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Abstract: This study outlines the necessary and sufficient criteria for swarm stability asymptotically,
meaning consensus in a class of fractional-order multi-agent systems (FOMAS) with interval uncer-
tainties for both fractional orders 0 < α < 1 and 1 < α < 2. The constraints are determined by the graph
topology, agent dynamics, and neighbor interactions. It is demonstrated that the fractional-order
interval multi-agent system achieves consensus if and only if there are some Hermitian matrices that
satisfy a particular kind of complex Lyapunov inequality for all of the system vertex matrices. This is
done by using the existence condition of the Hermitian matrices in a Lyapunov inequality. To do this,
at first it is shown under which conditions a multi-agent system with unstable agents can still achieve
consensus. Then, using a lemma and a theory, the Lyapunov inequality regarding the negativity
of the maximum eigenvalue of an augmented matrix of a FOMAS is used to find some Hermitian
matrices by checking only a limited number of system vertex matrices. As a result, the necessary
and sufficient conditions to reach consensus in a FOMAS in the presence of internal uncertainties
are obtained according to the Lyapunov inequalities. Using the main theory of the current paper,
instead of countless matrices, only a limited number of vertex matrices need to be used in Lyapunov
inequalities to find some Hermitian matrices. As a confirmation of the notion, some instances from
numerical simulation are also provided at the end of the paper.

Keywords: multi-agent systems; fractional-order systems; interval matrix; robust stability

MSC: 37N35

1. Introduction

Currently, several control-engineering academics have been interested in fractional-
order systems. It is demonstrated that fractional-order equations may more accurately
capture the exact model of the majority of dynamic systems [1–5]. On the other hand, it has
been recognized during the past several years that certain living creatures have a propensity
for swarming activity. These multi-agent systems include, for instance, herds of animals,
schools of fish, flocks of birds, and bacterial colonies. The configuration distinction between
multi-agent systems and isolated dynamic systems makes their stability unique [6–8].

In addition, when the model of agents is in fractional-order form, researchers appreci-
ate the relevance of studying behavior analysis and control of FOMASs and the distributed
coordination of networked fractional-order systems, which have a range of technical appli-
cations [9–11]. Refs. [12,13] as pioneering works initially began researching the distributed
control issue in FOMASs. However, for now, it is among the most popular subjects in the
multi-agent systems space.
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In [14], using fractional-order iterative learning control, the consensus problem in
leader–follower multi-agent fractional-order systems with time delays is investigated. The
concept of inverse-optimal consensus is addressed in [15]. Single-integral dynamics are
taken into consideration in this study for both continuous and discrete-time FOMASs,
and the ultimate consensus solution is derived. Furthermore, by employing the optimum
state-feedback gain matrices, consensus is firmly established [15]. Some necessary and
sufficient conditions to reach consensus are derived in the context of a particular example of
interconnected positive fractional-order multi-agent systems connected through a directed
graph [16]. In terms of linear-matrix inequalities, sufficient criteria of non-fragile consensus
have been attained for fractional-order nonlinear MASs. [17]. In this reference, state-time
delay is also considered for agents and it is also shown that the presented methodology can
be used to some other kinds of FOMASs [17]. Finite-time consensus for nonlinear FOMASs
is studied in [18], where the order of agents is incommensurate and graph topology can
also be switched.

Event-triggered strategies were used in [19] in order to achieve exponential leader–
follower consensus in FOMASs as defined by the Mittag–Leffler stability formula. In
addition, in [20] a similar strategy based on an event trigger is used to achieve consensus
in a FOMAS with intermittent agent communication in a finite time.

The majority of the necessary and sufficient requirements for reaching consensus
described in the literature relies on certain presumptions. For example, the assumption
in [21] that any agent’s motion is towards the convex hull produced by its neighbors
is rather restrictive. This premise is violated by many swarm systems that may attain
consensus. The authors in [22,23] even supposed that the dynamics of the agents should
be stable. Ref. [24] recently proposed necessary and sufficient requirements for achieving
consensus even when the dynamic matrix of agents is unstable.

