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Abstract: In this paper, we propose a flexible and general family of distributions based on an original
power-exponential transformation approach. We call it the modified generalized-G (MGG) family.
The elegance and significance of this family lie in the ability to modify the standard distributions by
changing their functional forms without adding new parameters, by compounding two distributions,
or by adding one or two shape parameters. The aim of this modification is to provide flexible shapes
for the corresponding probability functions. In particular, the distributions of the MGG family can
possess increasing, constant, decreasing, “unimodal”, or “bathtub-shaped“ hazard rate functions,
which are ideal for fitting several real data sets encountered in applied fields. Some members of the
MGG family are proposed for special distributions. Following that, the uniform distribution is chosen
as a baseline distribution to yield the modified uniform (MU) distribution with the goal of efficiently
modeling measures with bounded values. Some useful key properties of the MU distribution are
determined. The estimation of the unknown parameters of the MU model is discussed using seven
methods, and then, a simulation study is carried out to explore the performance of the estimates. The
flexibility of this model is illustrated by the analysis of two real-life data sets. When compared to fair
and well-known competitor models in contemporary literature, better-fitting results are obtained for
the new model.

Keywords: distribution family; uniform distribution; bathtub hazard rate; maximum product of
spacings; goodness-of-fit; parameter estimation; data analysis

MSC: 60E05; 62E15; 62F10

1. Introduction

Recently, some attempts have been made to introduce new families of distributions or
generalize some of the presented distributions to provide high flexibility in the modeling of
real phenomena based on data. They can involve special transformations that are possibly
modulated by one or several parameters.

For example, Marshall and Olkin [1] proposed a method of adding an extra shape
parameter to a given baseline distribution; the resulting distribution is known as the
“expanded Marshall-Olkin (MO) distribution”. In order to fix the idea, let us present the
mathematical foundations of the MO family. Consider an absolutely continuous baseline
distribution depending on a generic parameter vector denoted by ζ and with support
denoted by D ⊆ R, and the corresponding cumulative distribution function (cdf) and
probability density function (pdf) denoted by G(x; ζ) and g(x; ζ), respectively. Then the
survival function (sf) and pdf of the MO distribution are, respectively,
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F(x; υ, ζ) =
υG(x; ζ)

1− (1− υ)G(x; ζ)
, υ > 0, x ∈ D (1)

and

f (x; υ, ζ) =
υg(x; ζ)[

1− (1− υ)G(x; ζ)
]2 , (2)

where υ is a shape parameter and G(x; ζ) = 1− G(x; ζ). The MO family has inspired
numerous studies for the modeling of various physical phenomena and has been extended
in numerous ways. For more information, we refer the reader to the overview [2].

On the other hand, Eugene et al. [3] introduced a new family, which is generated
from the beta distribution, called the beta-generated family. Its corresponding cdf takes the
following form:

F(x; υ, ω, ζ) =
1

B(υ, ω)

∫ G(x;ζ)

0
uυ−1(1− u)ω−1du, υ, ω > 0, x ∈ D, (3)

where υ and ω are two additional parameters whose rule is to increase the skewness and to
vary tail weights, and B(a, b) =

∫ 1
0 ta−1(1− t)b−1dt is the standard beta function. The pdf

corresponding to Equation (3) is

f (x; υ, ω, ζ) =
1

B(υ, ω)
G(x; ζ)υ−1G(x; ζ)ω−1g(x; ζ). (4)

For further developments on the beta family, we redirect the reader to [4]. As a remark, by
taking ω = 1, the beta-generated family is reduced to the exponentiated-generated (ExG)
family initiated in [5] and further discussed in detail in [6]. This special family plays a
secondary role in our study.

Kumaraswamy’s work was also very inspiring in terms of proposing new modeling
alternatives, starting with Reference [7]. The Kumaraswamy (K) distribution is a two-
parameter distribution with support (0, 1) that has proven useful in many hydrological
applications. Its cdf is defined by

F(x; υ, ω) = 1− (1− xυ)ω, υ, ω > 0, x ∈ (0, 1), (5)

where υ and ω are two additional shape parameters. The corresponding pdf is

f (x; υ, ω) = υωxυ−1(1− xυ)ω−1. (6)

Based on the K distribution, Cordeiro and de Castro [8] introduced the K generated family.
Its cdf takes the following form:

F(x; υ, ω, ζ) = 1−
(
1− G(x; ζ)υ)ω, υ, ω > 0, x ∈ D, (7)

where υ and ω are two shape parameters. The corresponding pdf is

f (x; υ, ω, ζ) = υω g(x; ζ)G(x; ζ)υ−1(1− G(x; ζ)υ)ω−1. (8)

By taking υ = 1, the K generated family is reduced to the type 2 exponentiated-generated
(T2ExG) family, which will also play a secondary role in our study.

All the previous families and many other families in the statistical literature depend
on adding one or more shape parameters to a baseline distribution in order to provide
greater flexibility. This reason led the researchers to suggest alternative options that
unify certain current families based on straightforward functional transformations (power,
logarithmic, exponential, trigonometric, etc.). See, for example, the family based on a
special poly-exponential transformation in [9] and the sine-generated family introduced
in [10]. With this knowledge in mind, the findings of this paper are based on the following
new theoretical approach: Let H(x) be an sf of an absolutely continuous distribution with
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support (0, 1), and K(x) be a decreasing continuous function such that K(x) ∈ [0, 1] and
limx→0 K(x) = 1. Then, the following function is a valid cdf:

F(x) = 1− H(x)K(x). (9)

It is important to note that K(x) is not necessarily a valid sf because we can have
limx→1 K(x) 6= 0, which allows for a wide range of functions. With the mathematical
structure of Equation (9), various families can be created, but one interesting way is to
choose H(x) and K(x) of different nature to enrich the functionalities of F(x). In this paper,
we follow this line by adopting an original power-exponential transformation approach:
we chose H(x) as the sf of the T2ExG family defined with a certain generic baseline
distribution, and K(x) as a decreasing exponential function compounds with a possible
other baseline distribution. This created “unified family” is called the modified generalized-G
(MGG) family. The new MGG family has the following significant and desirable ambitions
in addition to its innovative construction:

• Thanks to its power-exponential transformation approach, the MGG family is capable
of modifying the standard baseline distributions by changing their functional forms
without adding any additional shape parameter.

• It can also provide more flexible generalized forms by adding one or two shape parameters.
• It can be considered as a compounding family. The MGG family can provide new

generalized distributions by compounding two different baseline distributions.
• The special sub-distributions of the MGG family accommodates all important haz-

ard rate (hr) shapes including bathtub, constant, upside down bathtub, increasing,
decreasing–increasing–decreasing, and decreasing shapes. Hence, its special distribu-
tions can model different types of real-life data in many applied sciences.

• The MGG family is not generated based on the well-known baseline distributions
similar to the MO, beta-generated, ExG, and K families.

• The special sub-distributions of the MGG family provide consistently better fits than
its competing and baseline distributions.

All of these claims are supported in the paper with thorough investigations of theory
and practice, as well as with the aid of graphics and quantitative information.

