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Abstract: The cardinal element of ecology is the predator-prey relationship. The population of
interacting organisms is based on many factors such as food, water, space, and protection. A key
component among these factors is food. The presence of food for the organisms shapes the structure of
the habitat. The present study considers a predator and two types of prey. It is assumed that one prey
species utilizes the same food resource as the predator, whereas the other prey species depends on a
different food resource. The existence and uniqueness of the model are studied using the Lipschitz
condition. The fixed points for the fractional-order model are sorted out, and the existence of the
equilibrium points is discussed. The stability analysis of the model for the biologically important
fixed points is provided. These include the coexistence fixed point and the prey-free (using the
same food resources as the predator does) fixed point. A fractional-order scheme is implemented to
support theoretical results for the stability of equilibrium points. The time series solution of the model
is presented in the form of plots. Moreover, the impact of some mathematically and biologically
important parameters is presented.
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1. Introduction

The interactive forces among predator and prey studies have remained a strikingly
distinctive research topic in ecology and mathematical biology. The Lotka-Volterra system
was a great initiative to put forth the dynamics of predator-prey studies [1]. In [2], the author
has considered two categories of predator, juvenile and mature predator. He discussed
the stability and bifurcation and showed the effects of the conversion of prey to a juvenile
predator on the stability of the system. He also showed that the conversion parameter from
juvenile to mature predator disturbs the system’s stability. In [3], authors have studied
the fractional-order singular Holling type-II predator-prey system. It is proved that the
addition of the fractional order in a system of differential equations plays an important role
in the system’s stability. Zhang F. et al. evaluated a stage-structured model with two types
of predators. They have discussed the effects of cannibalism on the model [4]. They have
proved that cannibalism can reverse the stability of the system. In [5], authors have studied
a fractional-order stage-structured model. The global stability of the system is investigated.
Bifurcation analysis is also provided for the conversion coefficient of prey into an immature
predator. The first SIR model was presented by Kermack and MacKendrick [6], which
got much attention. The SI epidemic model, with its global stability and feedback control
in a variable environment, was given by Li et al. [7]. Epidemiological models deal with
the spread of infectious diseases among different species, which is evident from the facts
mentioned in [8,9]. Such models deal with the realistic impact of the interaction between
the predator-prey; however, the dynamics of the system would be highly influenced by
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the infectious disease [10,11]. The eco-epidemiological model defines the dimension of
infection spread among predator and prey along with its control.

Taking into account the study [12], Hilker and Schmitz investigated the stability of
predator-prey oscillations. The authors discussed the destabilizing effects of parasites and
resource management. A detailed review of publications depicted that several studies were
built on an eco-epidemiological model either by using prey [13–16] or predator [17–20]
or using both populations [21–23]. The infectious disease could be the manifestation of a
virus, bacteria, or any other natural or artificial calamity [24].

The functional response of a Holling type II predator in an eco-epidemiological model
involving three species was studied in [11]. In this study, the authors investigated the effects
of the recovery parameter of prey species on the system’s dynamics and the optimization
of net profit from the harvesting of predators. The generalization of ordinary differential
equations is fractional-order differential equations with non-integer order, which have
massive adaptations in biological and engineering sciences [25,26]. The main advantage of
using fractional-order models is that they are non-local. This non-locality makes them flexi-
ble. These models are used for solving problems that have spatial or memory dependence.
Since the current state of a system is dependent on its recent past state, the fractional-order
derivative is considered a non-local operator [27].

Fractional calculus is fused into complex dynamic systems, revolutionizing the design
theory and control performance of complex systems. Scientists have found that natural
physical phenomena can be represented more accurately by fractional-order models than
traditional full-order models [28]. Recently, some researchers have introduced fractional
calculus into the predator-prey model to build a fractional predator-prey model. For
example, the design and control of various ecological models [29–31].

Recently, fractional calculus has been successfully introduced into predator-prey
models, and some interesting phenomena have been studied. In [32], the authors consider
a fractionally ordered delayed predator-prey system with harvesting conditions. In [33],
Mondal et al. found that solutions for fractional-order predator-prey systems slowly
converge to their respective equilibrium points as the fractional order decreases. In [34],
Chinnathambi and Rihan proposed that fractional ordering could enhance the stability of
the prey-predator system and prevent the occurrence of oscillatory behavior. Fractional
dynamics of lag-free predator-prey models have been documented [35,36]. In [37], the
authors studied the population growth model under classical and non-classical operators.
They used actual statistical data and proved that the fractional approach is better than the
classical one.

