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Abstract: Adaptive therapy is a new type of cancer treatment in which time and dose are dynamically
changed according to different individuals, which is very different from conventional cancer treatment
strategies that use the maximum dose to kill the tumor cells. However, how to determine the time and
dose of drug treatment is a challenging problem. In this paper, a competition model between drug-
sensitive cells and drug-resistant cells was established, in which pulse intervention was introduced.
In addition, based on the theory of pulse optimal control, three pulse optimal control strategies are
proposed in the process of cancer treatment by controlling the pulse interval and dose, minimizing the
number of tumor cells at the end of the day at minimal cost. Finally, three optimization strategies were
compared, using numerical simulation, in terms of tumor burden and the effect on drug-resistant
cells. The results show that the hybrid control strategy has the best effect. This work would provide
some new ideas for the treatment of cancer.

Keywords: pulse effect; permanence; global attractiveness; optimal control

MSC: 37M05

1. Introduction

Cancer is the leading cause of death in most countries and regions in the world, and
China ranks first in the number of cancer deaths in the world [1]. How to treat this kind of
disease more effectively has become the problem that many scholars study. In reference [2],
MTD therapy mainly controls tumor burden by killing sensitive subpopulations with high
frequency administration. In references [3,4], adaptive therapy, as a new approach to
cancer therapy, exploits the competitive interaction between drug-sensitivity and drug-
resistance subpopulations; a stable tumor burden is maintained by allowing a large number
of therapy-sensitive cells to survive. However, with the continuation of the treatment
cycle, there will be a large number of drug-resistant cells, and this will ultimately lead to
treatment failure [5,6] as scholars continue to study and refine. In reference [7], treatment
time was shortened by adjusting tumor baseline burden based on a competing model
of three different prostate cancer cell populations. In reference [8], a competitive model
of drug sensitivity and drug resistance of tumor cells was established. A new dynamic
optimization problem with constraints was proposed to dynamically adjust the treatment
cycle and adaptive treatment dose for prostate cancer. In reference [9], the benefits of
adaptive therapy were enhanced by considering the benefits of intratumoral competition
and tumor control, killing sensitive cells, assessing the time to stop the treatment cycle, and
switching to high-frequency dosing.

The pulse phenomenon is that, for some reason, the state of the system will change
or be destroyed in a short time, thus changing the original trajectory. At present, many
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achievements have been made in the research of pulse effect in the model [10]. However,
pulse therapy is rare in cancer treatment. In the tumor system, sensitive cells are easily
regulated by drugs, while resistant cells can only be regulated indirectly by sensitive cells.
Therefore, the number of sensitive cells significantly decreased after pulse administration,
further regulating the number of drug-resistant cells. Based on this, a competition model
with an impulsive effect between sensitive cells and drug-resistant cells was established in
this paper. The time and dose of pulse administration were further studied. At present, the
analysis of pulse optimal control theory and numerical techniques have been well devel-
oped. Taking references [11–16] as examples, the theory and method of pulse optimization
were introduced in detail, and the time scale transformation method was widely used in
pulse time optimization. The aim of this paper is to select the optimal pulse time and dose
in finite time according to the pulse optimal control theory, and to minimize the drug cost
and the final tumor burden.

The structure of this paper is as follows. In Section 2, a competitive model of drug-
sensitive and drug-resistant cells after pulse intervention is established, and the model is
analyzed theoretically. In Section 3, by means of time scaling and translation, three optimal
control strategies, based on different pulse intervention time and dosage, are proposed in
finite time by using a gradient calculation. In Section 4, based on numerical simulation,
three control strategies are compared in terms of tumor burden and the number of drug-
resistant cells, and the most effective control strategy is proposed. In the fifth part, a simple
conclusion is drawn.

2. Mathematical Model and Its Theoretical Analysis
2.1. A Competition Model for Sensitive and Resistant Cells with Impulsive Effects

First, considering the interaction between prostate cancer cell lines, Liu et al. [8]
established a competitive model for sensitive and resistant cells, as shown below.

dT1(t)
dt

= λ1T1

[
1− T1a11 + T2a12(1 + αβ(t)

K1

]
− µ1T1,

dT2(t)
dt

= λ2T2

[
1− T1a21 + T2a22

K2

]
− µ2T2.

