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Abstract: In this paper, we solve a stochastic linear quadratic tracking problem. The controlled
dynamical system is modeled by a system of linear Itô differential equations subject to jump Markov
perturbations. We consider the case when there are two decision-makers and each of them wants
to minimize the deviation of a preferential output of the controlled dynamical system from a given
reference signal. We assume that the two decision-makers do not cooperate. Under these conditions,
we state the considered tracking problem as a problem of finding a Nash equilibrium strategy for a
stochastic differential game. Explicit formulae of a Nash equilibrium strategy are provided. To this
end, we use the solutions of two given terminal value problems (TVPs). The first TVP is associated
with a hybrid system formed by two backward nonlinear differential equations coupled by two
algebraic nonlinear equations. The second TVP is associated with a hybrid system formed by two
backward linear differential equations coupled by two algebraic linear equations.

Keywords: linear quadratic tracking problem; stochastic linear differential games; Nash equilibria

MSC: 91A15; 49N10

1. Introduction

Tracking problems are often encountered in many applications and have received
attention from the research community in the past few decades [1–5]. In the stochastic
context, this problem was studied in [6,7] as well as in [8,9]. For stochastic systems with
time delay, the linear quadratic tracking problem has been studied in [10,11]. Applications
of tracking problems may be found in economic policy control [12], process control [13],
networked control systems [14], control of mobile robots [15], spacecraft hovering [16],
etc. Usually, a linear quadratic tracking problem requires minimization of the L2-norm of
the deviation of a signal generated by a controlled linear system from a reference signal.
When there exists more than one decision maker and each of them wants to minimize the
deviation of a preferential signal from a given reference signal, the optimal tracking problem
may be stated as a problem of finding a Nash equilibrium strategy for a linear quadratic
differential game. If the controlled system whose outputs have to track the given reference
signal is described by linear stochastic differential equations, one obtains a problem of
finding a Nash equilibrium strategy for a stochastic differential game. Lately, the stochastic
differential games have attracted an increasing research interest see, e.g., [17–20]. Moreover,
for Nash tracking game problems for continuous-time systems over finite intervals see [21]
and the reference therein.
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In the present work, we consider the case when the controlled system is described by
a system of Itô differential equations with coefficients affected by a standard homogeneous
Markov process with a finite number of states. We assume that there exist at least two
decision-makers. The aim of the k-th decision-maker is to minimize the deviation of an
output zk(·) of the controlled system from a reference signal rk(·). The class of admissible
strategies consists of stochastic processes in an affine state feedback form.

In the derivation of the main results we consider two cases:
(a) the case with only one decision-maker;
(b) the case of two decision-makers.
The result derived from case (a) is used in the case with more than one decision-maker

in order to obtain an optimal strategy. In case (b), we study the game theoretic model for
two players, where each player wants to find the optimal admissible strategy minimizing
the deviation of the controlled signal from the given reference.

We assume that the players do not cooperate. The reasons for which they are not
cooperating may be caused by individual motivations or by physical reasons. We provide
explicit formulae of a Nash equilibrium strategy. To this end, we use the solutions of two
TVPs. The first TVP is associated with a hybrid system formed by two backward nonlinear
differential equations coupled with two algebraic nonlinear equations. The second TVP
is associated with a hybrid system formed by two backward linear differential equations
coupled by two algebraic linear equations.

The paper is organized as follows: Section 2 includes the description of the mathemat-
ical model as well as the formulation of the tracking problem as a problem of finding a
Nash equilibrium strategy for a stochastic differential game. The main results are derived
in Section 3. First, in Section 3.1, we consider the case with one decision-maker. Further,
in Section 3.2, we obtain explicit formulae for the optimal strategies in the case of two
decision-makers. In Section 4, we briefly discuss two special cases: (i) the case when the
controlled system does not contain controlled dependent terms in the diffusion part; (ii) the
case when the aim of the decision-makers is to minimize the deviation of the controlled
signals from a given final target without restrictions regarding the behavior of the transient
states. In Section 5, we provide a numerical example that shows that the proposed pro-
cedure is feasible. Finally, in Section 6, we provide some conclusions and future research
directions.

2. The Problem

Consider the controlled system having the state space representation described by

dx(t) = [A0(t, ηt)x(t) + B1(t, ηt)u1(t) + B2(t, ηt)u2(t)]dt

+ [A1(t, ηt)x(t) + D1(t, ηt)u1(t) + D2(t, ηt)u2(t)]dw(t),

x(t0) = x0, (1a)

zk(t) = Ck(t, ηt)x(t), k = 1, 2, (1b)

t ∈ [t0, t f ] ⊂ [0, ∞), where x(t) ∈ Rn is the state vector at instance time t and uk(t) ∈ Rmk ,
k = 1, 2, are the vectors of control parameters. In (1), {w(t)}t≥0, is a one-dimensional
standard Wiener process defined on a given probability space (Ω,F ,P) and {ηt}t≥0 is a
standard right continuous Markov process taking values in a finite set N = {1, 2, . . . , N}
and having the transition semigroup P(t) = eQt, t ≥ 0. The elements qij of the generator
matrix Q ∈ RN×N satisfy

qij ≥ 0 if i 6= j, (2a)
N

∑
l=1

qil = 0, (2b)
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for all (i, j) ∈ N ×N . For more details regarding the properties of a Wiener process, one
can see [22] or [23], whereas for more properties of a Markov process, we refer, for example,
to [24,25].