The fractional-order differential equation imparts a memory effect in the model, mak-
ing it more dynamic in behavior [38]. In [39], Zhao and Luo defined the general fractional
derivative with memory effects dynamics. Bolton et al. [40] proved the accuracy of the
fractional-order Gompertz growth model more than the integer-order Gompertz model
with respect to the experimental dataset. Predator-prey relationships can be better de-
scribed using fractional-order systems, as shown by the findings of [41,42], which conclude
that the fractional-order differential equation can improve the modeling of biological phe-
nomena. In [43], the authors depicted a fractional-order eco-epidemiological model with an
infectious prey population. Some theoretical and numerical analyses supported the study.
Many researchers have investigated the properties of fractional-order models [44]. The
authors of [45] stress the need for text mining for detecting Financial Statement Fraud (FSF)
incidents. The scientific community as a whole uses data mining to detect FSF most of the
time. The study presented in [46] advocates for implementing the NIST Framework-based
approach for properly managing cyber security in public sector enterprises within the
context of the provision of digital services. With the help of a fractional linear regression
equation, the author of [47] investigates the similarities and differences in carbohydrate
metabolism and energy expenditure among different groups of humans who expend the
same amount of oxygen during exercise. In [48], the author suggests a new way to solve
second-order fractional differential equations using power series expansion. The current
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work [49] examined the stochastic dengue model’s computational dynamics using the
actual material. The main study area in these papers is stability and bifurcation analysis.
According to [50,51], if these equations are defined on the real line, they transform into
periodic signals. The proposed study focuses on the final state trajectory. All local paths
with positive values are drawn to the limiting cycle (asymptotically stable limit cycle) [52].

As far as we know, no one has thought to use a fractional-order model in which
multiple species share a single food source. We have developed a fractional order model
with three species, one predator, and two prey. One prey and predator depend on the same
resource, while the second prey depends on another resource. The setting of the paper is
as follows:

Section 2 presents some fractional calculus results, which will help us understand the
following sections. We have presented the concept of the Caputo fractional derivative along
with Lipschitz continuity and stability conditions for the fractional model. Section 3 deals
with the model formulation and description of the parameters involved. Section 4 discusses
the model’s existence, uniqueness, and non-negativity. Section 5 deals with the existing
condition of all the equilibrium points of the model. Section 6 presents the stability of some
important fixed points. Sections 7 and 8, respectively, deal with numerical simulations and
concluding remarks.

2. Preliminaries

Some related concepts of fractional calculus are presented in this section, contributing
to the study further.

Definition 1 [5]. The Caputo fractional derivative is given as under

Dα f (t) =
1

Γ(n− α)

∫ t

0
(t− ϕ)n−α−1 f (n)(φ)dφ, n− 1 < α < n, n ∈ N.

where Γ represents the gamma function.

Definition 2 [53]. A real-valued function f : R → R is known as Lipschitz continuous, if
∀y1, y2ε R, ∃ a positive constant k such that the following holds

| f (y1)− f (y2)|≤ k|y1 − y2|.

Theorem 1 [54]. For the fractional-order system Dαx = f (x) with the following initial condition
x(0) = x0, x ∈ Rα, 0 < α < 1.

Then equilibrium point x∗ is locally asymptotically stable if J|x=x∗ has all the eigen-
values such that |Arg(λi)| > α π

2 , where J is the Jacobian matrix.

3. The Model

In recent years, fractional calculus has caught the attention of many researchers due
to its widespread and diverse applications in different fields of study, such as engineer-
ing and science. Many applications are found in statistics, dynamics, electrochemistry,
electromagnetism, signal processing, mathematical biology, optimization, and control the-
ory. Mathematical models communicating real-life problems can be formulated well by
fractional-order differential equations. We present a version of the predator-prey fractional-
order model. We consider three species, a predator and two prey, considering the competi-
tion between the predator and a prey species for the food resource in the habitat. Moreover,
it is assumed that the other prey species depend on some other food. Suppose U(t) rep-
resents the density of the predator, V1(t) represents the species of prey depending on the
same resources as the predator does where V2(t) indicates the species depending on a
different resource. The parameters are described in the following Table 1.
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Table 1. Breif description of variables and parameters.