(1)

where T1 represents drug-sensitive cells, T2 represents drug-resistant cells, λ1 and λ2
represent the net growth rate of cells, K1 represents the environmental capacity of drug-
sensitive cancer cells, K2 represents the environmental capacity of drug-resistant cancer
cells, µ1 and µ2 represent the natural mortality of cells, (aij)2×2 represents competition
between sensitive and resistant cells, α represents the patient’s sensitivity to the targeted
drug, and β is the drug dose.

Considering the impact of impulsive intervention on the model, the following model
is obtained: 

dT1(t)
dt

= λ1T1

[
1− T1a11 + T2a12

K1

]
− µ1T1,

dT2(t)
dt

= λ2T2

[
1− T1a21 + T2a22

K2

]
− µ2T2,

 t 6= tk,

T1(t+k ) = (1− pk)T1(tk),

T2(t+k ) = (1 + qk)T2(tk),

}
t = tk, k = 1, 2, . . . , n− 1.

(2)

Having initial conditions of

T1(0) = T10, T2(0) = T20.

where tk is the pulse time, pk, k = 1, 2, . . . , n− 1 is the dosage, and qk, k = 1, 2, . . . , n− 1 is
an increase in drug-resistant cells; λ1, λ2, K1, K2, µ1, µ2 pk, qk, and (aij)2×2 are constant.
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2.2. Preliminaries

First, we will introduce and prove some theorems of the Lotka–Volterra model with
impulsive effects [17–19], which are important to our follow-up results.

We consider the subsystem of the model
dT1(t)

dt
= T1(t)

[
(λ1 − µ1)−

λ1a11

K1
T1(t)

]
, t 6= tk,

T1(t+k ) = (1− pk)T1(tk), t = tk, k = 1, 2, . . . , n− 1.
(3)

Theorem 1. If there are constants ηi(i = 1, 2) such that

(λ1 − µ1)ηi + lim inf
t→+∞ ∑

t≤tk<t+ηi

ln(1− pk) > 0, (4)

h1(t, τ) = ∑
t≤tk<t+τ

ln(1− pk), (5)

h1(t, τ) is a bounded function on t ∈ R+, 0 ≤ τ ≤ max{η1, η2}. Then,
(1) There are constants m and M such that

m ≤ lim inf
t→+∞

T1(t) ≤ lim sup
t→+∞

T1(t) ≤ M, (6)

where T1(t) is any solution of a subsystem (3).

(2) lim
t→+∞

(T11(t)− T12(t)) = 0, where T11(t) and T12(t) are two arbitrary solutions of a

subsystem (3).

Proof. For convenience, let (λ1 − µ1) = a,
λ1a11

K1
= b. By conditions (4) and (5), there are

constants m1 and m2, δ and T0, such that for all t ≥ T0, we can get∫ t+η1

t
(a− bm1)ds + ∑

t≤tk<t+η1

ln(1− pk) < −δ,

∫ t+η2

t
(a− bm2)ds + ∑

t≤tk<t+η2

ln(1− pk) > δ.

Because h1(t, τ) is a bounded function on t ∈ R+, 0 ≤ τ ≤ max{η1, η2}, there is a
constant Y1 such that for any t ∈ R+.

|h1(t, τ)| = | ∑
t≤tk<t+τ

ln(1− pk)| < Y1.

Let T1(t) be any solution of a subsystem (3). If T1(t) ≥ m1, for t ≥ T
′
, there is

t = T
′
+ κη, when κ > 0 is an integer, from T

′
to t, to solve subsystem (3), we can get

T1(t) = T1(T
′
) ∏

T′<tk<t

(1− pk) exp
∫ t

T′
(a− bT1(s))ds

= T1(T
′
) exp

( ∫ t

T′
(a− bT1(s))ds + ∑

T′≤tk<t

ln(1− pk)
)

≤ T1(T
′
)) exp

( ∫ T
′
+η1

T0

(a− bm1)ds + ∑
T′≤tk<T′+η1

ln(1− pk)) + . . .

