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1. Introduction

The fixed-point theory of non-linear operators has been a rapidly growing area of
research [1–19]. The starting point of this theory is Banach’s classical result [20] on the
existence of a unique fixed point for a strict contraction. Since that seminal paper, many
developments have taken place in this field [18,19,21–30].

In our joint paper with D. Butnariu and S. Reich [3], it was established that if every
sequence of iterates of a non-expansive operator converges, then this convergence property
also takes place for every sequence of inexact iterates under the presence of summable
errors. In our subsequent joint paper with D. Butnariu and S. Reich [31], this result was
extended for inexact infinite products of non-expansive self-mappings of a complete metric
space. Here, we analyze the convergence of inexact infinite products of non-expansive
operators which take a non-empty, closed subset K of a complete metric space into the
space, taking into account summable computational errors and obtaining a generalization
of the result of [31] mentioned above. Namely, we show that for each pair of sequence of
points {xi}∞

i=0 and {yi}∞
i=0 generated by our inexact infinite products which belong to the

subset K, the distance between xi and yi tends to zero as i→ ∞.

2. Preliminaries

Suppose that (X, ρ) is a complete metric space equipped with a metric ρ. For an
arbitrary element η ∈ X and an arbitrary set C ⊂ X, put

ρ(η, C) = inf{ρ(η, ξ) : ξ ∈ C}.

For any η ∈ X and any γ ∈ (0, ∞) put

B(η, γ) = {ξ ∈ X : ρ(η, ξ) ≤ γ}.

For any operator S : X → X, let S0y = y for every point y ∈ X.
In our joint paper with D. Butnariu and S. Reich [3], we investigated the influence of

computational errors on the asymptotic behavior of iterates of non-expansive operators
in complete metric spaces and established the following theorem (see also Theorem 2.72
of [16]).
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Theorem 1. Assume that A : X → X satisfies

ρ(Aξ, Aη) ≤ ρ(ξ, η) every pair of points ξ, η ∈ X,

F(A) is the collection of all fixed points of the operator A and for every point ξ ∈ X, the
sequence of iterates {Anξ}∞

n=1 converges (X, ρ).
Assume that {rn}∞

n=0 ⊂ (0, ∞) satisfies

∞

∑
n=0

rn < ∞

and that a sequence of inexact iterates {xn}∞
n=0 ⊂ X for every non-negative integer n satisfies

ρ(xn+1, Axn) ≤ rn.

Then, the sequence {xn}∞
n=1 converges to a point of F(A).

Theorem 1 has important applications and is an essential ingredient in the supe-
riorization and perturbation resilience of algorithms [21–23,25,26]. The superiorization
methodology works by analyzing the perturbation resilience of an iterative algorithm, and
then applying proactively such perturbations in order to make the perturbed algorithm
perform something useful in an addition to its original task. This methodology is illustrated
by the next discussion.

Assume that (X, ‖ · ‖) is a Banach space equipped with the norm ‖ · ‖, ρ(ξ, η) = ‖ξ − η‖
for all ξ, η ∈ X, an operator A : X → X satisfies

‖A(ξ)− A(η)‖ ≤ ‖ξ − η‖, ξ, η ∈ X

and that for any point η ∈ X, the sequence {Anη}∞
n=1 converges in the norm topology,

ξ0 ∈ X, {αt}∞
t=0 ⊂ (0, ∞) satisfies

∞

∑
t=0

αt < ∞,

{ut}∞
t=0 ⊂ X satisfies

sup{‖ut‖ : t = 0, 1, . . . } < ∞

and that for every non-negative integer t ≥ 0,

ξt+1 = A(ξt + αtut).