Parameters Physical Meaning

U Density of Predator
V1(t) Density of prey using the same resources as the predator
V2(t) Density of Prey using different resources
a Rate of consumption of common food by the predator
b Rate of consumption of common food by prey
c Rate of consumption of non-common food by prey
β1, β2 Death rate for prey due to predation
f Common food resources
g Non-common food resource for prey
η Natural death rate of predator
µ1 Natural death rate of first prey
µ2 Natural death rate of the second prey

The following differential equations represent the model

Dα (U (t)) = U
(

a f
aU + bV1

+ β1V1 + β2V2 − η

)
(1)

Dα (VI (t)) = V1

(
b f

aU + bV1
− β1U − µ1

)
(2)

Dα (V2 (t)) = V2(cg− β2U − µ2). (3)

Here, Dα denotes Caputo derivative, which is taken with respect to time.

Dα f (t) =
1

Γ(n− µ)

∫ t

0
(t− ϕ)n−µ−1 f n(φ) dφ, n− 1 < α < n, n ∈ N. (4)

These models can be used for studying predator-prey relationships, in which predator
and prey use the same food. Moreover, the predator has two prey available in the environ-
ment, and one uses the same food described earlier. It is a fact that most predators depend
on more than one prey. For instance, an owl hunts a hawk and weasel. It is important to
note that weasels and owls have common food in the form of the shrew.

4. Analysis of the Model

The mathematical analysis of the proposed model is presented here. Here, we use the
Lipschitz criterion to demonstrate the existence and distinction of the model.

4.1. Existence and Uniqueness

We define the region Θ× (0, t], where Θ =
{
(U, V1, V2) ∈ R3 : max((U, V1, V2) ≤ ϕ} .

Theorem 2. There exists a unique solution τ = (U, V1, V2) for the model with initial conditions
χ0 = (U0, V10, V20) ∀ t ≥ 0.

Proof of Theorem 2. We define a mapping F(χ) = (F1(χ), F2(χ), F3(χ)) for χ, χ0 belonging
to Θ. Here,

F1(χ) = U
(

a f
aU + bV1

+ β1V1 + β2V2 − η

)
(5)

F2(χ) = V1

(
b f

aU + bV1
− β1U − µ1

)
(6)

F3(χ) = V2(cg− β2U − µ2). (7)

We use the Lipschitz condition to prove the uniqueness of the solution for the model.

||F(χ)− F(χ) ||
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=|F1(χ)− F1(χ)|+ |F2(χ)− F2(χ)|+ |F3(χ)− F3(χ)|

=

∣∣∣∣U(
a f

aU + bV1
+ β1V1 + β2V2 − η)−U(

a f
aU + bV1

+ β1V1 + β2V2 − η)

∣∣∣∣
+

∣∣∣∣V1(
b f

aU + bV1
− β1U − µ1)−V1(

b f
aU + bV1

− β1U − µ1)

∣∣∣∣
+
∣∣V2(cg− β2U − µ2)−V2

(
cg− β2U − µ2

)∣∣
≤ ab f ϕ(

∣∣V1(t)−V1(t) +
∣∣U(t)−U(t)

∣∣) + β1 ϕ
(∣∣U(t)−U(t)

∣∣+ ∣∣V1(t)−V1(t)
∣∣)+

β2 ϕ
(∣∣U(t)−U(t)

∣∣+ ∣∣V2(t)−V2(t)
∣∣)+ η

∣∣U(t)−U(t)
∣∣+ a2 f ϕ

∣∣V1(t)−V1(t)
∣∣)

+
∣∣U(t)−U(t)

∣∣+ β2 ϕ(
∣∣U(t)−U(t)

∣∣+ β1 ϕ
(∣∣U(t)−U(t)

∣∣+ ∣∣V1(t)−V1(t)
∣∣)+ µ1+

∣∣V1(t)

−V1(t) + cg
∣∣V2(t)−V2(t)

∣∣+ µ2
∣∣V2(t)−V2(t)

∣∣+ β2 ϕ
(∣∣U(t)−U(t)

∣∣+ ∣∣V2(t)−V2(t)
∣∣)