Recently, the concept of a parametric interval has been used to explain the parametric
variations in fractional-order uncertain dynamical systems [25,26]. The interval ranges
of the eigenvalues were established using a matrix perturbation theory in [26] and the
conservatism was decreased using the Lyapunov inequality in [25]. The findings in [25,26]
only offer sufficient circumstances, though. The reliable stability of fractional-order linear-
interval systems has already been demonstrated via necessary and sufficient criteria [27].
However, in their model, they only took into account real matrices with fractional 1 ≤ α < 2.

This study proposes a necessary and sufficient criterion to achieve consensus in
FOMAS with interval uncertainties, even if the dynamic matrices of agents have com-
plex coefficients.

The structure of this article is as follows: FOMAS and definitions of asymptotic swarm
stability (consensus) are addressed in Section 2. Swarm robust asymptotic stability and the
primary findings of this study are described in Section 3, and simulation results are utilized
to support the suggested technique in Section 4. Section 5 then provides a conclusion.

2. FOMAS with Interval Uncertainties

The FOMAS system discussed in this paper consists of the fractional-order dynamic
agents with linear-time invariant models that are connected via a directed graph. In the
literature, this model is also referred to as a fractional-order linear-time invariant swarm
system [2,3]. It is important to note that “asymptotic swarm stability” is another term for
“consensus,” which is often used in the context of swarm systems.

The dynamics of the N agents in the model of these systems are given by pseudo state
space models [2–4] with dimension d. In the rest, the state vector of ith agent is shown by
xi = [xi1, . . . xid]

T ∈ Rd. The communication between agents is modeled via an N order
weighted directed graph G in which each agent is a vertex of the graph. In addition, the
weight of graph G between the ith and jth agents is represented by wij ≥ 0, the value
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of which is used to assess the intensity and strength of the information transfer between
two agents. A graph G is represented by its adjacency matrix W as follows

G : W =

w11 · · · w1N
...

. . .
...

wN1 · · · wNN

.

which is symmetric if G is not directed; else, it is asymmetric. Now we are ready to express
the fractional-order dynamic model of each agent in the FOMAS as follows:

Dα
t xi = Axi + F

N

∑
j=1

wij
(

xj − xi
)

i ∈ {1, 2, . . . N} (1)

where A ∈ Rd×d, F ∈ Rd×d, and the notation Dα
t stand for the Caputo fractional derivative,

which is defined as follows [5,11]

Dα
t f (t) =

1
Γ(α− [α])

∫ t

0

f ([α])(τ)

(t− τ)α−[α]+1
dτ, 0 < α /∈ Z

It is important to note that the FOMAS expressed in Equation (1) is a fractional-
ized version of the integer-order swarm systems in [24], which was first introduced as
a fractional-order swarm system (FOMAS) in [2].

It should be noted that there are other definitions for fractional-order derivatives,
including Riemann–Liouville and Grünwald–Letnikov. However, the reason why we used
Caputo’s definition to express the fractional-order derivative is that it is only by using
Caputo’s definition that the initial conditions of the fractional-order system are the same as
the initial conditions of its integer-order counterpart. This is why the Caputo’s derivative is
more useful in the definition of fractional-order format of real dynamic systems.

In this paper, it is assumed that matrices A and F are interval uncertain parameter-
wise. Consequently, matrices A and F are defined in the forms A ∈ AI =

[
aI

ij

]
and

F ∈ FI =
[

f I
ij

]
, respectively, where aI

ij and f I
ij are lower and upper bounded, i.e., aI

ij =
[

aij, aij

]
and f I

ij =
[

fij, fij

]
, respectively.

The dynamic of each agent is shown by matrix A in the swarm-system model of
Equation (1). As a result, if an agent does not have any neighbors, its dynamics will be
characterized by xα = Ax. In addition, F represents the interaction dynamics between two
neighboring agents, which is intuitively related to attraction/repulsion coupling. If F is
Hurwitz, this relationship might be considered attractive.

In order to distinguish the concept of stability among multi-agent systems from the
Lyapunov stability of isolated systems, which often refers to cohesiveness, the idea of
stability needs to be reinterpreted in terms of the relative movements among agents [2–6].