+
∫ T

′
+η1

T′+(κ−1)η1

(a− bm1)ds + ∑
T′+(κ−1)η1≤tk<T′+η1

ln(1− pk)
)
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= T1(T
′
) exp

(
H1 + ∑

T′≤tk<T′+η1

ln(1− pk) + . . .

+ H1 + ∑
T′+(κ−1)η1≤tk<T′+κη

ln(1− pk)
)

≤ T1(T
′
) exp(−κδ),

where H1 = ((a− bm1)η1), when κ → ∞, T1(t)→ 0, this is a contradictory.
If T1(t) oscillates with respect to m1, we can choose two sequences {γn} and {γ∗n}

which satisfy
0 < γ1 < γ∗1 < . . . < γn < γ∗n < . . . ,

lim
n→+∞

γn = lim
n→+∞

γn
∗ = ∞, (7)

T1(γn) ≤ m1, T1(γ
+
n ) ≥ m1, T1(γ

∗
n) ≥ m1, T1(γ

∗+
n ) ≤ m1, (8)

T1(t) ≥ m1, t ∈ (γn, γ∗n), T1(t) ≤ m1, t ∈ (γ∗n, γn+1). (9)

Therefore, when n is large enough, γn ≥ T
′
, then for t ∈ (γn, γ∗n), there is

˙T1(t) ≤ T1(t)(a− bm1), t 6= tk. (10)

Select an integer κ, where t = γn + κη1 + µ1 and 0 ≤ µ1 < η1, with

T1(t) = T1(γn) exp
( ∫ t

γn
(a− bT1(s))ds + ∑

γn≤tk<t
ln(1− pk)

)
≤ m1 exp

( ∫ γn+η1

γn
(a− bm1)ds + ∑

γn≤tk<γn+η1

ln(1− pk)) + . . .

+
∫ γn+κη1

γn+(κ−1)η1

(a− bm1)ds + ∑
γn+(κ−1)η1≤tk<γ+κη1

ln(1− pk))

+
∫ γn+κη1+µ1

γn+κη1

(a− bm1)ds + ∑
γn+κη1≤tk<γ+κη1+µ1

ln(1− pk)
)

= m1 exp
(

H1 + ∑
γn≤tk<γn+η1

ln(1− pk) + . . .

+ H1 + ∑
γn+(κ−1)η1≤tk<γn+κη1

ln(1− pk))

+
∫ γn+κη1+µ1

γn+κη1

(a− bm1)ds + ∑
γn+κη1≤tk<γ+κθ1+µ1

ln(1− pk)
)

≤ m1 exp
(
(−κδ) +

∫ γn+κη1+µ1

γn+κη1

(a− bm1)ds

+ ∑
γn+κη1≤tk<γ+κη1+µ1

ln(1− pk)
)

≤ m1 exp
(
(a− bm1)µ1 + Y1

)
= m1 exp(H1 + Y1),

where H1 = ((a− bm1)η1). About t ∈ (γ∗n, γn+1), there is T1(t) ≤ m1 ≤ m1 exp(H1 + Y1).
Therefore, we have T1(t) < m1 ≤ m1 exp(H1 + Y1) , t ≥ T0.

Now prove that m ≤ lim inf
t→+∞

T1(t). If T
′′
> T

′
, there is T1(t) ≤ m2, then for t ≥ T

′′
+ κη,

where κ ≥ 0 is an integer. We can get
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T1(t) = T1(T
′′
) ∏

T′<tk<t

(1− pk) exp
∫ t

T′′
(a− bT1(s))ds

= T1(T
′′
) exp

( ∫ t

T′′
(a− bT1(s))ds + ∑

T′′≤tk<t

ln(1− pk)
)

≥ T1(T
′′
) exp

( ∫ T
′′
+η2

T′′
(a− bm2)ds + ∑

T′′≤tk<T′′+η2

ln(1− pk)) + . . .