=
(
ab f ϕ + a2 f ϕ + 2β1 ϕ + 2β2 ϕ + η

)∣∣U(t)−U(t)
∣∣+ (ab f ϕ + a2 f ϕ + 2β1 ϕ + µ1

)∣∣V1(t)−V1(t)
∣∣(2β2 ϕ + cg + µ2)

∣∣V2(t)−V2(t)
∣∣

≤ M||χ− χ||.

where,

M = max{ab f ϕ + a2 f ϕ + 2β1 ϕ + 2β2 ϕ + η, ab f ϕ + a2 f ϕ + 2β1 ϕ + µ1, 2β2 ϕ + cg + µ2}.

Therefore, it is proved that F(χ) is a Lipschitz continuous function, hence the theorem.
�

4.2. Non-Negativity of the Model

Here we show the non-negativity of the proposed model. It is easy to see that

Dα(U(t))|U=0 = 0 (8)

Dα(V1(t))
∣∣V1=0 = 0 (9)

Dα(V2(t))
∣∣V2=0 = 0. (10)

Equations (8)–(10) prove the non-negativity of the model.

5. Equilibrium Points of the Model

To calculate the model’s equilibrium points, we have the following system of equations.

0 = U
(

a f
aU + bV1

+ β1V1 + β2V2 − η

)
(11)

0 = V1

(
b f

aU + bV1
− β1U − µ1

)
(12)

0 = V2(cg− β2U − µ2). (13)

It is obvious from the above system of equations that (0, 0, 0) is an equilibrium point
which has no importance ecologically. After some calculations, one can easily find the
following equilibrium points.

1. Predator-free, one prey-free fixed point

{U → 0, V1 →
f

µ1
, V2 → 0} (14)
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This particular equilibrium point represents the extinction of predator specie along
with the prey using different resources in the habitat. One can observe that this fixed point
always holds.

2. Prey (using another resource as a predator does) free fixed point

{U → −µ1

β1
+

b f
bη − aµ1

, V1 →
η

β1
+

a f
−bη + aµ1

, V2 → 0}. (15)

There is a second equilibrium point of the model, which guarantees the existence
of both species using common food resources (predator and prey) when bη > aµ1 and
η(−bη + aµ1) > a f β1.

3. Prey (using the same resource as a predator does) free fixed point

{U → cg− µ2

β2
, V1 → 0, V2 →

η

β2
+

f
−cg + µ2

} (16)

The equilibrium point guarantees the extinction of prey using the same resources as a
predator under the following condition cg > µ2 and η(−cg + µ2) > f β2.

4. Preys free fixed point

{U → f
η

, V1 → 0, V2 → 0} (17)

It is clear that prey-free points always exist.

5. Coexistence fixed point

{U → cg− µ2

β2
, V1 →

f β2
2

β2µ1+β1(cg−µ2)
+ a(−cg+µ2)

b

β2
, V2 →

η − aµ1
b

β2
− f β1

β2µ1 + β1(cg− µ2)
} (18)

This equilibrium point guarantees the existence of all species in the environment under
the following conditions.

cg > µ2, (19)

f β2
2

β2µ1 + β1(cg− µ2)
>

a(−cg + µ2)

b
, (20)

η − aµ1
b

β2
>

f β1

β2µ1 + β1(cg− µ2)
. (21)

6. Stability of Equilibrium Points

This section deals with the stability of two fixed points of key interest: the prey (using
the same food resources as the predator) free fixed point and the coexistence fixed point.

To deal with the stability of fixed points, we use the Routh Hurwitz criterion for
fractional order. It is easy to observe that Jacobian of the system (1–3) is as under

J =


−η − a2 f U

(aU+bV1)
2 +

a f
aU+bV1

+ V1β1 + V2β2 U
(
− ab f

(aU+bV1)
2 + β1

)
Uβ2

V1

(
− ab f

(aU+bV1)
2 − β1

)
− b2 f V1

(aU+bV1)
2 +

b f
aU+bV1

−Uβ1 − µ1 0

−V2β2 0 cg−Uβ2 − µ2

. (22)

6.1. Stability of Coexistence Fixed Point

We have the following lemma for the coexistence fixed point.