Throughout the paper, we assume that {w(t)}t≥0 and {ηt}t≥0 are independent stochas-
tic processes. The dependence of the coefficients of the system (1) upon the Markov process
{ηt}t≥0 highlights the fact that this system may be considered the mathematical model
of some phenomena in which abrupt structural changes are likely to occur. Such vari-
ations may be due, for instance, to changes between different operation points, sensor
or actuator failures, temporary loss of communication, and so on. For the readers’ con-
venience, we refer to [9,26–28] for extensive discussions on the subject. As usual, we
shall write Ak(t, i), k = 0, 1, Bj(t, i), Cj(t, i), Dj(t, i), j = 1, 2 instead of Ak(t, ηt), and
so on, whenever ηt = i ∈ N . Assume that t → Ak(t, i) : [t0, t f ] → Rn×n, k = 0, 1,

t→ (Bj(t, i), Cj(t, i), Dj(t, i)) : [t0, t f ]→ Rn×mj ×Rnzj×n ×Rn×mj , j = 1, 2 are continuous
matrix-valued functions. The set Uk of the admissible controls available to the decision-
makers Pk, k = 1, 2, consists of the stochastic processes in an affine state feedback form, i.e.,

uk(t) = Fk(t, ηt)x(t) + ϕk(t, ηt) (3)

where t → Fk(t, i) : [t0, t f ] → Rmk×n and t → ϕk(t, i) : [t0, t f ] → Rmk are arbitrary
continuous functions. Applying Theorem 1.1 in Chapter 5 from [22] (see also Section 1.12
from [9]) we obtain:

Corollary 1. For each x0 ∈ Rn and for each u(·) = (u1(·), u2(·)) ∈ U1 × U2, the initial value
problem (IVP) (1a) has a unique solution xu(·; t0, x0) which is a stochastic process with the properties

(a) xu(·; t0, x0) is a.s. continuous in every t ∈ [t0, t f ];
(b) for each t ∈ [t0, t f ], xu(t; t0, x0) isFt−measurable, whereFt ⊂ F is the σ−algebra generated

by the random variables w(s), ηs, 0 ≤ s ≤ t;
(c) sup

t∈[t0,t f ]

E[|xu(t; t0, x0)|p] < ∞, for all p ≥ 1;

(d) xu(t0; t0, x0) = x0.

Throughout this work, E[·] stands for the mathematical expectation. Roughly speaking,
the aim of the decision-maker Pk is to find a control law (or an admissible strategy) of
type (3), ũk(·) ∈ Uk which minimizes the deviation of the signal zk(·) from a given reference
signal rk(·), when the other decision-maker Pl wants to minimize the deviation of the signal
zl(·), (l 6= k) from another reference signal rl(·).

Since this problem is an optimization problem with two objective functions, its solution
can be viewed as an equilibrium strategy for a non-cooperative differential game with two
players. For a rigorous mathematical setting of this optimization problem, let us introduce
the following cost functions which are modeling the performance criterion for each player
(k = 1, 2):

Jk(x0; u1(·), u2(·)) =E[(zk(t f )− ζk)
TGk(ηt f )(zk(t f )− ζk)]

+E

 t f∫
t0

{(zk(t)− rk(t))T Mk(t, ηt)(zk(t)− rk(t))

+uT
1 (t)Rk1(t, ηt)u1(t) + uT

2 (t)Rk2(t, ηt)u2(t)}dt
]
. (4)

Here rk(·) : [t0, t f ]→ Rnzk , k = 1, 2 is the reference which must be tracked by the signal
zk(·), and ζk ∈ Rnzk , k = 1, 2 is the target of the final value zk(t f ). The weight matrices
involved in (4) are satisfying the assumption:
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Hypothesis 1.
(a) t → (Mk(t, i), Rk1(t, i), Rk2(t, i)) : [t0, t f ] → Snzk

× Sm1 × Sm2 , i ∈ N are continuous
matrix-valued functions;

(b) Mk(t, i) ≥ 0, Rkl(t, i) ≥ 0, Rkk(t, i) > 0, for all t ∈ [t0, t f ], k, l = 1, 2, l 6= k, Gk(i) ≥ 0,
i ∈ N .

Here and in the sequel, Sp ⊂ Rp×p denotes the subspace of symmetric matrices of size
p× p, p ≥ 1.

Definition 1. We say that the pair of admissible strategies (ũ1(·), ũ2(·)) ∈ U1 × U2 achieve a
Nash equilibrium for the differential game described by the controlled system (1), the performance
criterion (4), and the admissible strategies of type (3) if

J1(x0; ũ1(·), ũ2(·)) ≤ J1(x0; u1(·), ũ2(·)), for all u1 ∈ U1 (5)

and
J2(x0; ũ1(·), ũ2(·)) ≤ J2(x0; ũ1(·), u2(·)), for all u2 ∈ U2. (6)

In the next section, we shall derive explicit formulae of a Nash equilibrium strategy
(ũ1(·), ũ2(·)) for the linear quadratic differential game described by (1), (3), and (4).

Remark 1.
(a) We shall see that for the computation of the gain matrices of a Nash equilibrium strategy we

need to know a priori the whole reference signal rk(·).
(b) When Mk(t, i) = 0, for all (t, i) ∈ [t0, t f ]×N , then (4) reduces to

Jk(x0; u1(·), u2(·)) = E[(zk(t f )− ζk)
TGk(ηt f )(zk(t f )− ζk)]

+E

 t f∫
t0

{uT
1 (t)Rk1(t, ηt)u1(t) + uT

2 (t)Rk2(t, ηt)u2(t)}dt

, k = 1, 2 . (7)

The performance criterion (4) could be replaced by one of the form (7), when the decision-maker
is interested only by the minimization of the deviation of the final value zk(t f ) from the target
ζk. The term

E

 t f∫
t0

{uT
1 (t)Rk1(t, ηt)u1(t) + uT

2 (t)Rk2(t, ηt)u2(t)}dt

,

which appears both in (4) and (7), must be viewed as a penalization of the control effort.

3. The Main Results
3.1. The Case with Only One Decision Maker

In order to derive in an elegant way the state space representation of a pair of form (3)
which satisfies (5) and (6), respectively, we study first the problem of tracking a reference
signal in the case where there is only one decision maker.

We consider the optimal control problem described by the controlled system:

dx(t) = [A0(t, ηt)x(t) + B(t, ηt)u(t) + g0(t, ηt)]dt

+ [A1(t, ηt)x(t) + D(t, ηt)u(t) + g1(t, ηt)]dw(t),

x(t0) = x0, (8a)

z(t) = C(t, ηt)x(t), (8b)
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t ∈ [t0, t f ] and the performance criterion

J(x0; u(·)) =E[(z(t f )− ζ)TG(ηt f )(z(t f )− ζ)]

+E

 t f∫
t0

{(z(t)− r(t))T M(t, ηt)(z(t)− r(t)) + uT(t)R(t, ηt)u(t)}dt

. (9)

Here, the stochastic processes {w(t)}t≥0 and {ηt}t≥0 have the same properties as in
the case of system (1). In (8) and (9), x(t) ∈ Rn is the state vector at the instance time t and
u(t) ∈ Rm is the vector of the control parameters.