Theorem 1 implies that {ξk}∞
k=0 converges and its limit ξ satisfies A(ξ) = ξ. In this

case, the mapping A is called bounded perturbations resilient [22].
Now, assume that ξ0 ∈ X and the summable sequence of positive numbers {αt}∞

t=0
are given. We construct a sequence of iterates {ξt}∞

t=1 determined by the equation above.
Under an appropriate choice of {ut}∞

t=0, the sequence of inexact iterates {ξt}∞
t=1 has some

useful properties. Namely, the sequence { f (ξt)}∞
t=1 can be decreasing, where f is a given

objective function.
In our joint paper with D. Butnariu and S. Reich [31], we extended Theorem 1 for

inexact infinite products of non-expansive self-mappings of a complete metric space. In the
present paper, we investigate the convergence of inexact infinite products of non-expansive
mappings which take a non-empty, closed subset K of a complete metric space into the
space and obtain a generalization of the result of the work [31]. Namely, we show that
for each pair of sequence of points {xi}∞

i=0 and {yi}∞
i=0 generated by our inexact infinite

products which belong to the subset K, the distance between xi and yi tends to zero as
i→ ∞.

The most important and well-known application of the results obtained in [3,31] and
here is the convex feasibility problem: to find a common point of a family of convex,
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closed subsets Ci, i = 1, . . . , m of a Hilbert space. The convex feasibility problems arises
in radiation planning and computer tomography. In order to solve this problem, one
usually uses infinite products of projections on the sets Ci, i = 1, . . . , m or more advanced
dynamic string-averaging projection methods [18,19,25]. Our results, as well as the results
of [3,31], explain stability effects arising in numerical experiments under the presence of
small computational errors [21].

3. A Convergence Result in a Metric Space

Assume that K is a non-empty, closed set in a complete metric space (X, ρ) equipped
with the metric ρ. Denote by A the collection of all operators S : K → X for which

ρ(S(η), S(ξ)) ≤ ρ(η, ξ), η, ξ ∈ K. (1)

Assume thatR is a collection of maps T : {1, 2, . . . , } → A which have the following
two properties:

(a) For every map T ∈ R and every natural number s the map T̃(t) = T(t + s),
t ∈ {1, 2, . . . } belongs toR;

(b) For any map T ∈ R and every pair {ξt}∞
t=0, {ηt}∞

t=0 ⊂ K for which

ξt+1 = T(t + 1)(ξt), ηt+1 = T(t + 1)(ηt), t = 0, 1, . . .

the equation
lim
t→∞

ρ(ξt, ηt) = 0

is true.
We will prove the following result.

Theorem 2. Assume that T ∈ R, ∆ > 0, {∆i}∞
i=1 ⊂ (0, ∞) satisfies

∞

∑
i=1

∆i < ∞ (2)

and that {xt}∞
t=0, {yt}∞

t=0 ⊂ K satisfy for every non-negative integer t,

ρ(xt+1, T(t + 1)(xt)) ≤ ∆t+1, ρ(yt+1, T(t + 1)(yt)) ≤ ∆t+1, (3)

and
B(xt, ∆), B(yt, ∆) ⊂ K. (4)

Then,
lim
t→∞

ρ(xt, yt) = 0.

4. Proof of Theorem 2

We may assume without loss of generality that

∆ < 1.

Let
ε ∈ (0, ∆). (5)

In view of Equation (2), there is an integer n0 ≥ 1 for which

∞

∑
j=n0

∆j < ε/9. (6)

Set
x̃n0 = xn0 (7)
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and
x̃n0+1 = T(n0 + 1)(x̃n0). (8)

By (3), (7) and (8),

ρ(x̃n0+1, xn0+1) = ρ(xn0+1, T(n0 + 1)(xn0)) ≤ ∆n0+1. (9)

Equations (4), (6) and (9) imply that

x̃n0+1 ∈ K.

Therefore, we can define

x̃n0+2 = T(n0 + 2)(x̃n0+1).

By induction, we define iterates x̃j for all natural numbers j > n0. If j > n0 is an
integer and x̃j ∈ K was defined, then we set

x̃j+1 = T(j + 1)(x̃j). (10)

Assume that m > n0 is an integer and that x̃i ∈ K, i = n0, . . . , m are defined and that
for each i ∈ {n0 + 1, . . . , m},

ρ(x̃i, xi) ≤
i

∑
j=n0+1

∆j. (11)

(Clearly, by Equation (9), our assumption is true for m = n0 + 1.) Equations (5), (6)
and (11) imply that

ρ(xm, x̃m) ≤
∞

∑
j=n0+1

∆j < ε/8 < ∆/4. (12)