Lemma 1. The coexistence fixed point
(
U∗, V∗1 , V∗2

)
is stable if A2 > 0, where

A2 = −a11 − a22 and
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a11 = − a2(β2µ1 + β1(cg− µ2))
2(cg− µ2)

b2 f β3
2

,

a22 =
(β2µ1 + β1(cg− µ2))

(
aβ1(−cg + µ2)

2 − β2(b f β2 + aµ1(−cg + µ2))
)

b f β3
2

.

Proof of Lemma 1. We calculate the Jacobian matrix for the model at Eco =
(
U∗, V∗1 , V∗2

)
.

Here,

U∗ =
cg− µ2

β2
,

V∗1 =

f β2
2

β2µ1+β1(cg−µ2)
+ a(−cg+µ2)

b

β2
,

V∗2 =

f β2
2

β2µ1+β1(cg−µ2)
+ a(−cg+µ2)

b

β2
,

J(Eco) =

a11 a12 a13
a21 a22 0
a31 0 0

.

where,

a11 = − a2(β2µ1 + β1(cg− µ2))
2(cg− µ2)

b2 f β3
2

,

a12 = −
(cg− µ2)(aβ2

2µ2
1 + aβ2

1(−cg + µ2)
2 − β1β2(b f β2 + 2aµ1(−cg + µ2)))

b f β3
2

,

a13 = cg− µ2,

a21 =
(aβ2

2µ2
1 + β1β2(b f β2 + 2aµ1(cg− µ2)) + aβ2

1(−cg + µ2)
2)(aβ1(−cg + µ2)

2 − β2(b f β2 + aµ1(−cg + µ2)))

b2 f β3
2(β2µ1 + β1(cg− µ2))

,

a22 =
(β2µ1 + β1(cg− µ2))(aβ1(−cg + µ2)

2 − β2(b f β2 + aµ1(−cg + µ2)))

b f β3
2

,

a31 = −η +
aµ1

b
+

f β1β2

β2µ1 + β1(cg− µ2)
.

The characteristic polynomial can be written as under

P(λ) = λ3 − λ2(a11 + a22) + a13a22a31 − λ(a12a21 − a11a22 + a13a31). (23)

The solution of the above equation implies that we have the following eigenvalues

P(λ) = λ3 + A2λ2 + A1λ + A0.

Here A0 = a13a22a31, A1 = (−a12a21 + a11a22 − a13a31), A2 = −a11 − a22.
By taking A0 = A1 A2 we have the following eigenvalues

λ1 = −A2, λ2 = −i
√

A1, λ3 = i
√

A1.

We have |Arg(λ1)| = π > α π
2 , provided A2 > 0.

In addition, we have |Arg(λ2)| = π
2 > α π

2 and |Arg(λ3)| = π
2 > α π

2 , hence the result.
�
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6.2. Stability of Prey Free Equilibrium Point

For the stability of a prey-free (using common resources as predator) fixed point, we
have the following lemma.

Lemma 2. The prey-free (using common resources as predator) fixed point
(

Up f , 0, V2p f

)
is

asymptotically stable provided A2 > 0. Where A2 = −b11 − b22, where b11 and b22 are defined
below

b11 =
f β2

−cg + µ2
, (24)

b22 = −µ1 +
β1(−cg + µ2)

β2
+

b f β2

acg− aµ2
. (25)

Proof of Lemma 2. To deal with the stability of fixed points, we use the Routh Hurwitz
criterion. It is easy to observe that the Jacobian of the system (1–3) is given in (22). Now we
calculate Jacobian at

(
Up f , 0, V2p f

)
, where

Up f =
cg− µ2

β2
and V2p f =

η

β2
+

f
−cg + µ2

.

The Jacobian can be written as J
(

Ep f

)
=

b11 b12 b13
0 b22 0

b31 0 0

. where,

b11 =
f β2

−cg + µ2
,

b12 =
(cg− µ2)(β1 −

b f β2
2

a(−cg+µ2)
2 )

β2
,

b13 = cg− µ2,

b22 = −µ1 +
β1(−cg + µ2)

β2
+

b f β2

acg− aµ2
,

b31 = −η +
f β2

cg− µ2
.

The characteristic polynomial can be written as

P(λ) = λ3 − λ2(b11 + b22) + b13b22b31 − λ(−b11b22 + b13b31)

P(λ) = λ3 + A2λ2 + A1λ + A0.