In this subsection, the set U of admissible controls consists of stochastic processes of
the form

u(t) = F(t, ηt)x(t) + ϕ(t, ηt), (10)

t → F(t, i) : [t0, t f ] → Rm×n, t → ϕ(t, i) : [t0, t f ] → Rm which are arbitrary continuous
functions. The optimal control problem which we want to solve in this subsection consists
in finding a control ũ(·) from U which minimizes the cost function (9) along the trajectories
of the system (8) determined by all admissible controls of the form (10).

Regarding the coefficients of (8) and (9), we suppose:

Hypothesis 2.
(a) t → (A0(t, i), A1(t, i), B(t, i), D(t, i), C(t, i), M(t, i), R(t, i)) : [t0, t f ] → Rn×n ×

Rn×n × Rn×m × Rn×m × Rnz×n × Snz × Sm, t → gk(t, i) : [t0, t f ] → Rn, k = 0, 1,
t→ r(t) : [t0, t f ]→ Rnz are continuous matrix-valued functions;

(b) M(t, i) ≥ 0, R(t, i) > 0, for all t ∈ [t0, t f ], G(i) ≥ 0, i ∈ N .

Let us consider the function V : [t0, t f ]×Rn ×N → R defined by

V(t, x, i) = xTX(t, i)x− 2xTΨ(t, i) + µ(t, i) (11)

where t → (X(t, i), Ψ(t, i), µ(t, i)) : [t0, t f ] → Sn × Rn × R, i ∈ N are continuous and
differentiable functions. Applying the Itô formula, see for example Theorem 1.10.2 from [9]
in the case of the function (11) and to the stochastic process x(t) satisfying (8a), we obtain

E[V(t f , x(t f ), ηt f )−V(t0, x(t0), ηt0 )|ηt0 = i] (12)

= E

 t f∫
to

x(t)
1

u(t)

TW11(t, ηt) W12(t, ηt) W13(t, ηt)
WT

12(t, ηt) W22(t, ηt) W23(t, ηt)
WT

13(t, ηt) WT
23(t, ηt) W33(t, ηt)

x(t)
1

u(t)

dt|ηt0 = i


for all i ∈ N , where

W11(t, i) = Ẋ(t, i) + AT
0 (t, i)X(t, i) + X(t, i)A0(t, i)

+ AT
1 (t, i)X(t, i)A1(t, i) +

N

∑
j=1

qijX(t, j) (13a)

W12(t, i) = −Ψ̇(t, i)− AT
0 (t, i)Ψ(t, i) + X(t, i)g0(t, i)

+ AT
1 (t, i)X(t, i)g1(t, i) +

N

∑
j=1

qijΨ(t, j) (13b)

W13(t, i) = X(t, i)B(t, i) + AT
1 (t, i)X(t, i)D(t, i) (13c)

W22(t, i) = µ̇(t, i) +
N

∑
j=1

qijµ(t, j) + gT
1 (t, i)X(t, i)g1(t, i)− 2gT

0 (t, i)Ψ(t, i) (13d)

W23(t, i) = −ΨT(t, i)B(t, i) + gT
1 (t, i)X(t, i)D(t, i) (13e)

W33(t, i) = DT(t, i)X(t, i)D(t, i) (13f)
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Taking the expectation in (12) and adding with (9) we obtain

J(x0, u(·)) +E[V(t f , x(t f ), ηt f )]−E[V(t0, x0, ηt0)]

= E
[
(x(t f )− ζ)TG(ηt f )(z(t f )− ζ)

]
(14)

+E

 t f∫
to

x(t)
1

u(t)

TŴ11(t, ηt) Ŵ12(t, ηt) Ŵ13(t, ηt)
ŴT

12(t, ηt) Ŵ22(t, ηt) Ŵ23(t, ηt)
ŴT

13(t, ηt) ŴT
23(t, ηt) Ŵ33(t, ηt)

x(t)
1

u(t)

dt


where

Ŵ11(t, i) = W11(t, i) + CT(t, i)M(t, i)C(t, i) (15a)

Ŵ12(t, i) = W12(t, i)− CT(t, i)M(t, i)r(t, i) (15b)

Ŵ13(t, i) = W13(t, i) (15c)

Ŵ22(t, i) = W22(t, i) + rT(t, i)M(t, i)r(t, i) (15d)

Ŵ23(t, i) = W23(t, i) (15e)

Ŵ33(t, i) = R(t, i) + DT(t, i)X(t, i)D(t, i) (15f)

Let
X(·) = (X(·, 1), X(·, 2), . . . , X(·, N)),

Ψ(·) = (Ψ(·, 1), Ψ(·, 2), . . . , Ψ(·, N)),

µ(·) = (µ(·, 1), µ(·, 2), . . . , µ(·, N))T

be the solutions of the following terminal value problem (TVP)

Ẋ(t, i) + AT
0 (t, i)X(t, i) + X(t, i)A0(t, i) + AT

1 (t, i)X(t, i)A1(t, i)

− (X(t, i)B(t, i) + AT
1 (t, i)X(t, i)D(t, i))(R(t, i) + DT(t, i)X(t, i)D(t, i))−1

· (BT(t, i)X(t, i) + DT(t, i)X(t, i)A1(t, i))

+ CT(t, i)M(t, i)C(t, i) +
N

∑
j=1

qijX(t, j) = 0, t0 ≤ t ≤ t f , (16a)

X(t f , i) = CT(t f , i)G(i)C(t f , i), i ∈ N , (16b)

Ψ̇(t, i) + (A0(t, i) + B(t, i)F̃(t, i))TΨ(t, i) +
N

∑
j=1

qijΨ(t, j) + G(t, X(t, i), i) = 0

Ψ(t f , i) = CT(t f , i)G(i)ζ (17a)

F̃(t, i) = −(R(t, i) + DT(t, i)X(t, i)D(t, i))−1(BT(t, i)X(t, i)

+ DT(t, i)X(t, i)A1(t, i)) (17b)

G(t, X(t, i), i) = CT(t, i)M(t, i)r(t)− X(t, i)g0(t, i)− (A1(t, i)

+ D(t, i)F̃(t, i))TX(t, i)g1(t, i) (17c)

X(t, i), i ∈ N being the components of the solution of the TVP (16),



Axioms 2023, 12, 76 7 of 17

µ̇(t, i) +
N

∑
j=1

qijµ(t, j) + h(t, i) = 0

µ(t f , i) = ζTG(i)ζ (18a)

h(t, i) = gT
1 (t, i)X(t, i)g1(t, i) + rT(t)M(t, i)r(t)− 2gT

0 (t, i)Ψ(t, i)−
− (BT(t, i)Ψ(t, i)− DT(t, i)X(t, i)g1(t, i))T(R(t, i) + DT(t, i)X(t, i)D(t, i))−1

· (BT(t, i)Ψ(t, i)− DT(t, i)X(t, i)g1(t, i)) (18b)

X(t, i), Ψ(t, i), i ∈ N being the components of the solution of the TVPs (16) and (17),
respectively. The main properties of the solutions of the TVPs (16)–(18) are summarized in
the following lemma.