Definition 1. (Asymptotic swarm stability) [11]: Take into consideration that FOMAS consists
of N agents and x1, . . . xN ∈ Rd as the agent pseudo states. If the system achieves consensus, that
is, for ∀ε > 0 ∃T > 0 s.t. when t > T, ‖xi(t)− xj(t)‖ < ε ∀i, j ∈ {1, 2, . . . N}, it is therefore
referred to as being full-state consensus or, in other words, asymptotically swarm stable.

If the agents’ pseudo state vector is specified as x =
[
xT

1 , . . . xT
N
]T , then the FOMAS

dynamic in Equation (1) can be rewritten as

Dα
t x = (IN ⊗ A− L⊗ F)x (2)

where L = L(G) is the graph G’s Laplacian matrix, and ⊗ stands for the Kronecker product
operator. The characteristics of the Laplacian matrix are covered in Lemma 1 as follows.
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Lemma 1. [14]: The Laplacian matrix L of a directed graph with N vertices has exactly a single
zero eigenvalue λ1 = 0 with the related eigenvector φ = [1 1 , . . . , 1]T if G includes a spanning
tree. In addition, the remained eigenvalues λ2, . . . λN are all located in the right half plane.

Suppose that J stands for the Jordan canonical form of L and that its eigenvalues are λ1 = 0 ,
λ2, . . . λN ∈ C .Hence, J has the following form:

J =



0 ∗ 0 . . . 0

0 λ2 ∗ . . . 0
...

. . . . . . . . .
...

0 0
. . . . . . ∗

0 0 . . . 0 λN


,

where ∗ may either be 1 or 0. It is evident that matrix T is discovered in a way that
TLT−1 = J. By assumption x̃ = (T ⊗ Id)x, Equation (2) is transformed into

Dα
t x̃ = (IN ⊗ A− J ⊗ F)x̃ (3)

The structure (IN ⊗ A− J ⊗ F) is in the form

(IN ⊗ A− J ⊗ F) =



A × 0 . . . 0

0 A− λ2F × . . . 0
...

. . . . . . . . .
...

0 0
. . . . . . ×

0 0 . . . 0 A− λN F


(4)

where each × is a Rd×d block that may either be −F or 0 [5,11].

3. Swarm Robust Asymptotic Stability (Robust Consensus)

This section’s primary goal is to provide the necessary and sufficient conditions in
order to achieve the consensus in FOMASs with interval uncertainty. To this end, some
preliminaries are needed.

Definition 2. Matrix A ∈ Cn×n is said to be α-Hurwitz if and only if |arg(λ)| > α π
2 is met for

all of the eigenvalues (λ) of the matrix A.

Theorem 1. [28]: An FO-LTI system represented by pseudo state-space form Dα
t x(t) = Ax(t) is

asymptotically stable if and only if matrix A is α-Hurwitz.

This theorem may be used to simply expand the stability conditions given for integer
swarm systems in [21] to the fractional swarm system introduced in Equation (1).

Theorem 2. [24]: Considering the FOMAS described in Equation (1), when λ1 = 0 , λ2, . . .
λN ∈ C are the eigenvalues of Laplacian matrix L(G). Then, even if A is not Hurwitz, the system
achieves consensus if and only if both of the following conditions are satisfied.

1. In the graph topology G, a spanning tree is present.
2. The matrices A− λiF (λi 6= 0) are all α-Hurwitz.
Let us define new interval matrices as follows:

Âk = A− λkF k = 2, ..N (5)
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Then, according to Lemma 1 that Re(λk) > 0, k = 2, . . . N, the vertex matrices of Âk
can be defined as

Âv
k =

{[
âij
]

: âij ∈
{

pij, qij
}}

(6)

where k = 2, . . . N and matrices P =
[
pij
]

and Q =
[
qij
]

are defined as

P =
{[

pij
]

: Re
{

pij
}
= aij − Re(λk) fij , Im

{
pij
}

=

{
Im(λk) fij , f or Im(λk) > 0

Im(λk) fij , f or Im(λk) < 0

}
Q =

{[
qij
]

: Re
{

qij
}
= aij − Re(λk) fij , Im

{
qij
}

=

{
Im(λk) fij , f or Im(λk) > 0
Im(λk) fij , f or Im(λk) < 0

}

Theorem 3. [29]: Suppose that the matrix Tn×n is a Hermitian interval matrix where T ∈ H[P, Q]
such that T = [tkl ], P = [pkl ], Q = [qkl ], and H[P,Q] denote the set of Hermitian interval matrices
satisfying Re{pkl} ≤ Re{tkl} ≤ Re{qkl}, and Im{pkl} ≤ Im{tkl} ≤ Im{qkl} for k = 1, . . . n,
l = k, . . . n. If V[P, Q] denotes the set of all Hermitian vertex matrices T such that tkl = qkl or
tkl = Pkl , then max

T∈H[P,Q]
(eig(T)) is obtained at one of the 2n2

vertex matrices in V[P, Q].