To be more specific, the paper is structured as follows: In Section 2, we define the
MGG family and its important sub-families. In Section 3, we provide three special sub-
distributions of the MGG family. In Section 4, the modified uniform (MU) distribution is
studied with its analytical shapes. Section 5 provides some of its statistical properties. In
Section 6, the parameters of the MU model are estimated using some classical estimation
methods. A simulation study to compare the behavior of different estimates is presented in
Section 7. In Section 8, the MU distribution is fitted to two real data sets. Finally, Section 9
offers some concluding remarks.

2. The New MGG Family

This section introduces and discusses the MGG family.

2.1. Definition

Assume that there are two absolutely continuous baseline distributions. The first
one is defined on (a, b) ⊆ R with cdf G1(x; ζ1) and pdf g1(x; ζ1), while the second one is
defined on (a, c) ⊆ R with cdf G2(x; ζ2) and pdf g2(x; ζ2), where −∞ ≤ a < b < c ≤ ∞.
Based on Equation (9), the cdf of the MGG family can be written as follows:

F(x; υ, ω, ζ1, ζ2) = 1− H(x; υ, ζ1)K(x; , ω, ζ2), υ, ω > 0, x ∈ (a, b), (10)

where H(x; υ, ζ1) = G1(x; ζ1)
υ and K(x; , ω, ζ2) = e−G2(x;ζ2)

ω
, and υ and ω are two shape

parameters. Hence, this cdf can be expressed in a more direct manner as
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F(x; υ, ω, ζ1, ζ2) = 1− G1(x; ζ1)
υe−G2(x;ζ2)

ω

. (11)

Here, H(x; υ, ζ1) is the sf of the T2ExG family with the baseline cdf G1(x; ζ1) and parameter
υ, and K(x; , ω, ζ2) is a decreasing exponential transformation of the cdf of the (standard)
ExG family with the baseline cdf G2(x; ζ2) and parameter ω.

There are some deep stochastic order connections between the MGG and T2ExG
families, which are presented in the next proposition.

Proposition 1.

• The following first order stochastic dominance property holds:

F∗(x; υ, ζ1) ≤ F(x; υ, ω, ζ1, ζ2), (12)

where F∗(x; υ, ζ1) = 1− G1(x; ζ1)
υ is the cdf of the T2ExG family. Moreover, for x such that

G2(x; ζ2) ∈ [0, 1), we have limω→∞ F(x; υ, ω, ζ1, ζ2) = F∗(x; υ, ζ1).
• The following first order stochastic dominance property holds:

F(x; υ, ω, ζ1, ζ2) ≤ F∗∗(x; υ, ω, ζ1, ζ2), (13)

where F∗∗(x; υ, ω, ζ1, ζ2) = 1−G1(x; ζ1)
υ[1− G2(x; ζ2)

ω] is the cdf of the random variable
min(U, V), where U is a random variable having the cdf of the T2ExG family with the baseline
cdf G1(x; ζ1) and parameter υ, and V is a random variable having the cdf of the ExG family
with the baseline cdf G2(x; ζ2) and parameter ω, with U and V independent.

Proof.

• Since e−G2(x;ζ2)
ω
≤ 1, the first inequality immediately follows. For x such that

G2(x; ζ2) ∈ [0, 1), it is clear that limω→∞ G2(x; ζ2)
ω = 0, and limω→∞ e−G2(x;ζ2)

ω
= 1.

• The following exponential inequality holds: ex ≥ 1 + x for all x ∈ R. This implies
that e−G2(x;ζ2)

ω
≥ 1− G2(x; ζ2)

ω , and the stated first order stochastic dominance. The
nature of the cdf F∗∗(x; υ, ω, ζ1, ζ2) can be proved as follows:

F∗∗(x; υ, ω, ζ1, ζ2) = P(min(U, V) ≤ x) = 1− P(min(U, V) > x)

= 1− P(U > x)P(V > x) = 1− G1(x; ζ1)
υ[1− G2(x; ζ2)

ω].
This ends the proof of Proposition 1.

The combination of power and exponential functions, as well as the presence of the
parameters υ and ω, gives the MGG family a wide range of functional possibilities. This
aspect will be illustrated later with an in-depth study of special distributions, supported by
graphical and theoretical analyses.

From Equation (11), we derive the corresponding pdf of the MGG family, which takes
the following form:

f (x; υ, ω, ζ1, ζ2) =
[
υg1(x; ζ1) + ωg2(x; ζ2)G1(x; ζ1)G2(x; ζ2)

ω−1
]

G1(x; ζ1)
υ−1e−G2(x;ζ2)

ω

. (14)

From Equations (11) and (14), the hr function (hrf) of the MGG family reduces to

ϕ(x; υ, ω, ζ1, ζ2) = υϕ1(x; ζ1) + ωg2(x; ζ2)G2(x; ζ2)
ω−1, (15)

where ϕ1(x; ζ1) is the hrf corresponding to the first baseline distribution, i.e., ϕ1(x; ζ1) =
g1(x; ζ1)/G1(x; ζ1). Equation (15) shows that the considered hrf depends on the values of
the parameters υ and ω in a comprehensive manner.

2.2. Two Important Sub-Families

The MGG family has two important special cases as follows.
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If the two baseline distributions are identical with the same parameter vector, say ζ,
we obtain the modified-G (MG) family as a special case from the MGG family. The MG
family is specified by the following cdf:

F(x; υ, ω, ζ) = 1− G(x; ζ)υe−G(x;ζ)ω

, υ, ω > 0, x ∈ D ⊆ R. (16)

The corresponding pdf has the following form:

f (x; υ, ω, ζ) =
(

υ + ωG(x; ζ)G(x; ζ)ω−1
)

g(x; ζ)G(x; ζ)υ−1e−G(x;ζ)ω

. (17)

The hrf of the MG family becomes

ϕ(x; υ, ω, ζ) = υϕ1(x; ζ) + ω g(x; ζ)G(x; ζ)ω−1, (18)

where ϕ1(x; ζ) is the hrf of the baseline distribution.
The most important special case of the MGG family follows from the MG family itself

with υ = ω = 1. This is one of the most important motivations of the proposed MGG family,
where the resulting family has the ability to generate new flexible distributions without
adding any extra parameter to the baseline distribution. Hence, by setting υ = ω = 1 in
Equation (16), we obtain the cdf of the reduced modified-G (RMG) family as

F(x; ζ) = 1− G(x; ζ)e−G(x;ζ), x ∈ D. (19)

The corresponding pdf of the RMG family is

f (x; ζ) =
(
1 + G(x; ζ)

)
g(x; ζ)e−G(x;ζ). (20)

3. Some Special MGG Distributions

In this section, we provide some specific distributions of the MGG family to show
the flexible shapes of the generated distributions. To accomplish this goal, we select some
well-known lifetime distributions for the baseline distributions, which have always been
useful in statistical modeling. See, example, the survey in [11]. More precisely, we define
the modified Weibull–Fréchet (MWF), modified Weibull–Burr III (MWB), and modified
exponential-exponential (ME) distributions. The MGG family provides more flexibility in
terms of the hrf of its special sub-distributions in comparison with the respective baseline
distributions. Particularly, these hrfs can have bathtub, increasing, unimodal, decreasing,
constant, or modified bathtub shapes.