By Equations (4) and (12), we have

x̃m ∈ K

and then
x̃m+1 = T(m + 1)x̃m

is defined.
Equations (1), (3) and (11) imply that

ρ(x̃m+1, xm+1) ≤ ρ(T(m + 1)(x̃m), T(m + 1)(xm)) + ρ(T(m + 1)(xm), xm+1)
≤ ρ(x̃m, xm) + ∆m+1

≤ ∑m
j=n0+1 ∆j + ∆m+1 = ∑m+1

j=n0+1 ∆j.
(13)

In view of (13), Equation (11) is true for i = m + 1. By (4)–(6) and (13),

ρ(x̃m+1, xm+1) < ε/8 < ∆/8.

and
x̃m+1 ∈ K.

Thus, the assumption which was made for m is true for m + 1 as well. By induction,
we showed that x̃i ∈ K is defined for all integers i ≥ n0 and (11) is true for all integers
i ≥ n0 + 1. Set

ỹn0 = yn0

and if an integer i ≥ n0 and ỹi ∈ K is defined, then set

ỹi+1 = T(i + 1)(ỹi).
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Arguing as before, we can show that for any natural number i ≥ n0, ỹi ∈ K is defined
and that

ρ(ỹi, yi) ≤
i

∑
j=n0+1

∆j. (14)

Properties (a) and (b) imply that

lim
i→∞

ρ(x̃i, ỹi) = 0 (15)

By Equation (15), there is a natural number n1 ≥ n0 such that for any natural number
i ≥ n1, we have

ρ(x̃i, ỹi) ≤ ε/4. (16)

Equations (8), (11), (14) and (16) imply that for any natural number i ≥ n1,

ρ(xi, yi) ≤ ρ(xi, x̃i) + ρ(x̃i, ỹi) + ρ(ỹi, yi)

≤ 2
i

∑
j=n0+1

∆j + ε/4 ≤ ε/8 + ε/8 + ε/4.

Theorem 2 is proved.

5. A Weak Convergence Result

Assume that K is a non-empty, closed set in a Banach space (E, ‖ · ‖) equipped with the
norm ‖ · ‖ with a dual space (E∗, ‖ · ‖∗). For each ξ, η ∈ E, put ρ(ξ, η) = ‖ξ − η‖. Denote
by A the collection of all maps S : K → E, for which

‖S(η)− A(ξ)‖ ≤ ‖η − ξ‖, η, ξ ∈ K. (17)

Assume thatR is a collection of maps T : {1, 2, . . . , ∞} → A which have the following
two properties:

(a) For every map T ∈ R and every natural number s, the map T̃(t) = T(t + s),
t ∈ {1, 2, . . . } belongs toR;

(b) For any map T ∈ R and each {xt}∞
t=0, {yt}∞

t=0 ⊂ K which satisfies

xt+1 = T(t + 1)(xt), yt+1 = T(t + 1)(yt), t = 0, 1, . . . ,

the sequence {xt − yt}∞
t=0 converges weakly in X to the zero.

We will prove the following result.

Theorem 3. Assume that T ∈ R, ∆ > 0, {∆j}∞
j=1 ⊂ (0, ∞) satisfies

∞

∑
j=1

∆j < ∞ (18)

and that {xt}∞
t=0, {yt}∞

t=0 ⊂ K satisfy for every non-negative integer t,

‖xt+1 − T(t + 1)(xt)‖ ≤ ∆t+1, ‖yt+1 − T(t + 1)(yt)‖ ≤ ∆t+1, (19)

and
B(xt, ∆), B(yt, ∆) ⊂ K. (20)

Then the sequence {xt − yt}∞
t=0 converges weakly in X to the zero.
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6. Proof of Theorem 3

We may assume without loss of generality that

∆ < 1.

Let f ∈ E∗ satisfy
‖ f ‖∗ ≤ 1, ε ∈ (0, ∆). (21)

In order to prove the theorem, it is sufficient to show that

lim
i→∞

f (yi − xi) = 0.