Remark 1. In [29], it was proven that max
T∈H[P,Q]

(eig(T)) is obtained at a special subset of V[P, Q],

which consists of only 2
n2+n−2

2 vertex matrices (for more information about this special subset, see
Section 2 of [29]).

Lemma 2. [27,30](Lyapunov Inequality): Let A ∈ Cn×n be a given complex matrix and let
D =

{
s ∈ C : |arg(s)| > α π

2
}

denote a given open region of the complex plane. Matrix A has all
its eigenvalues in region D if and only if

For 0 < α < 1 there are two matrices Q1 = Q1
∗ > 0 and Q2 = Q2

∗ > 0 such that

λ(β(AQ2 + Q1 A∗) + β∗(AQ1 + Q2 A∗)) < 0 (7)

where β = ei(1−α) π
2 .

For 1 < α < 2 there is a matrix P = P∗ > 0 such that

λ(βPA + β∗A∗P) < 0 (8)

where = ei(2−α) π
2 .

Now we express the following theorem in light of Lemma 2 and Theorems 2 and 3:

Theorem 4. An interval FOMAS system with a non-Hurwitz matrix A in the form of Equation (1)
is swarm robust asymptotic stable (achieving consensus) if and only if the graph G includes
a spanning tree and for all vertex matrices within the vertex set defined in Equation (6):

Case 1. when 1 < α < 2, there exists a positive definite Hermitian matrix P = P∗ > 0 ∈ Cn×n

such that λ
(

βPÂk + β∗ Âk
∗P
)
< 0 for all of the individual Âk matrices in the vertex set; i.e.,

Âk ∈ Âv
k f or k = 2, . . . N where β = e(2−α) π

2 i ,

Case 2. when 0 < α < 1, there exist two matrices Qk1 = Qk1
∗ > 0 ∈ Cn×n and

Qk2 = Qk2
∗ > 0 ∈ Cn×n such that λ

(
β(Âv

k Qk2 + Qk1 Âv∗
k

)
+ β∗

(
Âv

k Qk1 + Qk2 Âv∗
k

)
) < 0

f or k = 2, . . . N where β = e(1−α) π
2 i.

Proof.
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(Sufficient): Assume that for all 2
n2+n−2

2 matrices of 2n2
vertex matrices within the

vertex set defined in Equation (6) the conditions of the theorem are satisfied. Now, we will
prove that the interval FOMAS is asymptoticly robust stable.

Case 1. when 1 < α < 2: Based on Lemma 2, since λ
(

β(Âv
k Qk2 + β∗Qk1 Âv∗

k

)
< 0 is valid for

one of the vertex matrices of Âv
k , all its eigenvalues are located in α-Hurwitz region. For convenience,

let us replace βÂv
k = A′. Then, βÂv

k is an interval complex matrix. Now, consider Pk = I. Then

condition λ
(

βPk Âv
k + β∗ Âv∗

k Pk

)
< 0 becomes λ

(
A′ + A′H

)
< 0, where A′H is the complex

conjugate matrix transposed of A′. Given that A′ + A′H is an interval Hermitian matrix, the
eigenvalues of A′ + A′H are all real, and therefore we can draw the conclusion that the system is
robustly asymptotic stable if the maximum eigenvalue of A′ + A′H is negative. Based on Theorem
3, a maximum eigenvalue of A′ + A′H is obtained at one of its vertex matrices, so eigenvalues of
all the matrices A− λiF are located in the α-Hurwitz region, and when in the graph topology G
a spanning tree is present, if there exists positive definite Hermitian matrices Pk = Pk

∗ > 0 ∈ Cn×n

such that λ
(

βPk Âv
k + β∗ Âv∗

k Pk

)
< 0 k = 2, . . . N holds for all Âk ∈ Âv

k , then the interval FO-
LTI system achieves consensus using Theorem 2.