Lemma 1. Under the assumption (H2) the following hold:

(i) the unique solution X(·) = (X(·, 1), . . . , X(·, N)) of the TVP (16) is defined on the whole
interval [t0, t f ]. Moreover, X(t, i) = XT(t, i) ≥ 0, for all (t, i) ∈ [t0, t f ]×N ;

(ii) the TVPs (17) and (18) have unique solutions t→ Ψ(t) = (Ψ(t, 1), Ψ(t, 2), . . . , Ψ(t, N)) :
[t0, t f ]→ Rn ×Rn × . . .×Rn and t→ µ(t) = (µ(t, 1), µ(t, 2), . . . , µ(t, N))T : [t0, t f ]→
RN .

Proof.
(i) Follows immediately applying Corollary 5.2.3 from [9] applied in the case of TVP (16).
(ii) The TVP (17) is associated with a linear nonhomogeneous differential equation with

time-varying coefficients. Hence its solution is defined on the whole interval of a
definition of its coefficients. According to (i) it follows that the coefficients of the
differential Equation (17a) are defined on the whole interval [t0, t f ]. Hence, its solution
is also defined on the whole interval [t0, t f ]. The conclusion regarding the definition of
the solution of TVP (18) on the interval [t0, t f ] is obtained in the same way.

Further, we consider the case when (11) is defined using the solutions of the TVPs (16)–(18).
In this case, (13), (15), (16)–(18) allow us to reduce (14) to

J(x0; u(·)) = E[V(t0, x0, ηto )] +E

 t f∫
t0

(u(t)− F̃(t, ηt)x(t)− ϕ̃(t, ηt))
T

·Ŵ33(t, ηt)(u(t)− F̃(t, ηt)x(t)− ϕ̃(t, ηt))dt
]

(19)

for all u(·) of type (10), where Ŵ33(t, i) are computed as in (15f), F̃(t, i) is computed as
in (17b) based on the solution of TVP (16), whereas

ϕ̃(t, i) := −(R(t, i) + DT(t, i)X(t, i)D(t, i))−1(DT(t, i)X(t, i)g1(t, i)− BT(t, i)Ψ(t, i)) (20)

for all (t, i) ∈ [t0, t f ]×N .
Now we are in position to state and prove the main result of this subsection.

Theorem 1. Assume that the assumption H2 is fulfilled. We consider the control law

ũ(t) = F̃(t, ηt)x̃(t) + ϕ̃(t, ηt) (21)

where F̃(t, i) and ϕ̃(t, i) are computed via (17b) and (20), respectively, based on the solution X(·)
and Ψ(·) of TVPs (16) and (17) and x̃(t) is the solution of the closed-loop system obtained when
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coupling the control (21) to (8a). Under these conditions, the control (21) satisfies the following
minimality condition

J(x0; ũ(·)) = min
u(·)∈U

J(x0; u(·)).

The minimal value of the cost function (9) in the class of the controls U of type (10) is given by

J(x0; ũ(·)) = xT
0 E[X(t0, ηt0)]x0 − 2xT

0 E[Ψ(t0, ηt0)] +E[µ(t0, ηt0)].

Proof. From (15f) we deduce via Lemma 1 (i) that under the assumption H2(b) we have
Ŵ33(t, ηt) > 0, for all t ∈ [t0, t f ]. The conclusion is obtained immediately from (19).

3.2. The Case of Two Decision-Makers

In this subsection, we shall use the result derived in Theorem 1 to obtain the state space
representation of an equilibrium strategy of type (3) which satisfies (5). Let k, l ∈ {1, 2} be
fixed such that l 6= k. Let

ũj(t) = F̃j(t, ηt)x(t) + ϕ̃j(t, ηt), j = 1, 2

be a candidate for a Nash equilibrium strategy. Taking j = l we rewrite (1) and (4) as

dx(t) =[(A0(t, ηt) + Bl(t, ηt)F̃l(t, ηt))x(t) + Bk(t, ηt)uk(t) + Bl(t, ηt)ϕ̃(t, ηt)]dt

+ [(A1(t, ηt) + Dl(t, ηt)F̃l(t, ηt))x(t)

+ Dk(t, ηt)uk(t) + Dl(t, ηt)ϕ̃l(t, ηt)]dw(t) (22)

x(t0) =x0

Jkl(x0; uk(·)) =E
[
(zk(t f )− ζk)

TGk(ηt f )(zk(t f )− ζk)
]

+E

 t f∫
t0

{(zk(t)− rk(t))T Mk(t, ηt)(zk(t)− rk(t)) (23)

+ (F̃l(t, ηt)x(t) + ϕ̃l(t, ηt))
T Rkl(t, ηt)(F̃l(t, ηt)x(t) + ϕ̃(t, ηt))

+uT
k (t)Rkk(t, ηt)uk(t)}dt

]
From Definition 1 it follows that (ũk(·), ũl(·)) is a Nash equilibrium strategy for the

dynamic game described by (1), (3), and (4) if ũk(·) minimizes the cost (23) along with the
trajectories of the system (22), determined by the controls of type

uk(t) = Fk(t, ηt)x(t) + ϕk(t, ηt) (24)

with Fk(·, i), ϕk(·, i) arbitrary continuous functions.
In order to obtain the explicit formula of ũk(·) with these properties, we apply

Theorem 1 specialized to the case of the optimal tracking problem described by the system
(22) and the performance criterion (23). To this end, we shall rewrite TVPs (16)–(18) with
the updates

A0(t, i)← A0(t, i) + Bl(t, i)F̃l(t, i), A1(t, i)← A1(t, i) + Dl(t, i)F̃l(t, i),

B(t, i)← Bk(t, i), D(t, i)← Dk(t, i), g0(t, i)← Bl(t, i)ϕ̃l(t, i),

g1(t, i)← Dl(t, i)ϕ̃l(t, i), C(t, i)←
(

Ck(t, i)
F̃l(t, i)

)
,

M(t, i)←
(

Mk(t, i) 0
0 Rkl(t, i)

)
, R(t, i)← Rkk(t, i),
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G(i)←
(

Gk(i) 0
0 0

)
, r(t) =

(
rk(t)

ϕl(t, i)

)
.