3.1. The MWF Distribution

We define the MWF distribution by taking the Weibull (W) and Fréchet (F) distribu-
tions as baseline distributions in the MGG family. Let us now consider the cdf of the W
distribution with parameters δ, λ > 0, given by G1(x; δ, λ) = 1− e−δxλ

for x > 0, and the
cdf of the F distribution with parameters τ, β > 0, given by G2(x; τ, β) = e−τx−β

for x > 0.
Then, the cdf of the MWF distribution follows from Equation (11):

F(x; α, λ, θ, β) = 1− e−αxλ−e−θx−β

, α, λ, θ, β > 0, x > 0,

where α = υδ and θ = ωτ.
In addition, the pdf and hrf of the MWF distribution are, respectively,

f (x; α, λ, θ, β) =
(

αλxλ−1 + θβx−β−1e−θx−β
)

e−αxλ−e−θx−β

and

ϕ(x; α, λ, θ, β) = αλxλ−1 + θβx−β−1e−θx−β
.
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3.2. The MWB Distribution

The cdfs of the W and Burr III (B) distributions are, respectively, G1(x; δ, λ) = 1− e−δxλ
,

x > 0, δ, λ > 0 and G2(x; θ, τ) =
(
1 + x−θ

)−τ , x > 0, θ, τ > 0. Then, the cdf of the MWB
distribution follows from Equation (11):

F(x; α, λ, θ, β) = 1− e−αxλ−(1+x−θ)
−β

, α, λ, θ, β > 0, x > 0,

where α = υδ and β = ωτ.
The pdf and hrf of the MWB distribution are, respectively,

f (x; α, λ, θ, β) =

(
αλxλ−1 + βθx−θ−1

(
1 + x−θ

)−β−1
)

e−αxλ−(1+x−θ)
−β

and
ϕ(x; α, λ, θ, β) = αλxλ−1 + βθx−θ−1

(
1 + x−θ

)−β−1
.

3.3. The ME Distribution

Let G1(x; θ) = G2(x; θ) = 1 − e−θx for x > 0 be a common baseline exponential
distribution with a scale parameter θ > 0. Then, the cdf of the ME distribution reduces to

F(x; α, θ, ω) = 1− e−αx−(1−e−θx)
ω

, α, θ, ω > 0, x > 0,

where α = υθ.
The pdf and hrf of the ME distribution has the following forms, respectively:

f (x; α, θ, ω) =

(
α + ωθ

(
1− e−θx

)ω−1
e−θx

)
e−αx−(1−e−θx)

ω

and
ϕ(x; α, θ, ω) = α + ωθ

(
1− e−θx

)ω−1
e−θx.

It can be noted that if υ = 1 and ω = 1, a new exponential distribution with one parameter
and decreasing hrf is generated.

Figure 1 illustrates some of the possible shapes of the pdfs and hrfs for the MWF, MWB
and ME distributions. These plots show that the MGG family provides a great flexibility in
terms of the shapes of the pdfs and hrfs of its special sub-distributions.
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Figure 1. Plots of the pdfs and hrfs of the considered special MGG distributions.

4. The Modified Uniform Distribution

In this section, we introduce a new double bounded distribution called the modified-
uniform (MU) distribution, as a special case of the MGG family, with support (0, θ) and
derive some of its properties.

Let G1(x; θ) = G2(x; θ) = x/θ for x ∈ (0, θ) be a common baseline uniform distribu-
tion with a scale parameter θ > 0. By virtue of Equation (11), the cdf of the MU distribution
takes the form

F(x; υ, ω, θ) = 1−
(

1− x
θ

)υ
e−(

x
θ )

ω

, υ, ω > 0, x ∈ (0, θ). (21)

Its pdf has the form

f (x; υ, ω, θ) =
1
θ

(
υ + ω

(
1− x

θ

)( x
θ

)ω−1
)(

1− x
θ

)υ−1
e−(

x
θ )

ω

. (22)

The parameters of the MU distribution can be reduced by setting θ = 1, making it suitable
to model phenomena with values in (0, 1) (such as rescaled data, proportions, percentages,
etc.). It thus belongs to the family of the unit distributions. In this case, the cdf of the MU
distribution is given by

F(x; υ, ω) = 1− (1− x)υe−xω
, υ, ω > 0, x ∈ (0, 1). (23)

Since, for x ∈ (0, 1), limω→∞ F(x; υ, ω) = 1− (1− x)υ, the functional limit that corre-
sponds to the cdf of the type 2 power distribution, the MU distribution can be viewed as an
extension of the type 2 power distribution.

The corresponding pdf and hrf of the MU distribution have the forms

f (x; υ, ω) =
(

υ + ω(1− x)xω−1
)
(1− x)υ−1e−xω

(24)

and
ϕ(x; υ, ω) =

υ

1− x
+ ωxω−1. (25)

The limits of the pdf of the MU distribution as x → 0 and as x → 1 are presented below.
We have

lim
x→0

f (x; υ, ω) =


∞ ω < 1,
υ + 1 ω = 1,
υ ω > 1

and

lim
x→1

f (x; υ, ω) =


∞ υ < 1,
υe−1 υ = 1,
0 υ > 1.

We observe that the values of ω are discriminating for the limit x → 0, whereas the
values of υ are discriminating for the limit x → 1. This is a preliminary theoretical result
demonstrating the significance of these parameters in the possible shapes of the pdf.
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Indeed, an important characteristic of the MU distribution is that its pdf can be mono-
tonically decreasing, increasing, unimodal, bathtub, and N-shaped, i.e., strictly increasing,
and then followed by a bathtub shape. The plots of this pdf for different parameter values
are given in Figure 2.
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Figure 2. Plots for the pdf of the MU distribution.

The hrf limits of the MU distribution as x → 0 and x → 1 are determined below.
We have

lim
x→0

ϕ(x; υ, ω) =


∞ ω < 1,
υ + ω ω = 1, and lim

x→1
ϕ(x; υ, ω) = ∞.

υ ω > 1

The following theorem shows mathematically that the hrf of the MU distribution can
be increasing- or bathtub-shaped.

Theorem 1. The hrf of the MU distribution is increasing-shaped for ω ≥ 1 and is bathtub-shaped
for ω < 1 for all values of υ.

Proof. From Equation (25), we have

ϕ′(x; υ, ω) = υ(1− x)−2 + ω(ω− 1)xω−2.

For ω ≥ 1, ϕ′(x; υ, ω) > 0, as a result, the hrf is increasing-shaped. On the other hand, the
roots of ϕ′(x; υ, ω) exist and are unique for ω < 1; then, the hrf is bathtub-shaped since
lim
x→0

ϕ(x; υ, ω) = lim
x→1

ϕ(x; υ, ω) = ∞. This ends the proof.

Additionally, it is noted that the hrf of the MU distribution cannot be decreasing-
shaped.