Case 2. when 0 < α < 1 : by replacing Qk1 = Qk2 = I and β
(

Âv
k + Âv∗

k

)
= A′, condition

λ
(

β(Âv
k Qk2 + Qk1 Âv∗

k

)
+ β∗

(
Âv

k Qk1 + Qk2 Âv∗
k

)
) < 0 becomes λ

(
A′ + A′H

)
< 0 and the

proof is similar to the previous case.

(Necessary): Assume that the FOMAS system is swarm robust asymptotic stable
(achieves consensus) and a spanning tree is included in the graph topology G. Therefore,
the system in Equation (1) achieves consensus (or is swarm robust asymptotic stable)
if eigenvalues of all the matrices A − λiF (λi 6= 0) are located in the α-Hurwitz region.

Based on Lemma 2 for all 2
n2+n−2

2 matrices of 2n2
vertex matrices within the vertex set

defined in Equation (6), its equivalent to existence positive definite Hermitian matrices
Pk = Pk

∗ > 0 ∈ Cn×n such that λ
(

βPk Âv
k + β∗ Âv∗

k Pk

)
< 0 for case 1 when 1 < α < 2 and

there exist two matrices Qk1 = Qk1
∗ > 0 ∈ Cn×n and Qk2 = Qk2

∗ > 0 ∈ Cn×n such that
λ
(

β(Âv
k Qk2 + Qk1 Âv∗

k

)
+ β∗

(
Âv

k Qk1 + Qk2 Âv∗
k

)
) < 0 in case 2 when 0 < α < 1. �

We can dampen necessary and sufficient conditions in Theorem 4 to a more conserva-
tive condition in which we should only solve one Lyapunov inequality instead of N + 1 (for
k = 2, . . . N ) inequalities. It should also be noted that there are other similar techniques
that have been used in the study of robust network stability, for example [31].

The vertex matrices can be defined as follows:

Ãv =
{[

ãij
]

: Re
{

ãij
}
∈
{

min
(

aij − Re(λk) fij

)
,

max
(

aij − Re(λk) fij

)
}, Im

{
ãij
}
∈
{

min
(

Im(λk) fij
)

max
(

Im(λk) fij
)}

, k = 2, . . . ..k

(9)

The sufficient condition of robust consensus in the interval FOMAS is expressed in
Theorem 5 as follows:

Theorem 5. The interval swarm FOMAS achieves robust consensus if in the graph topology G

a spanning tree is included and for all 2
n2+n−2

2 matrices of 2n2
vertex matrices within the vertex set

defined in Equation (9):

Case 1. when 1 < α < 2, there exists a positive definite Hermitian matrix P = P∗ > 0 ∈ Cn×n

such that λ
(

βPÂv + β∗ Âv∗P
)
< 0 where β = ei(2−α) π

2
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Case 2. when 0 < α < 1, there exist two matrices Q1 = Q1
∗ > 0 ∈ Cn×n and

Q2 = Q2
∗ > 0 ∈ Cn×n such that λ

(
β(ÂvQ2 + Q1 Âv∗

)
+ β∗

(
ÂvQ1 + Q2 Âv∗

)
) < 0 where

β = ei(1−α) π
2 .

Proof. The interval matrices of vertex set defined in Equation (9) includes all interval
matrices of the vertex set defined in Equation (6). Therefore, if the graph topology G has

a spanning tree and for all 2
n2+n−2

2 matrices of 2n2
vertex matrices within the vertex set

defined in Equation (9) the condition of theorem 5 for Case 1 and Case 2 is satisfied, similar
to the proof presented in Theorem 3, the eigenvalues of all the matrices A− λiF located in the
α-Hurwitz region and the interval FOMAS system are robust and stable asymptotically. �

Remark 2. It is worth mentioning that if the dynamic matrices of the agents have complex coeffi-
cients, meaning that the elements of the matrices A and F are complex, there is no change in the
form of interval or vertex matrices in the format of Equations (5) and (6). Therefore, we can say
that the methodology of this paper is also valid for FOMAS in which the dynamic matrices of agents
have complex coefficients.