Thus, TVP (16) becomes

Ẋk(t, i) + (A0(t, i) + Bl(t, i)F̃l(t, i))TXk(t, i) + Xk(t, i)(A0(t, i)

+ Bl(t, i)F̃l(t, i)) + (A1(t, i) + Dl(t, i)F̃l(t, i))TXk(t, i)(A1(t, i) + Dl(t, i)F̃l(t, i))

+
N

∑
j=1

qijXk(t, j)− [Xk(t, i)Bk(t, i) + (A1(t, i) + Dl(t, i)F̃l(t, i))TXk(t, i)Dk(t, i)]

· (Rkk(t, i) + DT
k (t, i)Xk(t, i)Dk(t, i))−1

· [BT
k (t, i)Xk(t, i) + DT

k (t, i)Xk(t, i)(A1(t, i) + Dl(t, i)F̃l(t, i))]

+ CT
k (t, i)Mk(t, i)Ck(t, i) + F̃T

l (t, i)Rkl(t, i)F̃l(t, i) = 0 (25a)

Xk(t f , i) = CT
k (t f , i)Gk(i)Ck(t f , i) (25b)

i ∈ N , k = 1, 2, l = 3− k. The analogous of the feedback gains F̃(t, i) associated with the
solution of TVP (16), via (17b) becomes, in the case of TVP (25)

F̃k(t, i) =− (Rkk(t, i) + DT
k (t, i)Xk(t, i)Dk(t, i))−1

· [BT
k (t, i)Xk(t, i) + DT

k (t, i)Xk(t, i)(A1(t, i) + D3−k(t, i)F̃3−k(t, i))]. (26)

In the case of the tracking problem described by (22) and (24), the TVPs (17) and (18)
take the form

Ψ̇k(t, i) + (A0(t, i) + B1(t, i)F̃1(t, i) + B2(t, i)F̃2(t, i))TΨk(t, i)

+
N

∑
j=1

qijΨk(t, j) + Gk(t, Xk(t, i), i) = 0 (27a)

Ψk(t f , i) = CT
k (t f , i)Gk(i)ζk (27b)

where

G(t, Xk(t, i), i) = CT
k (t, i)Mk(t, i)rk(t)− [Xk(t, i)B3−k(t, i) + F̃T

3−k(t, i)Rk,3−k(t, i)

+ (A1(t, i) + D1(t, i)F̃1(t, i) + D2(t, i)F̃2(t, i))TXk(t, i)D3−k(t, i)]ϕ̃3−k(t, i) (27c)

µ̇k(t, i) +
N

∑
j=1

qijµk(t, j) + hk(t, i) = 0 (28a)

µk(t f , i) = ζT
k Gk(i)ζk (28b)

hk(t, i) = ϕ̃T
3−k(t, i)DT

3−k(t, i)Xk(t, i)D3−k(t, i)ϕ̃3−k(t, i) + rT
k (t, i)Mk(t, i)rk(t, i)

+ ϕ̃T
3−k(t, i)Rk,3−k(t, i)ϕ̃3−k(t, i)− 2Ψ̃T

k (t, i)B3−k(t, i)ϕ̃3−k(t, i)

− (ϕ̃T
3−k(t, i)DT

3−k(t, i)Xk(t, i)Dk(t, i)− Ψ̃T
k (t, i)Bk(t, i) (28c)

(Rkk(t, i) + DT
k (t, i)Xk(t, i)Dk(t, i))−1 · (DT

k (t, i)Xk(t, i)D3−k(t, i)ϕ̃3−k(t, i)− BT
k (t, i)Ψ̃k(t, i))

for all i ∈ N , k = 1, 2. In this context (20) becomes

ϕ̃k(t, i) =− (Rkk(t, i) + DT
k (t, i)Xk(t, i)Dk(t, i))−1 × (DT

k (t, i)Xk(t, i)D3−k(t, i)ϕ̃3−k(t, i)

− BT
k (t, i)Ψ̃k(t, i)) (29)

for all i ∈ N , k = 1, 2.
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Remark 2. Although the TVP (25) is defined by a Riccati differential equation of type (16), we
cannot be sure that the solution of this problem is defined on the whole interval [t0, t f ], because the
domain of definition of its coefficients depends upon the domain of definition of the gain matrices
Fl(·, i).

In the following, we shall regard (25) and (26) as a TVP associated with a hybrid
system of nonlinear differential equations and nonlinear algebraic equations

Ẋ1(t, i) + (A0(t, i) + B2(t, i)F2(t, i))T X1(t, i) + X1(t, i)(A0(t, i) + B2(t, i)F2(t, i)) + (A1(t, i)

+ D2(t, i)F2(t, i))T X1(t, i)(A1(t, i) + D2(t, i)F2(t, i))

+
N

∑
j=1

qijX1(t, j)− [X1(t, i)B1(t, i) + (A1(t, i) + D2(t, i)F2(t, i))T X1(t, i)D1(t, i)]

· (R11(t, i) + DT
1 (t, i)X1(t, i)D1(t, i))−1

· [BT
1 (t, i)X1(t, i) + DT

1 (t, i)X1(t, i)(A1(t, i) + D2(t, i)F2(t, i))]

+ FT
2 (t, i)R12(t, i)F2(t, i) + CT

1 (t, i)M1(t, i)C1(t, i) = 0 (30a)

Ẋ2(t, i) + (A0(t, i) + B1(t, i)F1(t, i))T X2(t, i) + X2(t, i)(A0(t, i)

+ B1(t, i)F1(t, i)) + (A1(t, i) + D1(t, i)F1(t, i))T X2(t, i)(A1(t, i) + D1(t, i)F1(t, i))

+
N

∑
j=1

qijX2(t, j)− [X2(t, i)B2(t, i) + (A1(t, i)