The shape of the hrf, which can be monotonically increasing- or bathtub-shaped,
depends only on the value of ω. The plots of the hrf of the MU distribution for different
parameter values are given in Figure 3, supporting the findings of Theorem 1.
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Figure 3. Plots for the hrf of the MU distribution.

5. Properties of the MU Distribution

In the following subsections, we present some basic statistical features of the MU
distribution. Hereafter, X denotes a random variable that has this distribution.
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5.1. Moments

The following theorem proposes a manageable expansion of the rth raw moment of X
depending on values of the standard beta function.

Theorem 2. For any integer r ≥ 0, the rth raw moment of X is obtained by

µ
′
r = E(Xr) =

∞

∑
i=0

(−1)i

i!
[υB(iω + r + 1, υ) + ωB((i + 1)ω + r, υ + 1)]. (26)

Proof. The classical exponential series expansion can be formulated as

e−xω
=

∞

∑
i=0

(−1)i

i!
xiω,

for any x ∈ R. Substituting in Equation (24), the following expansion holds:

f (x; υ, ω) =
∞

∑
i=0

(−1)i

i!

(
υ + ω(1− x)xω−1

)
(1− x)υ−1xiω. (27)

Using direct integration, the rth moment of X reduces to

µ
′
r =

∫ 1

0
xr f (x; υ, ω)dx

=
∞

∑
i=0

(−1)i

i!

∫ 1

0

(
υ + ω(1− x)xω−1

)
(1− x)υ−1xiω+rdx

=
∞

∑
i=0

(−1)i

i!

(
υ
∫ 1

0
xiω+r(1− x)υ−1dx + ω

∫ 1

0
x(i+1)ω+r−1(1− x)υdx

)

=
∞

∑
i=0

(−1)i

i!
[υB(iω + r + 1, υ) + ωB((i + 1)ω + r, υ + 1)].

This completes the proof of the theorem.

Remark 1. For the very special case where υ is a nonnegative integer, we can deal with the raw
moments defined with finite sums and the incomplete gamma function. Indeed, we can write
f (x; υ, ω) using the standard binomial formula for (1− x)υ−1 and (1− x)υ as

f (x; υ, ω) = υ
υ−1

∑
i=0

(−1)ixie−xω
+ ω

υ

∑
i=0

(−1)ixi+ω−1e−xω
.

As a result of integrating over (0, 1) and changing the variables y = xω, we have

µ
′
r =

υ

ω

υ−1

∑
i=0

(−1)iγ

(
r + i + 1

ω
, 1
)
+

υ

∑
i=0

(−1)iγ

(
r + i

ω
+ 1, 1

)
,

where γ(a, x) =
∫ x

0 ta−1e−tdt is the incomplete gamma function.

Based on Theorem 2, by adopting a computational viewpoint, we can approximate µ
′
r as

µ
′
r ≈

I

∑
i=0

(−1)i

i!
[υB(iω + r + 1, υ) + ωB((i + 1)ω + r, υ + 1)],
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where I denotes a large but practical integer, say the arbitrary value of I = 40. In addition,
the mean X is obtained as µ = µ

′
1, the variance of X follows from µ

′
2 and µ by using

the Koenig–Huygens formula, and the central moments are derived from the following
formula:

µr = E[(X− µ)r] =
r

∑
j=0

(
r
j

)
(−1)jµjµ

′
r−j. (28)

Using these central moments, the coefficients of kurtosis and asymmetry of X can be
obtained according to the following relations, respectively:

β2 =
µ4

µ2
2
=

µ
′
4 − 4µ

′
3µ + 6µ

′
2µ2 − 3µ4(

µ
′
2 − µ2

)2 (29)

and

√
β1 =

µ3

µ3/2
2

=
µ
′
3 − 3µ

′
2µ + 2µ3(

µ
′
2 − µ2

)3/2 . (30)

Table 1 presents some important moment measures of X for various parameter com-
binations, and it can be seen that the proposed distribution may be right-skewed or left-
skewed, and platy-, meso- or lepto-kurtic, according to the values of υ and ω.

Table 1. Some moment measures of X for various parameter combinations

Actual Values
Mean Variance Kurtosis Asymmetry

υ ω

0.05

0.05 0.3684 0.2150 1.3509 0.5435

0.20 0.4204 0.2003 1.2686 0.6065

2.00 0.7196 0.0774 2.1643 −0.6270

3.50 0.7971 0.0478 3.3934 −1.0417

0.20

0.05 0.3237 0.1819 1.6746 0.7206

0.20 0.3731 0.1713 1.5166 −0.1995

2.00 0.6494 0.0818 1.9664 −0.3867

3.50 0.7166 0.0642 2.7795 −0.7920

2.00

0.05 0.1338 0.0467 4.8759 1.6895

0.20 0.1656 0.0470 4.2450 1.4378

2.00 0.3042 0.0459 2.6757 0.6525

3.50 0.3221 0.0498 2.4263 0.5397

3.50

0.05 0.0907 0.0235 6.7032 2.0990

0.20 0.1157 0.0243 2.9443 1.7159

2.00 0.2109 0.0275 3.5139 0.9722

3.50 0.2191 0.0297 3.3167 0.9246

Remark 2. The following elaborated formula can be used to provide an alternative result of
Theorem 2: µ

′
r = r

∫ 1
0 xr−1[1− F(x; υ, ω)]dx, which is valid in our setting for r ≥ 1. It gives
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µ
′
r = r

∫ 1

0
xr−1(1− x)υe−xω

dx = r
∞

∑
i=0

(−1)i

i!

∫ 1

0
xiω+r−1(1− x)υdx

= r
∞

∑
i=0

(−1)i

i!
B(iω + r, υ + 1).

This formula is simpler than those in Theorem 2, but the moment techniques are not easily transpos-
able to other moments measures, such as those presented in the following.

We complete this moment study by indicating a possible expansion for the moment
generating function (mgf) of X. First, a well-known expansion gives

M(t) = E(etX) =
∞

∑
r=0

tr

r!
µ
′
r, (31)

where t ∈ R.
Making use of Theorem 2, the mgf of X has the form

M(t) =
∞

∑
r=0

∞

∑
i=0

(−1)itr

i!r!
[υB(iω + r + 1, υ) + ωB((i + 1)ω + r, υ + 1)], (32)

where t ∈ R.

5.2. Quantile Function

The solution of the following nonlinear equation yields the expression for the qth

quantile of the MU distribution, say xq:

υ log
(
1− xq

)
− xω

q − log(1− q) = 0. (33)

This solution can only be determined numerically. By setting q = 0.5 in Equation (33), one
can obtain the median (M) of the MU distribution. Furthermore, the lower and higher
quartiles can be obtained by setting q = 0.25 and q = 0.75, respectively.

5.3. Mean Deviation

The theorem below investigates an expansion of the mean deviation (MD) of X about
the mean and the one about the median in terms of the values of the incomplete beta function.