4. Simulation Results

In this section some numerical examples are presented as simulation results in order
to show the validity and effectiveness of the proposed theorems.

Example 1
For the first example, a triangular formation of three high-speed airplanes when flying

in rainy or snowy weather, as in Figure 1, and communicated using graph Ga, as in Figure 2,
was considered. The aim in this case was to achieve consensus on the orientation of these
airplanes in two dimensions. This example was first introduced in [5] as a fractional-order
multi-agent system.
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Due to the communications among airplanes, the orientation of each one depends on
the differences between its own orientation and that of others. Therefore, the following
fractional-order multi-agent model can describe the orientation of each airplane:

xi
α = Axi + F

3

∑
j=1

wij
(
xj − xi

)
, i ∈ {1, 2, 3} (10)
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Graph Ga shown in Figure 1 is concerned with

W =

0 1.2 0
0 0 0.4
0 0 0

;

The graph’s Laplacian matrix has the following eigenvalues:

λ(Ga) = {0 1.2 0.4}

where α = 0.8 , which makes β = e(1−α) π
2 i = 0.95 + 0.31i and A ∈ AI =

[
A, A

]
and

F ∈ FI =
[
F, F

]
with

A =

[
−0.1 0.7
−5.2 1.8

]
, A =

[
0.4 1.1
4.8 2.1

]
F =

[
5.2 −9.2
18 5.2

]
, F =

[
6 −9

18.5 5.9

]
The interval matrices of all matrices in the form of Equation (5) are Â ∈ ÂI =

[
Â, Â

]
with

Â =

[
−7.3 4.3
−27.4 −5.28

]
Â =

[
−1.68 12.14
−2.4 0.02

]
It is easy to check that all eigenvalues of vertex matrices in Equation (6) lay in the

stable region. In addition, the existence of Q1 = Q1
∗ > 0 and Q2 = Q2

∗ > 0 can be checked
by the LMI formulation or Lyapunov matrix equation, and one can find that Q1 = Q1

∗

and Q2 = Q2
∗ exists, such that the inequality in Equation (7) holds for all Â ∈ Âv, which

establishes the robust asymptotic stability of the fractional-order interval swarm system (10).
Figure 3 demonstrates the three agent trajectories in the Plane phase. The agents

converged, and they achieved consensus.
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Figure 4 displays the average distance between agents, indicating the relative move-

ments, which is h = 1
3 ∑2

k=1 ∑3
i=k+1

√(
x1

k(t)− x1
i(t)
)2

+
(
x2k(t)− x2i(t)

)2. It is evident
that the relative movements were Lyapunov asymptotically stable, which serves as another
demonstration of the agents’ convergence and the robust consensus of the interval FOMAS (10).
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Example 2
We then considered system (10) in the previous example where α =1.2 , which makes

β = e(2−α)π2 i = 0.31 + 0.95i and A ∈ AI =
[
A, A

]
and F ∈ FI =

[
F, F
]

with

A =

[
0.3 0.7
−5.2 1.8

]
, A =

[
0.4 3
4.8 2.1

]
F =

[
5.2 −10
18 19.5

]
, F =

[
10 −9

18.5 20

]
The trajectories of the agents are shown in Figure 5, and Figure 6 shows the average

distance between agents. The agents converged and system was robust swarm asymptoti-
cally stable.
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Example 3
We then considered Example 1 with graph Gb of five agents shown in Figure 7, which

is concerned with

w =


0

0.75
0

0.6
0

0
0

0.3
0
0

0
0
0
0
0

0
0
0
0

0.3

0.5
0.45

0
0
0

;
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Figure 7. Graph Ga, which includes a spanning tree.