+
∫ T

′′
+κη2

T′′+(κ−1)η2

(a− bm2)ds + ∑
T′′+(κ−1)η2≤tk<T′′+κη2

ln(1− pk)
)

= T1(T
′′
) exp(H2 + ∑

T′′≤tk<T′′+η2

ln(1− pk) + . . .

+ H2 + ∑
T′′+(κ−1)η2≤tk<T′′+κη2

ln(1− pk))

≥ T1(T
′′
) exp(κδ),

where H2 = ((a− bm2)η2), when κ → ∞, T1(t)→ ∞, this is contradictory.
If T1(t) oscillates with respect to m2, we can choose two sequences {γn} and {γ∗n}

which satisfy
0 < γ1 < γ∗1 < . . . < γn < γ∗n < . . . ,

lim
n→+∞

γn = lim
n→+∞

γn
∗ = ∞, (11)

T1(γn) ≥ m2, T1(γ
+
n ) ≤ m2, T1(γ

∗
n) ≤ m2, T1(γ

∗+
n ) ≥ m2, (12)

T1(t) ≤ m2, t ∈ (γn, γ∗n), T1(t) ≥ m2, t ∈ (γ∗n, γn+1). (13)

Therefore, when n is large enough, γn ≥ T
′′
, then for t ∈ (γn, γ∗n), there is

˙T1(t) ≥ T1(t)(a− bm2), t 6= tk. Select an integer κ, where t = γn + κη2 + µ2 and
0 ≤ µ2 < η2, with

T1(t) = T1(γn) exp
( ∫ t

γn
(a− bT1(s))ds + ∑

γn≤tk<t
ln(1− pk)

)
≥ m2 exp

( ∫ γn+η2

γn
(a− bm2)ds + ∑

γn≤tk<γn+η2

ln(1− pk)) + . . .

+
∫ γn+κη2

γn+(κ−1)η2

(a− bm2)ds + ∑
γn+(κ−1)η2≤tk<γn+κη2

ln(1− pk))

+
∫ γn+κη2+µ2

γn+κη2

(a− bm2)ds + ∑
γn+κη2≤tk<γn+κη2+µ2

ln(1− pk)
)

= m2 exp
(

H2 + ∑
γn≤tk<γn+η2

ln(1− pk) + . . .

+ H2 + ∑
γn+(κ−1)η2≤tk<γn+κη2

ln(1− pk))

+
∫ γn+κη2+µ2

γn+κη2

(a− bm2)ds + ∑
γn+κη2≤tk<γ+κη2+µ2

ln(1− pk)
)

≥ m2 exp
(
(κδ) +

∫ γn+κη2+µ2

γn+κη2

(a− bm2)ds
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+ ∑
γn+κη2≤tk<γ+κη2+µ2

ln(1− pk)
)

≥ m2 exp
(
(a− bm2)µ2 + Y1

)
≥ m2 exp(−H2 −Y1),

where H2 = ((a− bm2)η2). About t ∈ (γ∗n, γn+1), there is T1(t) ≥ m2 ≥ m2 exp(−H2−Y1).
Therefore, we have T1(t) ≥ m2 exp(−H2 − Y1), t ≥ T

′
, then the assertion (1) is

completed. Next, we prove any two solutions T11(t) and T12(t) of a subsystem to satisfy

lim
t→+∞

(T11(t)− T12(t)) = 0. (14)

Selecting any constants M1 and M2, from assertion (1) we can get

M1 ≤ T11(t), T12(t) ≤ M2, t ≥ 0. (15)

Selecting a Lyapunov function V(t) = |lnT11(t)− lnT12(t))|, V(t) is a bounded function
on R+. According to the subsystem (3), there is

V(t+k ) = |ln(1− pk)T11(tk)− ln(1− pk)T12(tk))| = V(tk).

D+V = sign(T11(t)− T12(t))
[ Ṫ11(t)

T11(t)
− Ṫ12(t)

T12(t)

]

= sign(T11(t)− T12(t))
T11

[
a− bT11

]
T11

−
T12

[
a− bT12

]
T12

= −b|T11 − T12|
< −bM1V(t). (16)

Therefore, V(t) ≤ V(0) exp(−bM1t). Then, when t→ ∞, V(t)→ 0 . The assertion (2)
is completed.