Theorem 3. The MD of X about the mean and the median can be expanded as, respectively,

MD(µ) = E(|X− µ|) = 2µF(µ; υ, ω)

− 2
∞

∑
i=0

(−1)i

i!
(
υBµ(iω + 2, υ) + ωBµ((i + 1)ω + 1, υ + 1)

)
(34)

and

MD(M) = E(|X−M|) = 2M F(M; υ, ω) + µ−M

− 2
∞

∑
i=0

(−1)i

i!
(
υBµ(iω + 2, υ) + ωBµ((i + 1)ω + 1, υ + 1)

)
, (35)

where Bx(a, b) =
∫ x

0 ta−1(1− t)b−1dt is the incomplete beta function.

Proof. By the definition of the MD about the mean, we have
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MD(µ) =
∫ 1

0
|x− µ| f (x; υ, ω)dx

=
∫ µ

0
(µ− x) f (x; υ, ω)dx +

∫ 1

µ
(x− µ) f (x; υ, ω)dx.

After simplification, we have

MD(µ) = 2µF(µ; υ, ω)− 2
∫ µ

0
x f (x; υ, ω)dx. (36)

The result in Equation (34) follows upon substitution of Equation (27) into Equation (36).
On the other hand, by the definition of the MD about the median, we also have

MD(M) =
∫ 1

0
|x−M| f (x; υ, ω)dx

=
∫ M

0
(M− x) f (x; υ, ω)dx +

∫ 1

M
(x−M) f (x; υ, ω)dx

= 2M F(M; υ, ω) + µ−M− 2
∫ M

0
x f (x; υ, ω)dx. (37)

Substituting Equation (27) into Equation (37), we obtain the result in Equation (35).

5.4. Order Statistics

Order statistics of a given distribution naturally appear in various random systems
and estimation methods. Here, some of their basic distributional properties in the context
of the MU distribution are presented. Let X(1), X(2), . . . , X(n) be the order statistics obtained
from a random sample from the MU distribution with parameters υ and ω. Then, the pdf
of the kth order statistic, say X(k), is defined as

f(k)(x; υ, ω) =
1

B(k, n− k + 1)
[F(x; υ, ω)]k−1[F(x; υ, ω)

]n−k f (x; υ, ω). (38)

It can be simplified as

f(k)(x; υ, ω) =
1

B(k, n− k + 1)

k−1

∑
j=0

(
k− 1

j

)
(−1)j[F(x; υ, ω)

]n+j−k f (x; υ, ω). (39)

On the ther hand, the cdf of X(k) can be expressed as

F(k)(x; υ, ω) =
n

∑
j=k

(
n
j

)
[F(x; α, θ)]j

[
F(x; υ, ω)

]n−j, (40)

which can be reduced to

F(k)(x; υ, ω) =
n

∑
j=k

j

∑
l=0

(
n
j

)(
j
l

)
(−1)l[F(x; υ, ω)

]n+l−j. (41)

Using Equations (23) and (24) and the series expansion, then the pdf and cdf of X(k) have
the following infinite polynomial series expansions, respectively:

f(k)(x; υ, ω) =
υ + ω(1− x)xω−1

B(k, n− k + 1)

k−1

∑
j=0

∞

∑
l=0

∞

∑
m=0

(
k− 1

j

)(
aυ− 1

l

)
(−1)j+l+m

m!
xω m+lam (42)

and

F(k)(x; α, θ) =
n

∑
j=k

j

∑
l=0

∞

∑
i=0

∞

∑
m=0

(
n
j

)(
j
l

)(
bυ

i

)
(−1)l+i+m

m!
bmxm ω+i, (43)
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where a = n + j− k + 1 and b = n + l − j.
These simple polynomial expansions open the door for more manipulation of the

characteristics of X(k), especially its moment properties.
The pdf and cdf of the distributions of the minimum and the maximum order statistics

of the MU distribution are obtained from Equations (42) and (43) with k = 1 and k = n,
respectively.

6. Estimation of the Parameters of the MU Model

We are now in position to estimate the parameters of the MU model using different
techniques.

6.1. Maximum Likelihood Estimates

In the following, the estimation of unknown parameters of the MU model by the
maximum likelihood (ML) is derived. Suppose that X1, X2, . . . , Xn forms a random sample
from the MU distribution, and x1, x2, . . . , xn are their respective observations. Then, the log
likelihood function is given by

L(υ, ω) = (υ− 1)
n

∑
i=1

log(1− xi) +
n

∑
i=1

log
[
υ + ω(1− xi)xω−1

i

]
−

n

∑
i=1

xω
i . (44)

The ML estimates (MLEs) of υ and ω can be obtained by maximizing L(υ, ω) with respect to
υ and ω, respectively. In our case, this is equivalent to solve simultaneously the following
nonlinear equations: ∂L(υ, ω)/∂υ = 0 and ∂L(υ, ω)/∂ω = 0. Hereafter, for the sake of
readability, the involved partial derivatives are expressed in Appendix A.

6.2. Least-Squares and Weighted Least-Squares Estimates

Swain et al. [12] introduced the least-squares (LS) and the weighted LS (WLS) methods.
The LS estimates (LSEs) of the parameters of the MU model can be obtained by minimizing
the following error function:

LS(υ, ω) =
n

∑
i=1

(
F
(

x(i); υ, ω
)
− i

n + 1

)2
, (45)

with respect to υ and ω, where x(i) is the ith smallest observation among x1, x2, . . . , xn. This
is equivalent to solve simultaneously the following nonlinear equations: ∂LS(υ, ω)/∂υ = 0
and ∂LS(υ, ω)/∂ω = 0.

On the other hand, Gupta and Kundu [13] introduced the WLS estimates (WLSEs),
obtained by minimizing the following error function:

WLS(υ, ω) =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

(
F
(

x(i); υ, ω
)
− i

n + 1

)2
, (46)

with respect to the unknown parameters. As a result, we can determine them by solving
the following nonlinear equations: ∂WLS(υ, ω)/∂υ = 0 and ∂WLS(υ, ω)/∂ω = 0.

6.3. Maximum Product of Spacing Estimates

Cheng and Amin [14] proposed the maximum product of spacing (MPS) method
based on the geometric mean function of the differences defined by

GM(υ, ω) = n+1

√√√√n+1

∏
i=1

(
F
(

x(i); υ, ω
)
− F

(
x(i−1); υ, ω

))
, (47)

where F
(

x(0); υ, ω
)

= 0 and F
(

x(n+1); υ, ω
)

= 1. Its logarithmic transformation is de-
fined by
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log GM(υ, ω) =
1

n + 1

n+1

∑
i=1

log
(

F
(

x(i); υ, ω
)
− F

(
x(i−1); υ, ω

))
. (48)

Maximizing this function with respect to υ and ω yields the MPS estimates (MPSEs). We
can determine them by solving the following nonlinear equations: ∂ log GM(υ, ω)/∂υ = 0
and ∂ log GM(υ, ω)/∂ω = 0.

