A Visualization in GeoGebra of Leibniz’s Argument on the Fundamental Theorem of Calculus
Abstract
:1. Introduction
- If then
- where is an antiderivate of ; that is, [5] (p. 326).
2. Methods
“Sentio autem et hanc (methodum) et alias hactenus adhibitas omnes deduci posse ex generali quodam meo dimetiendorum curvilineorum principio, quod figura curvilinea censenda sit aequipollere polygono infinitorum laterum”.
“Mihi vero feliciter accidit, ut theorema prop. 7. hujus traditum curvam daret rationalem simplicis admodum expressionis; circulo aequipollentem; unde nata est quadratura circuli arithmetica, et vera expressio analytica arcus ex tangente, cujus gratia ista conscripsimus. Inde porro investigans methodum reperi generalem admodum et pulchram ac diu quaesitam, cujus ope datae cuilibet curvae analyticae, exhiberi potest curva analytica rationalis aequipollens, re ad puram analysin reducta”.[18] (p. 98)
“PROPOSITIO VII.Si a quolibet curvae cujusdam puncto ad unum anguli recti in eodem plano positi latus ducantur ordinatae normales, ad alterum tangentes, et ex punctis occursus tangentium ducantur perpendiculares ad earum ordinatas, si opus est productas; et curva alia per intersectiones harum perpendicularium et ordinatarum transeat; erit spatium inter axem (ad quem ductae sunt ordinatae) duas ordinatas extremas, et curvam secundam comprehensum, spatii inter curvam primam et rectas duas ejus extrema cum anguli recti propositi centro jungentes, comprehensi duplum”.[16] (p. 32)
- The first reason is that, like most dynamical software, it allows to manipulation of geometric or graphical representation almost at the same level as symbolic representation. In particular, in this study, GeoGebra allowed us to manipulate the geometric representations of Leibniz’s FTC, which was not possible before the use of this type of software.
- The second reason is that GeoGebra has characteristics of the ISO-9126 standard (https://www.arisa.se/compendium/node6.html) (accessed on 19 October 2023).
- Since it is an open software, teachers who want to incorporate this geometrical approach to teach the FTC can do so easily.
3. Results
4. Discussion
“(1) Quantity of magnitude bounded between two sequences of convergent quantities. The magnitude can be geometric, physical, length, area, volume, distance, work, density, etc.(2) Limit of Riemann Sums(3) Cumulative function(4) Incremental difference of the cumulative function if ”.[24] (p. 14)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasini, E. Arcanum Artis Inveniendi : Leibniz and Analysis. In Analysis and Synthesis in Mathematics: History and Philosophy; Otte, M., Panza, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 35–46. [Google Scholar]
- Guicciardini, N. Método versus Cálculo en las críticas de Newton a Descartes y Leibniz. Estud. Filosóficos 2009, 39, 9–38. [Google Scholar] [CrossRef]
- Dunham, W. The Calculus Gallery: Masterpieces. From Newton to Lebesgue; Princeton University Press: Princeton, NJ, USA, 2005; ISBN 0-691-09565-5. [Google Scholar]
- Blåsjö, V. The Myth of Leibniz’s Proof of the Fundamental Theorem of Calculus. 2015, pp. 46–50. Available online: http://www.nieuwarchief.nl/serie5/pdf/naw5-2015-16-1-046.pdf (accessed on 1 August 2021).
- Stewart, J. Calculus; Cengage Learning: Boston, MA, USA, 2015; ISBN 9780262032933. [Google Scholar]
- Muñoz-Villate, W. Relations between history of mathematics and training of engineers. Rev. Vis. Electrónica 2021, 15, 142–151. Available online: https://revistas.udistrital.edu.co/index.php/visele/article/view/17471 (accessed on 1 May 2021). [CrossRef]
- Robles, M.; Tellechea, E.; Font, V. Una propuesta de acercamiento alternativo al teorema fundamental del cálculo. Educ. Matemática 2014, 26, 69–109. [Google Scholar]
- Tall, D. Students’ Difficulties in Calculus. Proc. Work. Group 1992, 3, 13–28. [Google Scholar] [CrossRef]
- Bressoud, D.M. Historical reflections on teaching the fundamental theorem of integral calculus. Am. Math. Mon. 2011, 118, 99–115. [Google Scholar] [CrossRef]
- Panza, M. Newton et les Origines de L’analyse: 1664–1666; Librairie Scientifique et Technique Albert Blanchard: Paris, France, 2005; ISBN 2-85367-230-1. [Google Scholar]
- Scriba, C. Method The Inverse of Tangents : A Dialogue between Leibniz and Newton (1675–1677). Arch. Hist. Exact Sci. 2014, 2, 113–137. [Google Scholar] [CrossRef]
- Leibniz, G.W. Leibniz: Sämtliche Schriften und Briefe, Reihe VII, Band 5. Mathematische Schriften, 1674–1676 Infinitesimalrechnung; PDFA Akademie Verlag: Berlin, Germany, 2008. [Google Scholar]
- Swetz, F. Mathematical Treasure: Leibniz’s Papers on Calculus. Mathematical Association of America, 2015. Available online: https://www.maa.org/book/export/html/641727 (accessed on 1 December 2020).