+ D1(t, i)F1(t, i))T X2(t, i)D2(t, i)] (R22(t, i) + DT
2 (t, i)X2(t, i)D2(t, i))−1

· [BT
2 (t, i)X2(t, i) + DT

2 (t, i)X2(t, i)(A1(t, i) + D1(t, i)F1(t, i))]

+ FT
1 (t, i)R21(t, i)F1(t, i) + CT

2 (t, i)M2(t, i)C2(t, i) = 0 (30b)

(R11(t, i) + DT
1 (t, i)X1(t, i)D1(t, i))F1(t, i) + DT

1 (t, i)X1(t, i)D2(t, i)F2(t, i)

+ BT
1 (t, i)X1(t, i) + DT

1 (t, i)X1(t, i)A1(t, i) = 0 (30c)

DT
2 (t, i)X2(t, i)D1(t, i)F1(t, i) + (R22(t, i) + DT

2 (t, i)X2(t, i)D2(t, i))F2(t, i)

+ BT
2 (t, i)X2(t, i) + DT

2 (t, i)X2(t, i)A1(t, i) = 0 (30d)

Xk(t f , i) = CT
k (t f , i)Gk(i)Ck(t f , i) (30e)

i ∈ N , k = 1, 2. At the same time, (27) and (29) can be viewed as a TVP associated with
a hybrid system formed by two backward linear differential equations and two algebraic
linear equations, as

Ψ̇1(t, i) + (A0(t, i) + B1(t, i)F̃1(t, i) + B2(t, i)F̃2(t, i))TΨ1(t, i)

+
N

∑
j=1

qijΨ1(t, j)−G12(t, i)ϕ2(t, i) + CT
1 (t, i)M1(t, i)r1(t) = 0 (31a)

Ψ̇2(t, i) + (A0(t, i) + B1(t, i)F̃1(t, i) + B2(t, i)F̃2(t, i))TΨ2(t, i)

+
N

∑
j=1

qijΨ2(t, j)−G21(t, i)ϕ1(t, i) + CT
2 (t, i)M2(t, i)r2(t) = 0 (31b)

(R11(t, i) + DT
1 (t, i)X̃1(t, i)D1(t, i))ϕ1(t, i) + DT

1 (t, i)X̃1(t, i)D2(t, i)ϕ2(t, i)

+ BT
1 (t, i)Ψ1(t, i) = 0 (31c)

DT
2 (t, i)X̃2(t, i)D1(t, i)ϕ1(t, i) + (R22(t, i) + DT

2 (t, i)X̃2(t, i)D2(t, i))ϕ2(t, i)

+ BT
2 (t, i)Ψ2(t, i) = 0 (31d)

Ψk(t f , i) = CT
k (t f , i)Gk(i)ζk, (31e)
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i ∈ N , k = 1, 2, where we denoted

G12(t, i) =X̃1(t, i)B2(t, i) + F̃T
2 (t, i)R12(t, i) + (A1(t, i) + D1(t, i)F̃1(t, i)

+ D2(t, i)F̃2(t, i))TX̃1(t, i)D2(t, i) (32a)

G21(t, i) =X̃2(t, i)B1(t, i) + F̃T
1 (t, i)R21(t, i) + (A1(t, i) + D1(t, i)F̃1(t, i)

+ D2(t, i)F̃2(t, i))TX̃2(t, i)D1(t, i). (32b)

In (31) and (32), (X̃1(t, i), X̃2(t, i), F̃1(t, i), F̃2(t, i)), i ∈ N , is a solution of the TVP (30).
Applying Theorem 1 in the case of the optimal tracking problems described by system (22)
and the performance criterion (23) for k = 1 and k = 2, we obtain

Theorem 2. Assume:

(a) the assumption (H1) is fulfilled;
(b) the solutions (X̃1(·, i), X̃2(·, i), F̃1(·, i), F̃2(·, i)), i ∈ N , and (Ψ̃1(·, i), Ψ̃2(·, i), ϕ̃1(·, i),

ϕ̃2(·, i)), i ∈ N of the TVPs (30) and (31), respectively, are defined on the whole inter-
val [t0, t f ].

We set
ũj(t) = F̃j(t, ηt)x̃(t) + ϕ̃j(t, ηt), j = 1, 2 (33)

x̃(·) being the solution of the IVP obtained replacing (33) in (1). Under these conditions, (ũ1(·), ũ2(·))
is an equilibrium strategy for the differential game described by the controlled system (1), the perfor-
mance criteria (4), and the family of the admissible strategies of type (3). The optimal values of the
performance criteria are given by

Jk(x0; ũ1(·), ũ2(·)) = xT
0 E[X̃k(t0, ηt0)]x0 − 2xT

0 E[Ψ̃k(to, ηt0)] +E[µ̃k(t0, ηt0)],

k = 1, 2.

4. Several Special Cases
4.1. The Case without Control-Dependent Noise of the Diffusion Part of the Controlled System

We assume that the controlled system (1) is in the special form

dx(t) = (A0(t, ηt)x(t) + B1(t, ηt)u1(t) + B2(t, ηt)u2(t))dt + A1(t, ηt)x(t)dw(t)

x(t0) = x0. (34)

In this case the TVPs (30) and (31), respectively, reduce to

Ẋ1(t, i) + (A0(t, i)− S2(t, i)X2(t, i))TX1(t, i) + X1(t, i)(A0(t, i)

− S2(t, i)X2(t, i)) + AT
1 (t, i)X1(t, i)A1(t, i)− X1(t, i)S1(t, i)X1(t, i)

+ X2(t, i)S12(t, i)X2(t, i) +
N

∑
j=1

qijX1(t, j) + CT
1 (t, i)M1(t, i)C1(t, i) = 0 (35a)

Ẋ2(t, i) + (A0(t, i)− S1(t, i)X1(t, i))TX2(t, i) + X2(t, i)(A0(t, i)

− S1(t, i)X1(t, i)) + AT
1 (t, i)X2(t, i)A1(t, i)− X2(t, i)S2(t, i)X2(t, i)

+ X1(t, i)S21(t, i)X1(t, i) +
N

∑
j=1

qijX2(t, j) + CT
2 (t, i)M2(t, i)C2(t, i) = 0 (35b)

Xk(t f , i) = CT
k (t f , i)Gk(i)Ck(t f , i) (35c)