2.3. Theoretical Analysis

In this section, we prove the permanence and global attractiveness of the model by
using the knowledge of preparation. First, the permanence of system (2) is proved.

There are two subsystems:
dT1(t)

dt
= T1(t)

[
(λ1 − µ1)−

λ1a11

K1
T1(t)

]
, t 6= tk,

T1(t+k ) = (1− pk)T1(tk), t = tk, k = 1, 2, . . . , n− 1,
(17)


dT2(t)

dt
= T2(t)

[
(λ2 − µ2)−

λ2a22

K2
T2(t)

]
, t 6= tk,

T2(t+k ) = (1 + qk)T2(tk), t = tk, k = 1, 2, . . . , n− 1.
(18)

For solutions T∗1 (t) and T∗2 (t) of (17) and (18), the permanence of system (2) is obtained
as follows:

Theorem 2. If there are constants θi(i = 1, 2) such that

lim inf
t→+∞

( ∫ t+θ1

t
((λ1 − µ1)−

λ1a12

K1
T2
∗(s))ds + ∑

t≤tk<t+θ1

ln(1− pk)
)
> 0, (19)

lim inf
t→+∞

( ∫ t+θ2

t
((λ2 − µ2)−

λ2a21

K2
T1
∗(s))ds + ∑

t≤tk<t+θ2

ln(1 + qk)
)
> 0, (20)
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h1(t, τ) = ∑
t≤tk<t+τ

ln(1− pk),

h2(t, τ) = ∑
t≤tk<t+τ

ln(1 + qk).

h1(t, τ) and h2(t, τ) is bounded on t ∈ R+, and 0 ≤ τ ≤ max{θi, ηi}.
Then, the system (2) is permanence. There are normal numbers m and M, so that any positive

solution Z(t) = (T1(t), T2(t)) of system (2), we have

m ≤ lim inf
t→+∞

T1(t) ≤ lim sup
t→+∞

T1(t) ≤ M,

m ≤ lim inf
t→+∞

T2(t) ≤ lim sup
t→+∞

T2(t) ≤ M.

Proof. For convenience, let (λ1 − µ1) = a,
λ1a11

K1
= b,

λ1a12

K1
= c, (λ2 − µ2) = d,

λ2a21

K2
= e,

λ2a22

K2
= f . According to the conditions (19) and (20), it can be seen that

there are two positive constants ψ0 and T, so that for all t ≥ T. We can get∫ t+θ1

t
a− c(T2

∗(s) + ψ0)ds + ∑
t≤tk<t+θ1

ln(1− pk) > ψ0,

∫ t+θ2

t
d− e(T1

∗(s) + ψ0)ds + ∑
t≤tk<t+θ2

ln(1 + qk) > ψ0.

Since h1 and h2 is bounded on t ∈ R+, where 0 ≤ τ ≤ max{θi, ηi}, then there are
constants Y1, Y2 such that

|h1(t, τ)| = | ∑
t≤tk<t+τ

ln(1− pk)| < Y1,

|h2(t, τ)| = | ∑
t≤tk<t+τ

ln(1 + qk)| < Y2.

Let Z(t) = (T1(t), T2(t)) be any positive solution of the system (2). Since

˙T1(t) ≤ T1(t)(a− bT1(t)), t 6= tk. (21)

According to the comparison theorem, when there is t ≥ 0, T1(t) ≤ φ(t), where φ(t)
is the positive solution of the system (17), the initial condition φ(0) = T1(0), according to
Theorem 1, there is a positive constant T1 ≥ T, when t ≥ T1

T1(t) ≤ T1
∗(t) + ψ0. (22)

Choosing the constant M1 = sup{T1
∗(t) + ψ0}, then 0 < M1 < ∞, obviously for all

t ≥ T1, there is T1(t) ≤ M1.
Similarly, we can obtain T2(t) ≤ M2 = sup{T2

∗(t) + ψ0, t ∈ R+}, choose
M = max{M1, M2}, then

lim sup
t→+∞

T1(t) < M1, lim sup
t→+∞

T2(t) < M2. (23)

Now we prove
m1 ≤ lim inf

t→+∞
T1(t), m2 ≤ lim inf

t→+∞
T2(t).