By (18), there is n0 ∈ {1, 2, . . . }, for which

∞

∑
i=n0

∆i < ε/8. (22)

Set
x̃n0 = xn0 (23)

and
x̃n0+1 = T(n0 + 1)(x̃n0). (24)

By (19)–(24),
‖x̃n0+1 − xn0+1‖ ≤ ∆n0+1, x̃n0+1 ∈ K. (25)

By induction, we define x̃t ∈ K for every natural number t > n0. If i > n0 is an integer
and x̃i ∈ K was defined, then we set

x̃i+1 = T(i + 1)(x̃i). (26)

Assume that m > n0 is an integer and that x̃i ∈ K; i = n0, . . . , m are defined using (26)
and for each i ∈ {n0 + 1, . . . , m},

‖x̃i − xi‖ ≤
i

∑
j=n0+1

∆j. (27)

(It should be mentioned that by (25) our assumption is valid for m = n0 + 1.) By (27),
we have

‖xm − x̃m‖ ≤
m

∑
j=n0+1

∆j. (28)

Set
x̃m+1 = T(m + 1)(x̃m).

Equations (17), (19), (28) and (29) imply that

‖x̃m+1 − xm+1‖ ≤ ‖T(m + 1)(x̃m)− T(m + 1)(xm)‖+ ‖T(m + 1)(xm)− xm+1‖
≤ ‖x̃m − xm‖+ ∆m+1

≤ ∑m
j=n0+1 ∆j + ∆m+1 = ∑m+1

j=n0+1 ∆j.
(29)

In view of (29), Equation (27) is true for i = m + 1. By (20)–(22) and (29),

‖x̃m+1 − xm+1‖ < ε/8 < ∆/8.

and
x̃m+1 ∈ K.
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Thus, the assumption which was made for m is true for m + 1 as well. By induction,
we showed that x̃i ∈ K is defined for all integers i ≥ n0 by (26) and (27) holds for all
integers i ≥ n0 + 1. Set

ỹn0 = yn0 (30)

and if an integer i ≥ n0 and ỹi ∈ K is defined, then set

ỹi+1 = T(i + 1)(ỹi). (31)

Arguing as before, we can show that for every integer i ≥ n0 + 1, ỹi ∈ K is defined
and that

‖ỹi − yi‖ ≤
i

∑
j=n0+1

∆j. (32)

Properties (a) and (b) and Equations (23), (26), (30) and (31) imply that

x̃i − ỹi → 0 weakly in E as i→ ∞. (33)

In order to complete the proof of our result, it is sufficient to show that the inequality

| f (xi − yi)| < ε

is true for all sufficiently large natural numbers i ≥ 0. By (33),

lim
i→∞

f (ỹi − x̃i) = 0.

Thus, there is a natural number n1 > n0 such that for every natural number i ≥ n1,

| f (x̃i − ỹi)| ≤ ε/8. (34)

Following Equations (22), (27), (32) and (34), for every natural number i ≥ n1,

| f (xi − yi)| ≤ | f (xi − x̃i)|+ | f (x̃i − ỹi)|+ | f (ỹi − yi)|

≤ ‖ f ‖∗‖xi − x̃i‖+ ε/8 + ‖ f ‖∗‖yi − ỹi‖

≤ 2
∞

∑
j=n0+1

∆j + ε/8 < ε.

Theorem 3 is proved.

7. Conclusions

We analyze the asymptotic behavior of infinite products of non-linear operators which
take a non-empty, closed subset K of a complete metric space into the space, taking into
account summable computational errors and obtaining a generalization of the result of [31].
More precisely, we show that for each pair of sequence of points {xi}∞

i=0 and {yi}∞
i=0

generated by our inexact infinite products which belong to the subset K, the distance
between xi and yi tends to zero as i→ ∞. The most important and well-known application
of the results obtained in [3,31] and here is the convex feasibility problem: to find a common
point of a family of convex, closed subsets Ci, i = 1, . . . , m of a Hilbert space. The convex
feasibility problems arises in radiation planning and computer tomography. In order
to solve this problem, one usually uses infinite products of projections on the sets Ci,
i = 1, . . . , m or more advanced dynamic string-averaging projection methods [18,19,25].
Our results as well as the results of [3,31] explain stability effects arising in numerical
experiments under the presence of small computational errors [21].
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