The eigenvalues of the Laplacian matrix for the graph are

λ(Ga) = {0 1.2 0.3 0.7± 0.3742i}

We have α = 0.8, which makes β = e(1−α) π
2 i = 0.95 + 0.31i and A ∈ AI =

[
A, A

]
and

F ∈ FI =
[
F, F

]
, where A, A, F and F are the same as for Example 1. The interval matrices

of all matrices in the form of Equation (9) are Â ∈ ÂI =
[

Â, Â
]
, with

Â =

[
−5.84− 2.24i 3.4− 3.44i
−27.4− 6.92i −5.28− 2.21i

]
;

Â =

[
−1.16 + 2.24i 12.14 + 3.44i
−0.6 + 6.92i 0.54 + 2.21i

]
;
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That means that Re
{

Â
}
≤ Re

{
Â
}
≤ Re

{
Â
}

and Im
{

Â
}
≤ Im

{
Â
}
≤ Im

{
Â
}

.
We can easily check that all eigenvalues of vertex matrices lay in the stable region. The
existence of Q1 = Q1

∗ > 0 and Q2 = Q2
∗ > 0 can be evaluated using the LMI formulation.

Figure 7 shows the trajectories of the agents in the x–y plane. As is evident, although each
agent was not stable, the whole FOMAS achieved consensus.

Figure 8 is showing the trajectory of agents in X-Y plane and Figure 9 shows the average
distance between agents, which is calculated according to the formulation

h = 1
5 ∑4

k=1 ∑5
i=k+1

√(
x1

k(t)− x1
i(t)
)2

+
(
x2k(t)− x2i(t)

)2. It is evident that the relative
movements were Lyapunov asymptotically stable, which again prove that the agents con-
verged and the interval FOMAS in Equation (10) along with the graph in Figure 7 reached
robust consensus. As can be seen from Figures 8 and 9, the dynamic of each agent was
not stable. However, the average distance among the agents converged to zero, which
means consensus.
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5. Discussion

If we want to briefly discuss the idea presented in this paper, it should be said that if
the dynamic matrices of agents in a FOMAS are stable, they all tend to zero and consensus
is achieved. However, this consensus is due to the fact that the state variables of the
agents are zero, and as a result, it is an obvious consensus regardless of the communication
between agents.
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However, if the dynamics of the agents are unstable, that is, the agents take a divergent
path over time, it is still possible to converge together, which is discussed in Theorem
2. Unstable agents can still reach consensus if first, the graph between the agents has
a spanning tree (conceptually, this means that all the agents should be related to each other)
and second, the matrices A− λiF (λi 6= 0) are all α-Hurwitz.

Now, the problem is what should be done when the dynamics of individual agents, i.e.,
matrix A, and the interactive dynamics of agents, i.e., matrix F, have internal uncertainties.
To achieve consensus according to Theorem 1, it is necessary to check the stability of the
infinite matrix, which is not possible. In this paper, the idea is that it is not necessary to
check the stability of countless matrices.

In Theorem 4, it is shown that if the dynamic matrix of agents has internal uncer-
tainties, the consensus condition is that first, the graph between the agents has a span-
ning tree, and second, instead of countless matrices, only a limited number of vertex
matrices need to be used in Lyapunov inequalities in Theorem 4 to find some Hermi-
tian matrices P = P∗ > 0 ∈ Cn×n for 1 < α < 2 and Qk1 = Qk1

∗ > 0 ∈ Cn×n and
Qk2 = Qk2

∗ > 0 ∈ Cn×n for 0 < α < 1.
In Examples 1 to 3, as can be seen, despite the fact that the agents were all unstable and

the dynamics of the agents had internal uncertainties, because the conditions of Theorem
4 were satisfied for them, consensus was achieved and the average distance among the
agents converged to zero.

6. Conclusions

The consensus problem of high-order fractional-order multi-agent systems with in-
terval uncertainties is addressed in this paper for both fractional orders 0 < α < 1 and
1 < α < 2. In order to achieve consensus, this article provided a precise robust stability
requirement for interval FOMAS. It is established that the fractional-order interval linear
multi-agent system achieves consensus if and only if there are Hermitian matrices such that
some specific types of complex Lyapunov inequalities are met for all of the system vertex
matrices using the existence condition of the Hermitian. The efficiency of the suggested
strategy is proven by the simulation results.

Developing the dynamic model of agents in FOMAS in nonlinear form instead of
a linear one; considering other types of uncertainties, such as non-parametric uncertainties
instead of internal uncertainties; examining the conditions for reaching consensus in the
presence of faults and defects, external disturbances, unmolded dynamics, or unknown
inputs; and finally, the design of the input controller to achieve consensus in the presence of
various uncertainties in FOMAS can be considered as future works for the current research.
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