If there is T1(t) ≤ ψ0 for all t ≥ T2 ≥ T, then for t = T2 + κθ1, where κ > 0 is an integer.
We can get
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T1(t) = T1(T2) exp
( ∫ t

T2
(a− bT1(s)− cT2(s))ds + ∑

T2≤tk<t
ln(1− pk))

≥ T1(T2) exp
( ∫ T2+θ1

T2
(a− bψ0 − c(T2

∗(s) + ψ0))ds

+ ∑
T2≤tk<T2+θ1

ln(1− pk)) + . . . +
∫ T2+κθ1

T2+(κ−1)θ1

(a− bψ0 − c(T2
∗(s) + ψ0))ds

+ ∑
T2+(κ−1)θ1≤tk<T2+κθ1

ln(1− pk)
)

≥ T1(T2) exp(κψ0 + Y1).

Then, when κ → ∞ has T1(t)→ ∞, this is a contradiction.
If T1(t) oscillates with respect to ψ0, we can choose two sequences {γn} and {γ∗n}

which satisfy

0 < γ1 < γ∗1 < . . . < γn < γ∗n < . . . , lim
n→+∞

γn = lim
n→+∞

γn
∗ = ∞,

T1(γn) ≥ ψ0, T1(γ
+
n ) ≤ ψ0, T1(γ

∗
n) ≤ ψ0, T1(γ

∗+
n ) ≥ ψ0,

T1(t) ≤ ψ0, t ∈ (γn, γ∗n), T1(t) ≥ ψ0, t ∈ (γ∗n, γn+1).

Therefore, when n is large enough, γn ≥ T, then for t ∈ (γn, γ∗n), there is ˙T1(t) ≥
T1(t)(a− bψ0 − c(T2

∗(s) + ψ0)), t 6= tk. Select an integer κ ≥ 0, where t = γn + κθ1 + ε1
and 0 ≤ ε1 < θ1, with

T1(t) = T1(γn) exp
( ∫ t

γn
(a− bT1(s)− cT2(s))ds + ∑

γn≤tk<t
ln(1− pk)

)
≥ ψ0 exp

( ∫ γn+θ1

γn
(a− bψ0 − c(T2

∗(s) + ψ0)ds

+ ∑
γn≤tk<γn+θ1

ln(1− pk)) + . . . +
∫ γn+κθ1

γn+(κ−1)θ1

(a− bψ0 − c(T2
∗(s) + ψ0)ds

+ ∑
γn+(κ−1)θ1≤tk<γn+κθ1

ln(1− pk)) +
∫ γn+κθ1+ε1

γn+κθ1

(a− bψ0 − c(T2
∗(s) + ψ0)ds

+ ∑
γn+κθ1≤tk<γn+κθ1+ε1

ln(1− pk)
)

≥ ψ0 exp(−β1θ1 −Y1),

where β1 = supt∈R+
(a + bψ0 + c(T∗1 + ψ0)).

About t ∈ (γ∗n, γn+1), there is T1(t) ≥ ψ0 ≥ ψ0 exp(−β1θ1 − Y1), we have T1(t) ≥
ψ0 > ψ0 exp(−β1θ1 −Y1), when t ≥ T2. Similarly, we can obtain

lim inf
t→+∞

T2(t) ≥ ψ0 exp(−β2θ2 −Y2),

where β2 = supt∈R+
(d + eψ0 + f (T∗2 + ψ0)).

Let m = min{ψ0 exp(−β1θ1 −Y1), (−β2θ2 −Y2)}. Then, m is independent of any
positive solution of Equation (2). Therefore

m ≤ lim inf
t→+∞

T1(t), m ≤ lim sup
t→+∞

T2(t). (24)

From (23) and (24), we finally understand that the system (2) is permanent.
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Next, we prove the global attractiveness of the system (2).