6.4. Cramér–von Mises Estimates

As a type of minimum distance estimation method, Choi and Bulgren [15] introduced
the Cramér–von Mises (CM) method. This method depends on the CM statistic, which,
according to [16], can be written as

C(υ, ω) =
1

12n
+

n

∑
i=1

(
F
(

x(i); υ, ω
)
− 2i− 1

2n

)2
. (49)

Then, the CM estimates (CMEs) can be obtained by minimizing the CM statistic with
respect to υ and ω. We can find them by solving the following nonlinear equations:
∂C(υ, ω)/∂υ = 0 and ∂C(υ, ω)/∂ω = 0.

6.5. Anderson–Darling and Right-Tail Anderson–Darling Estimates

The Anderson–Darling (AD) method was introduced by Anderson and Darling [17,18]
and it depends on the AD statistic, which, according to [16], can be calculated as

A(υ, ω) = −n− 1
n

n

∑
i=1

(2i− 1)
[
log F

(
x(i); υ, ω

)
+ log

(
1− F

(
x(i); υ, ω

))]
. (50)

Therefore, AD estimates (ADEs) can be obtained by minimizing the AD statistic with
respect to υ and ω. We can evaluate them by solving the following nonlinear equations:
∂A(υ, ω)/∂υ = 0 and ∂A(υ, ω)/∂ω = 0.

On the other hand, Luceno [19] applied some modifications on the AD statistic to
define the right-tail Anderson–Darling (RAD) statistic, which is specified by

RA(υ, ω) =
n
2
− 2

n

∑
i=1

F
(

x(i); υ, ω
)
− 1

n

n

∑
i=1

(2i− 1) log
(

1− F
(

x(i); υ, ω
))

. (51)

The RAD estimates (RADEs) are obtained by minimizing the RAD statistic with respect
to υ and ω. We can determine them by solving the following nonlinear equations:
∂RA(υ, ω)/∂υ = 0 and ∂RA(υ, ω)/∂ω = 0.

Note that all the above nonlinear systems do not have explicit solutions, so we use the
nlminb and optim functions in R software to solve them.

7. Simulation Analysis

Now, a simulation study is performed to verify the performance and efficiency of
the different estimates of the parameters of the MU model. Different sample sizes, n, and
several values of the unknown parameters υ and ω are considered, and each scenario is
replicated 5000 times. The procedure for evaluating the suggested estimates is as follows:

1. Initialize n, υ, and ω.
2. Generate a sample of observations from the MU distribution of size n.
3. The outcomes in step 2 are used to compute the Θ̂ = (υ̂, ω̂) considering the MLEs,

LSEs, WLSEs, MPSEs, CMEs, ADEs, and RADEs.
4. The above steps are repeated 5000 times.
5. Using Θ̂ and Θ, compute the biases and the mean squared errors (MSEs).
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The bias and MSEs of the MLEs, LSEs, WLSEs, CMEs, and MPSEs are reported in
Tables 2–4. The partial and overall ranks of these estimates are calculated in Table 5. From
these tables, it is noted that:

• All estimates show the property of consistency, i.e., the MSEs decrease as the sample
size increases for all the parameter combinations.

• According to the MSEs, the ordering of performance of the estimates (from best to
worst) for υ is MLEs, ADEs, RADEs, WLSEs, MPSEs, LSEs, and CMEs.

• In addition, the ordering of performance of the estimates (from best to worst) for ω is
ADEs, LSEs, WLSEs, MLEs, MPSEs, CMEs, and RADEs.

Table 2. Bias and MSEs of different estimates for υ = 0.4 and ω = 1.

n Est. Est. Par. MLEs LSEs WLSEs MPSEs CMEs ADEs RADEs

20

Bias
υ̂ 0.1086 0.0478 0.0520 0.2254 0.1176 0.0717 0.0831

ω̂ 0.5467 0.2139 0.7280 0.6676 0.5030 0.4216 0.6893

MSEs
υ̂ 0.0662 0.0796 0.0665 0.1385 0.1085 0.0590 0.0642

ω̂ 7.5127 2.1804 8.7361 11.4240 5.4094 8.4160 12.0124

50

Bias
υ̂ 0.0476 0.0186 0.0255 0.0883 0.0430 0.0300 0.0327

ω̂ 0.1424 0.0517 0.0844 0.1372 0.1253 0.0541 0.1439

MSEs
υ̂ 0.0142 0.0254 0.0215 0.0279 0.0300 0.0158 0.0146

ω̂ 3.5215 0.2140 0.3556 2.8197 0.4101 0.1485 2.1318

100

Bias
υ̂ 0.0288 0.0069 0.0122 0.0467 0.0224 0.0158 0.0179

ω̂ 0.0294 0.0197 0.0218 0.0139 0.0420 0.0192 0.0391

MSEs
υ̂ 0.0049 0.0105 0.0082 0.0085 0.0120 0.0055 0.0053

ω̂ 0.0580 0.0453 0.0262 0.0957 0.0413 0.0187 0.0690

200

Bias
υ̂ 0.0135 0.0031 0.0073 0.0254 0.0093 0.0085 0.0084

ω̂ 0.0065 0.0086 0.0104 −0.0019 0.0198 0.0080 0.0128

MSEs
υ̂ 0.0014 0.0048 0.0039 0.0030 0.0052 0.0017 0.0015

ω̂ 0.0082 0.0137 0.0122 0.0094 0.0144 0.0049 0.0081

Table 3. Bias and MSEs of different estimates for υ = 0.5 and ω = 0.8.

n Est. Est. Par. MLEs LSEs WLSEs MPSEs CMEs ADEs RADEs

20
Bias

υ̂ 0.1314 0.0608 0.0624 0.2566 0.1476 0.0781 0.0581

ω̂ 0.4218 0.1765 0.2175 0.4157 0.3217 0.2250 0.2795

MSEs
υ̂ 0.1098 0.1215 0.1104 0.1942 0.1679 0.0904 0.0537

ω̂ 5.1726 1.2522 1.5926 6.8543 2.4182 5.3634 3.7420

50
Bias

υ̂ 0.0490 0.0164 0.0245 0.1043 0.0512 0.0291 0.0343

ω̂ 0.0864 0.0369 0.0431 0.0410 0.0905 0.0459 0.0799

MSEs
υ̂ 0.0217 0.0349 0.0301 0.0391 0.0424 0.0255 0.0251

ω̂ 0.5554 0.0837 0.0759 0.6855 0.7412 0.2166 0.2312

100
Bias

υ̂ 0.0250 0.0094 0.0154 0.0537 0.0240 0.0186 0.0160

ω̂ 0.0241 0.0125 0.0182 −0.0001 0.0328 0.0170 0.0281

MSEs
υ̂ 0.0076 0.0156 0.0123 0.0127 0.0166 0.0104 0.0092

ω̂ 0.0126 0.0179 0.0171 0.2245 0.0237 0.0165 0.0218

200
Bias

υ̂ 0.0165 0.0045 0.0068 0.0278 0.0124 0.0074 0.0095

ω̂ 0.0106 0.0059 0.0063 −0.0055 0.0136 0.0065 0.0126

MSEs
υ̂ 0.0033 0.0072 0.0057 0.0050 0.0076 0.0039 0.0039

ω̂ 0.0045 0.0076 0.0067 0.0056 0.0087 0.0049 0.0081
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Table 4. Bias and MSEs of different estimates for υ = 2 and ω = 0.5.

