1 and 7y > —1, we can choose parameters
p,T > —1land 7,5 > —1 such that the respective collocation-quadrature method (42) looks
for approximate solutions of the form (87) with a polynomial p,(x) .

Another distinction between [7] and the present investigations is that in [7] the collo-
cation method is studied, the implementation of which is much more expansive (cf. [12,16])
than the collocation-quadrature method considered here.

Of course, the advantage of the results in [7] is that there also the sufficiency of
the stability conditions is proved and that in (1) also the case b(x) # 0 is considered.
These problems will be studied for the collocation-quadrature methods considered here in
forthcoming papers.

Finally, we can conclude that we were able to prove necessary conditions for the sta-
bility of, in comparison with the existing literature, a wider class of collocation-quadrature
methods based on the zeros of classical Jacobi polynomials. In this way we can enlarge
the range of endpoint singularities of the solutions of singular integral equations of Mellin
type, which we can represent in the respective approximate solutions. The questions on
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the sufficiency of the formulated stability conditions and on the extension of the results
presented here to Cauchy singular integral equations remain open for further studies.

Author Contributions: Both authors have contributed to all parts of the paper. All authors have read
and agreed to the published version of the manuscript.
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