Here, A0 = b13b22b31, A1 = b11b22 − b13b31 and A2 = −b11 − b22.
By taking A0 = A1 A2 we have the following eigenvalues

λ1 = −A2, λ2 = −i
√

A1 and λ3 = i
√

A1.

Now,
∣∣Arg(λ1) = π > α π

2

∣∣, provided A2 > 0, |Arg(λ2)| = π
2 > α π

2 and
|Arg(λ3)| = π

2 > α π
2 , hence the result. �

7. Numerical Results

This section provides the simulation outcomes to support the theoretical results. We see
the impact of fractional order “α” and other parameters on the stability of the coexistence of
fixed points. We also provide the time series solution of the proposed model in this section.
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Figure 1 presents the phase portraits of the fractional-order model (1–3) for differ-
ent values of fractional parameter “α”. The initial conditions taken are US(0) = 0.40,
UI(0) = 0.20, V(0) = 0.20, whereas the values of other parameters are a = 0.9, α1 = 0.2,
β = 0.2, m = 0.1, α2 = 0.9, γ = 0.91, and n = 0.3. We have taken three values of fractional
order as α = 0.4, 0.7, and 0.9.
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𝑏ଷଵ = −𝜂 + ௙ఉమ௖௚ିఓమ. 
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Figure 1. Phase Portraits different values of fractional parameter α.

Figure 2 demonstrates the phase portraits of the fractional-order system for three
different values of “a” as 0.3, 0.4, and 0.5. The values of other parameters and ICs are
U(0) = 0.31 , V1(0) = 2.402, V2(0) = 0.2003, α = 0.5, b = 0.82, c = 0.21, f = 0.01,
g = 0.55, β1 = 0.2, η = 0.55, µ1 = 0.11 and µ2 = 0.05.
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Figure 3 presents the phase portraits of the fractional-order model for different values
of common food parameter “ f ” as 0.05, 0.07, and 0.09. The initial conditions and values



Axioms 2023, 12, 64 10 of 14

of parameters are U(0) = 0.3127, V1(0) = 2.4016, V2(0) = 0.2003, α = 0.5, a = 0.50,
b = 0.82, c = 0.21, η = 0.55, µ1 = 0.11, µ2 = 0.05, g = 0.55, β1 = 0.2, β2 = 0.20. It is
obvious that the system moves towards stability for higher resource parameter values.
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Figure 4 presents the time series solution of the model at different values of “a” 0.3,
0.4, and 0.5. The values of other parameters are the same as those in Figure 1.
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Figure 5 depicts the time series behavior of the fractional-order model for the disease
transmission fractional order “α”. The values of the parameters are the same as those taken
in Figure 2. It is clear from the plot that for smaller values of “α”, the system reaches its
stability at an earlier time.
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Figure 6 shows the time series solution for the fractional-order model for different
values of “f ”. The values of the parameters are the same as in Figure 3. It is shown that
higher values of “f ” cause faster stability of the model, whereas low values of “f ” take
longer to move to the system’s stability.
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8. Conclusions

In the present study, we have formulated and analyzed a dynamical fractional-order
model focusing on the food resources used by the predator-prey population. Here we have
taken into account a predator and two species of prey (one depending on the sources used
by the predator). The fixed points of the fractional-order model were computed. We have
proved that there exists a non-negative unique solution of the model. The existence of fixed
points is discussed by providing existence conditions for all the points mentioned above
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separately. The biologically important equilibrium points, coexistence fixed points and
prey-free fixed points, are studied in detail. We have proved that both equilibrium points
are conditionally stable for the original system. The theoretical results are supported by
providing simulations. The impact of fractional order parameter α, food resource parameter
f and consumption rate of food a by the predator on the stability of said fixed points is
studied. The time series solution of the model is provided for different values of the
fractional order parameter, food resource, and consumption rate of food by the predator. It
is shown that larger values of α cause the system’s instability. For smaller values of a the
system is stable, but as soon as the values of the consumption parameter are increased, the
system stability is disturbed. We observed that the system switches stability after regular
intervals. Similarly, for larger values of f the system moves towards stability. Following the
completion of this study, it is possible to propose alternative applications for the current
methods in addition to the current uses [55–58].
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