Fk(t, i) = −R−1
kk (t, i)BT

k (t, i)Xk(t, i) (35d)
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i ∈ N , k = 1, 2,

Ψ̇1(t, i) + (A0(t, i)− S1(t, i)X1(t, i)− S2(t, i)X2(t, i))TΨ1(t, i)

+
N

∑
j=1

qijΨ1(t, j) + (X1(t, i)S2(t, i)− X2(t, i)S12(t, i))Ψ2(t, i)

+ CT
1 (t, i)M1(t, i)r1(t) = 0 (36a)

Ψ̇2(t, i) + (X2(t, i)S1(t, i)− X1(t, i)S21(t, i))Ψ1(t, i) + (A0(t, i)

− S1(t, i)X1(t, i)− S2(t, i)X2(t, i))TΨ2(t, i) +
N

∑
j=1

qijΨ2(t, j)

+ CT
2 (t, i)M2(t, i)r2(t) = 0 (36b)

Ψk(t f , i) = CT
k (t f , i)Gk(i)ζk (36c)

ϕk(t, i) = −R−1
kk (t, i)BT

k (t, i)Ψk(t, i) (36d)

i ∈ N , k = 1, 2. In (35) and (36) we have denoted

Sj(t, i)
4
= Bj(t, i)R−1

jj (t, i)BT
j (t, i)

Sjk(t, i)
4
= Bk(t, i)R−1

kk (t, i)Rjk(t, i)R−1
kk (t, i)BT

k (t, i)

j = 1, 2, k = 3− j. The TVP (28) becomes

µ̇k(t, i) +
N

∑
j=1

qijµk(t, j) + h̃k(t, i) = 0 (37a)

µk(t f , i) = ζT
k Gk(i)ζk (37b)

h̃1(t, i) = rT
1 (t)M1(t, i)r1(t) + Ψ̃T

2 (t, i)S12(t, i)Ψ̃2(t, i)

− 2Ψ̃T
1 (t, i)S2(t, i)Ψ̃2(t, i)− Ψ̃T

1 (t, i)S1(t, i)Ψ̃1(t, i) (37c)

h̃2(t, i) = rT
2 (t)M2(t, i)r2(t) + Ψ̃T

1 (t, i)S21(t, i)Ψ̃1(t, i)

− 2Ψ̃T
2 (t, i)S1(t, i)Ψ̃1(t, i)− Ψ̃T

2 (t, i)S2(t, i)Ψ̃2(t, i) (37d)

In (37), (Ψ̃1(·, i), Ψ̃2(·, i)), i ∈ N is the solution of the TVP (36). Applying the result
derived in Theorem 2, we obtain

Corollary 2. Assume:

(a) the assumption (H1) is fulfilled;

(b) the solution (
≈
X1(·, i),

≈
X2(·, i)), i ∈ N , of the TVP (35a)–(35c) is defined on the whole interval

[t0, t f ].

We set
≈uj(t) = −R−1

jj (t, ηt)BT
j (t, ηt)(

≈
Xj(t, ηt)

≈x(t) +
≈
Ψj(t, ηt)), (38)

≈x(·) being the solution of the IVP obtained substituting (38) in (34). Under these conditions,
(
≈u1(·),

≈u2(·)) is an equilibrium strategy for the differential game described by the controlled
system (34), the performance criterion (4), and the admissible strategies of type (3). The optimal
values of the performance criterion (4) are given by

Jk(x0; ≈u1(·),
≈u2(·)) = xT

0 E[
≈
Xk(t0, ηt0)]x0 − 2xT

0 E[
≈
Ψk(to, ηt0)] +E[≈µk(t0, ηt0)],

k = 1, 2,
≈
Ψk(·, i), ≈µk(·, i) being the solutions of the TVPs (36) and (37), respectively.
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4.2. The Case when the Performance Criterion (4) Is Replaced by Performance Criterion of Type (7)

In this case, the aim of the decision-makers is to minimize the mean square of the
deviations of the final value of the output zk(t f ) from the target ζk, k = 1, 2. If so, the equilib-
rium strategy is obtained solving the TVPs (30) and (31), respectively, when the controlled
system is of type (1) or the TVPs (35) and (36), respectively, when the controlled system is
of type (34). In both cases Mk(t, i) = 0, (t, i) ∈ [t0, t f ]×N .

5. A Numerical Experiment

For the numerical experiment we considered the time invariant case of the system (34) with
performance criterion (4) without Markovian jumping. We rewrite equations (35a) and (35b) of
the form:

Ẋ1(t) = −R1(t, X1(t), X2(t)) = −(CT
1 M1C1

+(A0 − S2X2(t))TX1(t) + X1(t)(A0 − S2X2(t))

+AT
1 X1(t)A1 − X1(t)S1X1(t) + X2(t)S12X2(t))

Ẋ2(t) = −R2(t, X1(t), X2(t)) = −(CT
2 M2 C2

+(A0 − S1X1(t))TX2(t) + X2(t)(A0 − S1X1(t))

+AT
1 X2(t)A1 − X2(t)S2X2(t) + X1(t)S21X1(t))

Xk(t f ) = CT
k Gk Ck , k = 1, 2

Fk(t) = −R−1
kk BT

k Xk(t) , k = 1, 2 .

In this case, we have Mk(t, i) = Mk ≥ 0 , Rkk(t, i) = Rkk > 0 , Gk(i) = Gk ≥
0, Rk`(t, i) = Rk` ≥ 0 , rk(t) = 0 , 0 ≤ t ≤ t f , k, ` = 1, 2, ` 6= k.