n Est. Est. Par. MLEs LSEs WLSEs MPSEs CMEs ADEs RADEs

20
Bias

υ̂ 0.3416 0.1249 0.1318 0.6876 0.4190 0.1953 0.2465

ω̂ 0.2355 0.0906 0.0984 0.0779 0.1987 0.1647 0.2290

MSEs
υ̂ 0.9177 1.0823 0.9232 1.5692 1.4522 0.7830 0.9127

ω̂ 0.5661 0.1632 0.1905 0.2282 0.2904 2.7567 0.4853

50
Bias

υ̂ 0.1108 0.0585 0.0696 0.2387 0.1738 0.0624 0.0952

ω̂ 0.0679 0.0278 0.0353 0.0141 0.0584 0.0313 0.0673

MSEs
υ̂ 0.2159 0.3536 0.2992 0.2895 0.4113 0.2280 0.2922

ω̂ 0.1599 0.0481 0.1490 0.0330 0.0680 0.0323 0.1161

100
Bias

υ̂ 0.0437 0.0374 0.0363 0.1036 0.0711 0.0305 0.0458

ω̂ 0.0253 0.0089 0.0088 0.0091 0.0208 0.0137 0.0220

MSEs
υ̂ 0.0758 0.1456 0.1313 0.0942 0.1705 0.0813 0.1202

ω̂ 0.0087 0.0096 0.0072 0.0030 0.0127 0.0046 0.0168

200
Bias

υ̂ 0.0162 0.0109 0.0251 0.0395 0.0408 0.0110 0.0212

ω̂ 0.0128 0.0027 0.0059 0.0071 0.0088 0.0065 0.0076

MSEs
υ̂ 0.0240 0.0729 0.0637 0.0265 0.0768 0.0277 0.0578

ω̂ 0.0014 0.0033 0.0028 0.0009 0.0037 0.0013 0.0058

Table 5. Partial and overall ranks of all estimation methods for various combinations of υ and ω.

Initial Values n MLEs LSEs WLSEs MPSEs CMEs ADEs RADEs

υ̂ ω̂ υ̂ ω̂ υ̂ ω̂ υ̂ ω̂ υ̂ ω̂ υ̂ ω̂ υ̂ ω̂

υ = 0.4 and ω = 1

50 3 5 5 1 4 2 7 7 6 3 2 6 1 4

100 1 5 5 2 4 1 6 6 7 7 3 3 2 4

150 1 1 6 4 4 3 5 7 7 6 3 2 2 5

200 1 1 6 5 5 4 4 3 7 7 2 2 2 6

υ = 0.5 and ω = 0.8

50 3 6 5 1 4 2 7 3 6 4 1 7 2 5

80 1 7 6 3 5 6 3 2 7 4 2 1 4 5

120 1 4 6 5 5 3 3 1 7 6 2 2 4 7

200 1 3 6 5 5 4 2 1 7 6 3 2 4 7

υ = 2 and ω = 0.5

50 3 3 5 1 4 5 7 6 6 2 1 4 2 7

80 1 7 5 2 4 3 6 6 7 4 3 1 2 5

120 1 5 6 4 4 2 5 7 7 3 3 1 2 6

200 1 3 6 6 5 5 4 4 7 7 3 1 2 2

Sum 18 50 67 39 53 40 59 53 81 59 28 32 29 63

Overall Rank 1 4 6 2 4 3 5 5 7 6 2 1 3 7

8. Real Data Applications

In this part, we analyze two real data sets to demonstrate the performance of the MU
model in practice by fitting two real-life data sets. The proposed MU model is compared to
models based on the following distributions: the K distribution, which is defined by the
pdf in Equation (6) and other four known competitors such as

• Size-biased Kumaraswamy (SK) distribution [20] with pdf indicated as

g(x; υ, ω) =
υxυ(1− xυ)ω−1

B(υ + 1/υ, ω)
, υ, ω > 0, x ∈ (0, 1).
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• Exponentiated Kumaraswamy (EK) distribution [21] with pdf given as

g(x; υ, ω, θ) = υωxυ−1(1− xυ)ω−1(1− (1− xυ)ω)θ−1, υ, ω, θ > 0, x ∈ (0, 1).

• Transmuted Kumaraswamy (TK) distribution [22] with pdf specified by

g(x; υ, ω, θ) = υωxυ−1(1− xυ)ω−1(1− θ + 2θ(1− xυ)ω), υ, ω, θ > 0, x ∈ (0, 1).

• McDonald (M) distribution [23] with pdf given as

g(x; υ, ω, θ) =
υxυω−1(1− xυ)θ−1

B(ω, θ)
, υ, ω, θ > 0, x ∈ (0, 1).

The first data set is reported by Murthy et al. [24]. It represents censored data (failure
times) for thirty items tested, with testing stopping after the 20th failure. The second
data set represents observations on the stress resistance shear (MPa) of a joint joined in a
particular way. It is taken from Stoop and Ouden [25]. To determine the interval parameter
(θ, sometimes called the product maximum life), Wang [26] used the following formula:

θ = xn +
xn − xn−k

nk
,

where n is the sample size, xn is the value of nth time of the sample, and k is the number of
xn in the sample. By applying the above formula to two data sets, the summary of their
statistical measures is listed in Table 6.

Table 6. Summary measures of the two data sets.

Data Min Q1 Median Mean Q3 SD Skewness Kurtosis Max

First 0.1813 0.5419 0.6150 0.6480 0.8457 0.2413 −0.3187 −1.0937 0.9990

Second 0.0390 0.2320 0.3254 0.4161 0.6241 0.2846 0.5328 −1.0472 0.9770

The MLEs of the parameters for the compared models are computed. In addition,
the values of various discrimination measures are evaluated to provide model efficiency.
These are the Akaike information criterion (AIC), defined as AIC = 2k− 2 log(L̂)); Bayesian
information criterion (BIC), defined as BIC = k log(n)− 2 log(L̂)); consistent-AIC (CAIC),
defined as CAIC = k(log(n) + 1)− 2 log(L̂)); and Hannan–Quinn information criterion
(HQIC), defined as HQIC = 2k log(log(n))− 2 log(L̂)), where k is the number of estimated
parameters, n is the sample size, and L̂ is the maximum value of the corresponding likeli-
hood function. Furthermore, the goodness of fit for the compared models is checked by
various test statistics, such as the Cramér–von Mises W2

n , Anderson–Darling A2
n, Watson U2

n,
Liao–Shimokawa Ln, and sum of squares (SS). We also calculate the Kolmogorov–Smirnov
(KS) statistics and their corresponding p-values. To check the fitting performance of the
models (p-value > 0.05), these test statistics demonstrate the differences between the pro-
posed cdf and the empirical cdf for each data set. For more details about the goodness-of-fit
test statistics, the reader can see Shama et al. [27].