- Chemla, K.; Chorlay, R.; Rabouin, D. The Oxford Handbook of Generality in Mathematics and the Sciences; Oxford University Press: Paris, France, 2016; ISBN 978-0-19-877726-7. [Google Scholar]
- Crippa, D. The Impossibility of Squaring the Circle in the 17th Century: A Debate among Gregory, Huygens and Leibniz; Birkhäuser: Basel, Switzerland, 2019; Volume 1673. [Google Scholar]
- Knobloch, E. Analiticidad, equipolencia y teoría de curvas en Leibniz. Llull: Revista de la Sociedad Española de Historia de las Ciencias y de las Técnicas 2013, 36, 283–306. [Google Scholar]
- Mathesis Project Mathesis. Editing Leibniz’s Mathematical Manuscripts. 2017. Available online: http://mathesis.altervista.org/ (accessed on 1 September 2021).
- Goethe, N.; Beeley, P.; Rabouin, D. GW Leibniz, Interrelations between Mathematics and Philosophy; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9789401796637. [Google Scholar]
- Parmentier, M. Démonstrations et infiniment petits dans la Quadratura arithmetica de Leibniz. Rev. Hist. Sci. Paris 2001, 54, 275–289. [Google Scholar] [CrossRef]
- Katz, V. A History of Mathematics; Pearson: London, UK, 2008; ISBN 0321387007. [Google Scholar]
- Mena, R. CSULB Section 8: The Fundamental Theorem of Calculus. Leibniz and the FTC. [PDF Document]. 2014. Available online: http://web.csulb.edu/~rmena/410/Section8.pdf (accessed on 14 September 2019).
- Knobloch, E. Gottfried Wilhelm Leibniz De Quadratura Arithmetica Circuli Ellipseos et Hyperbolae; Springer: Berlin, Germany, 2016; ISBN 9783662528020. [Google Scholar]
- Jullien, V. Seventeenth-Century Indivisibles Revisited; Birkhäuser: Basel, Switzerland, 2015; ISBN 9783319001302. [Google Scholar]
- Burgos, M.; Bueno, S.; Godino, J.D.; Pérez, O. Onto-semiotic complexity of the Definite Integral. Implications for teaching and learning Calculus. J. Res. Math. Educ. 2021, 10, 4–40. [Google Scholar] [CrossRef]
- Godino, J.; Batanero, C.; Font, V. The Onto-Semiotic Approach: Implications for the Prescriptive Character of Didactics. Learn. Math. 2019, 39, 38–43. [Google Scholar]
- Mateus-Nieves, E.; Font Moll, V. Epistemic Complexity of the Mathematical Object “Integral”. Mathematics 2021, 9, 2453. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, W.; León, O.L.; Font, V. A Visualization in GeoGebra of Leibniz’s Argument on the Fundamental Theorem of Calculus. Axioms 2023, 12, 1000. https://doi.org/10.3390/axioms12101000
Muñoz W, León OL, Font V. A Visualization in GeoGebra of Leibniz’s Argument on the Fundamental Theorem of Calculus. Axioms. 2023; 12(10):1000. https://doi.org/10.3390/axioms12101000
Chicago/Turabian StyleMuñoz, Weimar, Olga Lucía León, and Vicenç Font. 2023. "A Visualization in GeoGebra of Leibniz’s Argument on the Fundamental Theorem of Calculus" Axioms 12, no. 10: 1000. https://doi.org/10.3390/axioms12101000
APA StyleMuñoz, W., León, O. L., & Font, V. (2023). A Visualization in GeoGebra of Leibniz’s Argument on the Fundamental Theorem of Calculus. Axioms, 12(10), 1000. https://doi.org/10.3390/axioms12101000