The matrix coefficients of the controlled system (1) are :

A0 =


−0.4 0 −0.3 0.7
−0.3 −0.2 0 −0.1
0.8 −0.25 −0.25 0
−0.1 −0.2 0 −0.5

 , A0 ∈ R4×4

A1 =


0 0.2 0 −0.1
0 0 −0.3 0.15

−0.145 0.06 −0.2 0
0 −0.3 0 0.5

 , A1 ∈ R4×4

B1 =


0.5 0
1 2.5
−0.5 2

1 3

 B2 =


0 0.5
−0.75 −1.5

1 −2
1 0

 , B1, B2 ∈ R4×2

C1 =

(
1.0 −0.25 0.75 −0.5

0.25 0.75 −0.5 −0.25

)
C2 =

(
1.2 −0.5 0.75 −0.045
0.5 0.15 0.35 0.55

)
, C1, C2 ∈ R4×4

D1 = 0 , D2 = 0 .
The weight matrices for the performance criteria are of the form:

G1 =

(
0.2778 −0.094
−0.094 0.166

)
G2 =

(
0.2778 −0.133
−0.133 0.31

)
, G1, G2 ∈ R2×2

M1 =

(
3.2 0.5
0.5 2.5

)
M2 =

(
0.75 0.05
0.05 0.95

)
, M1, M2 ∈ R2×2
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R11 =

(
0.8 0.3
0.3 1.5

)
R22 =

(
0.95 0.65
0.65 1.25

)
R12 =

(
0.6 −0.3
−0.3 1.2

)
R21 =

(
0.8 −0.2
−0.2 1.0

)
, Rij ∈ R2×2 i, j = 1, 2

Moreover, rk(t) = 0, k = 1, 2 and the targets are ζ1 = [0.3; 0.8] , ζ2 = [0.6; 0.9],
and t ∈ [0, 1]. The initial point x0 is chosen to be x0 = [0.4; 0.01; 0.2; 0.25];∈ R4×1.

To compute X1(t), X2(t) we can use the Euler discretization method as (k = 1, 2):

X̃k(jh) = X̃k((j + 1)h) + hRk((j + 1)h, X1((j + 1)h), X2((j + 1)h))

with X̃k(Nh) = CT
k Gk, Ck , j = N − 1, N − 2, . . . , 1, 0, N = [t f /h] , k = 1, 2 .

We consider the following algorithm to compute the behavior of the controlled signals
z̃k, k = 1, 2.

Step 1. The aim of this step is to compute the gains matrices F̃k(jh) and ϕ̃k(jh), j =
0, 1, . . . , N , k = 1, 2 .

Step 2. The aim is to compute E[|z̃k(jh)|2] for j = 0, 1, . . . .N; k = 1, 2. We have:

E[|z̃k(jh)|2] = Tr[CkΣ(jh)CT
k ]

Consider two cases:

(A). The base variant using the above matrix coefficients. We have executed Step 1 and Step
2. The computed values E[|z̃k(jh)|2], k = 1, 2 for the signals z̃k, k = 1, 2 of the players
are given on Figures 1 and 2 for the first player and the second player, respectively.
Moreover, we have obtained the following values of E[|zk(1)− ζk|2] for the players
k = 1, 2 , i.e.,

E[|z1(1)− ζ1|2] = 0.5033 , E[|z2(1)− ζ2|2] = 1.0173. (39)

(B). We want to compute the output of the closed-loop system zk(·) by using a control
law (other than the optimal one) ũk(jh) = Fk(jh) x(jh) + ϕk(jh) with k = 1, 2, j =
0, 1, . . . , N− 1. For this, we take Fk(jh) and ϕk(jh) different from the optimal cases. We
use the same matrix coefficients. After Step 1, we obtain the optimal values of F̃k(jh)
and ϕ̃k(jh) k = 1, 2. Then, we compute the different values F̃k

k(jh), ϕ̃k
k(jh), k = 1, 2 as

follows (j = 0, 1, . . . , N − 1):

F̃1
1(jh) = ( F̃1(jh) + F̃2(jh) )/2, F̃2

2(jh) = ( F̃1(jh)− F̃2(jh) )/2,

ϕ̃1
1(jh) = ( ϕ̃1(jh)− ϕ̃2(jh) )/2, ϕ̃2

2(jh) = ( ϕ̃1(jh) + ϕ̃2(jh))/2.

The computations continue with Step 2 with F̃k
k(jh), ϕ̃k

k(jh), k = 1, 2. The computed
values of E[|zk(1)− ζk|2], k = 1, 2 are

E[|z1(1)− ζ1|2] = 8.5203 , E[|z2(1)− ζ2|2] = 4.5174. (40)

One sees from (39) and (40) that the values of the obtained deviation from the target
provided by the optimal control are better than the ones provided by another control.
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Figure 1. Plot of traces of the first player: E[|z̃1(jh)|2] in [0, t f ] = [0, 1].

0 20 40 60 80 100 120

t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

E
[|
z

2
(.

)|
2
]

Plot of Traces of the Second Player : 

Figure 2. Plot of traces of the second player: E[|z̃2(jh)|2] in [0, t f ] = [0, 1].

6. Conclusions

In this work, we studied the problem of the minimization of the deviation of some
outputs of a controlled dynamical system from some given reference signals. We considered
the case where the dynamical system is controlled by two decision-makers which are
not cooperating. One of the two decision-makers wants to minimize the deviation of a
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preferential output of the dynamical system from a given reference signal, whereas the
other decision-maker wants to minimize the deviation of another output of the same
dynamical controlled system from another reference signal. This problem was viewed as
a problem of designing a Nash equilibrium strategy for an affine quadratic differential
game with two players. Since it was supposed that the controlled dynamical system is
subject to multiplicative white noise perturbations and Markovian jumping, we must
find a Nash equilibrium strategy for a stochastic affine quadratic differential game. We
have obtained explicit formulae of the equilibrium strategy. To this end, the solutions
of two TVPs were involved. The first TVP is associated with a hybrid system formed
by two nonlinear backward differential equations and two nonlinear algebraic equations,
namely, the TVP (30). The second TVP is associated with a hybrid system formed by two
backward linear differential equations coupled with two affine matrix algebraic equations,
that is TVP (31). The first TVP is the same as that involved in the description of the Nash
equilibrium strategy for an LQ differential game. The second TVP takes into consideration
the reference signals rk(·) together with the final targets ζk, k = 1, 2.
There are few directions that can be considered as future research:

• Direct extensions from this article can be considered as follows: the case when two
or more players (with different cost functionals) are willing to cooperate or the case
when t f → ∞ for the tracking problem associated with a controlled system of type (1).

• Anther direction of future research can consider the case of a tracking problem with
preview in the case when the controlled dynamical system is affected by state multi-
plicative and/or control multiplicative white noise perturbations. To our knowledge,
this case was not yet considered in the existing literature. Some results in this direction
have been reported, for example in [2,6,7], for the case of only one decision-maker
and [29,30] for the case with more than one decision-maker.

• Finally, other directions can consider the case of linear quadratic tracking problem
with a delay component (for one or more players) for Itô stochastic systems. Some
results in this direction have been reported for examples in [10,11].
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