From Tables 7 and 8, we note that the MU model gives the lowest values for all the
discrimination measures. These results indicate that the MU model could be chosen as
the best model against all the competitors. Tables 9 and 10 show that all models fit two
data sets (p-value > 0.05) and the proposed model displays the lowest test statistics with
the highest p-values. As a result, the MU model offers excellent competition against other
models and fits the two data sets quite well.
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Table 7. The MLEs of the parameters for the compared models and the values of discrimination
measures for the first data set.

Models
Estimates Discrimination Measures

υ̂ ω̂ θ̂ AIC BIC CAIC HQIC

MU 0.3928 3.3929 — −3.3306 −1.3392 0.6608 −2.9419

K 1.7516 0.8672 — −3.1823 −1.1908 0.8092 −2.7935

SK 0.7292 0.8800 — −3.1423 −1.1509 0.8491 −2.7536

EK 12.7131 0.5891 0.1407 −1.9438 1.0434 4.0434 −1.3607

TK 1.9665 0.6472 0.6516 −2.1678 0.8194 3.8194 −1.5847

M 79.0770 0.0233 0.4316 −2.5092 0.4780 3.4780 −1.9261

Table 8. The MLEs of the parameters for the compared models and the values of discrimination
measures for the second data set.

Models
Estimates Discrimination Measures

υ̂ ω̂ θ̂ AIC BIC CAIC HQIC

MU 0.7645 1.2811 — 2.5925 3.3883 5.3883 2.0909

K 0.9608 1.1957 — 3.5469 4.3427 6.3427 3.0453

SK 0.0416 1.2148 — 3.4947 4.2904 6.2904 2.9930

EK 0.0030 1.2194 917.5928 5.1641 6.3578 9.3578 4.4117

TK 1.0827 0.6001 0.9547 4.9668 6.1605 9.1605 4.2144

M 0.0646 16.1024 1.21521 5.4948 6.6885 9.6885 4.7424

Table 9. The values of goodness-of-fit test statistics for the first data set.

Models W2
n A2

n U2
n Ln SS KS KS p-Value

MU 0.0511 0.3305 4.5607 0.7147 0.0433 0.1163 0.9495

K 0.0645 0.3975 4.6060 0.8867 0.0587 0.1622 0.6687

SK 0.0632 0.3947 4.6040 0.8909 0.0575 0.1619 0.6708

EK 0.0648 0.3632 4.6065 0.7912 0.0583 0.1560 0.7154

TK 0.0465 0.2914 4.5765 0.7962 0.0417 0.1456 0.7901

M 0.0549 0.3010 4.5924 0.7313 0.0490 0.1529 0.7380

Table 10. The values of goodness-of-fit test statistics for the second data set.

Models W2
n A2

n U2
n Ln SS KS KS p-Value

MU 0.0419 0.2476 2.3367 0.7811 0.0325 0.1800 0.8684

K 0.0591 0.3640 2.3658 0.9259 0.0493 0.2076 0.7300

SK 0.0563 0.3552 2.3616 0.9216 0.0468 0.2050 0.7445

EK 0.0435 0.3095 2.3393 0.9205 0.0351 0.1867 0.8378

TK 0.0447 0.2855 2.3413 0.8472 0.0360 0.1885 0.8292

M 0.0563 0.3550 2.3615 0.9216 0.0468 0.2049 0.7449

Furthermore, seven estimation methods are used to estimate the parameters of the
MU model from real data. Tables 11 and 12 display the estimates, the values of SS and
KS with their p-values, and the rank of estimation methods for the two data sets. We can
draw the conclusion that, for the first data set, the ML estimation method is advised for
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estimating the unknown parameters of the proposed model, whereas the LS estimation
method is advised for estimating the unknown parameters of the MU model.

Table 11. The estimates of the parameters of the MU model, SS, K-S, and p-value for the first data set.

Est. Meth.
Est. Par. SS KS KS p-Value Rank

υ̂ ω̂

MLE 0.3928 3.3929 0.0433 0.1163 0.9495 1

LSE 0.3922 3.5206 0.0426 0.1189 0.9400 3

WLSE 0.3762 3.4002 0.0432 0.1214 0.9296 4

MPSE 0.5208 4.2605 0.0705 0.1470 0.7806 7

CME 0.4124 3.8164 0.0423 0.1217 0.9285 5

ADE 0.3994 3.6990 0.0425 0.1236 0.9201 6

RADE 0.4366 4.0096 0.0433 0.1165 0.9490 2

Table 12. The estimates of the parameters of the MU model, SS, K-S, and p-value for the second
data set.

Est. Meth.
Est. Par. SS KS KS p-Value Rank

υ̂ ω̂

MLE 0.7645 1.2811 0.0325 0.1800 0.8684 7

LSE 0.7489 1.0733 0.0287 0.1499 0.9658 1

WLSE 0.6912 1.0326 0.0308 0.1558 0.9522 4

MPSE 1.4283 2.0801 0.0478 0.1660 0.9224 6

CME 0.9472 1.3849 0.0264 0.1513 0.9627 3

ADE 0.7991 1.2215 0.0276 0.1627 0.9329 5

RADE 0.7306 1.0507 0.0294 0.1501 0.9654 2

The probability–probability (P-P) plots of the fitted models for the two data sets
are shown in Figures 4 and 5. It can be observed that the MU model achieves a better
approximation between the empirical and theoretical curves and provides a better fit than
other models.
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Figure 4. The P-P plots of the proposed model and other compared models for the first data set.
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Figure 5. The P-P plots of the proposed model and other compared models for the second data set.
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9. Conclusions and Perspectives

In this article, a new family of distributions, called the “modified GG” (MGG) family,
is proposed. It provides some generated families and new flexible modified distributions
whose probability density and hazard function shapes are desirable for numerous modeling
purposes. The proposed MGG family has some interesting characteristics, such as providing
more flexible models without adding any additional parameters. We study a special model,
namely the modified uniform (MU) distribution, in detail. Various estimation methods of
the MU model are studied and assessed using a simulation study. An analysis of two real
data sets indicates that the MU distribution can be efficiently used for modeling data arising
from different real-life situations. The MU distribution may attract wider applications in
many applied areas such as engineering, quality control, medicine, and agriculture, among
others, to model different real-life data sets.

The perspectives of this study are numerous, including more developments based on
the novel power-exponential transformation approach (with the bivariate case being of
particular interest), the applications of introduced lifetime sub-distributions of the MGG
family, and the construction of quantile regression models by exploiting the flexibility of
the MU distribution.
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Appendix A

Appendix A is devoted to the technical partial derivatives presented in Section 6.
Maximum Likelihood Estimates.

We have

∂

∂υ
L(υ, ω) =

n

∑
i=1

log(1− xi) +
n

∑
i=1

1
υ + ω(1− xi)xω−1

i
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and
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L(υ, ω) = −
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∑
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i log(xi) +

n

∑
i=1

(1− xi)xω−1
i (1 + ω log(xi))

υ + ω(1− xi)xω−1
i

. (A2)

Least-Squares and Weighted Least-Squares Estimates.
We have
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Maximum Product of Spacing Estimates.
We have
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Cramér–von Mises Estimates.
We have
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Anderson–Darling and Right-Tail Anderson–Darling Estimates.
We have
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We have
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