Theorem 3. Suppose there are two positive constants ω1 and ω2, and a nonnegative integer F,
such that

−ω1
λ1a11

K1
+ ω2

λ2a21

K2
≤ −F,−ω2

λ2a22

K2
+ ω1

λ1a12

K1
≤ −F, t ≥ 0.

Then, for any positive solution Z1(t) = (T1
1 (t), T1

2 (t)), Z2(t) = (T2
1 (t), T2

2 (t)) of the system of
Equations (2), there is

lim
t→+∞

(Z1(t)− Z2(t)) = 0. (25)

Proof. For convenience, let
λ1a11

K1
= b,

λ2a21

K2
= e,

λ2a22

K2
= f ,

λ1a12

K1
= c. For any solution

Z1(t) = (T1
1 (t), T1

2 (t)), Z2(t) = (T2
1 (t), T2

2 (t)), it can be obtained from Theorem 2 that there
are two positive constants C and D satisfying the following conditions, so that when t ≥ 0,
there is

C < Ti
1(t), Ti

2(t) < D.

Selecting the Lyapunov function

V(t) = ω1|lnT1
1(t)− lnT2

1(t))|+ ω2|lnT1
2(t)− lnT2

2(t))|.

such that
V(t+k ) = ω1|ln(1− pk)T1

1(t)− ln(1 + qk)T2
1(t)|

+ ω2|ln(1− pk)T1
2(t)− ln(1 + qk)T2

2(t)|
= V(tk).

Then

D+V = ω1sign(T1
1(t)− T2

1(t))(−b(T1
1(t)− T2

1(t))− c(T2
1(t)− T2

2(t)))

= ω2sign(T2
1(t)− T2

2(t))(−e(T1
1(t)− T2

1(t))− f (T2
1(t)− T2

2(t)))

≤ (−ω1b + ω2e)|T1
1(t)− T2

1(t)|+ (−ω2 f + ω1c)|T2
1(t)− T2

2(t)|
≤ −δFV(t),

where δ = C min ωi, i = 1, 2, V(t) ≤ V(0) exp(−δFt).
Then, when t→ ∞, V(t)→ 0. Therefore,

lim
t→+∞

(Z1(t)− Z2(t)) = 0,

and the proof is completed.

3. Optimal Control Strategies

In this section, we will consider three pulse optimal control strategies. Considering
the effects of drugs on sensitive cells, studies were conducted with pulse interval and dose
as control variables, with the goal of minimizing costs and the number of sensitive and
resistant cells at the terminal moment, and therefore, we consider the following objective
function at a finite time interval [0, T].

min J(η, p) =
n−1

∑
k=1

pkC + T1(T) + T2(T). (26)

η = (η1, η2, . . . , ηn) is time of pulse intervention, p = (p1, p2, . . . , pn−1) is the drug dose. C
is the cost of the drug.
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According to the optimal control theory of impulsive systems, because the existing
optimization techniques cannot be directly solved (26) (reference [15]), can be based on the
time scale transformation method to be solved. Finally, the gradient of the target function
to the pulse interval and the drug dose is obtained. It is very important to seek the best
control strategy for tumor therapy. We consider three control strategies to find the optimal
pulse interval and dose, as shown below.

3.1. Optimal Pulse Time and Dose

Given the initial model

dT1(t)
dt

= λ1T1

[
1− T1a11 + T2a12

K1

]
− µ1T1,

dT2(t)
dt

= λ2T2

[
1− T1a21 + T2a22

K2

]
− µ2T2,

 t 6= tk,

T1(t+k ) = (1− pk)T1(tk),

T2(t+k ) = (1 + qk)T2(tk),

}
t = tk, k = 1, 2, . . . , n− 1.

(27)

The control variables pk and ηk satisfy the condition

p1
k ≤ pk ≤ p2

k , k = 1, . . . , n− 1, (28)

0 = t0 ≤ t1 ≤ . . . ≤ tn−1 ≤ tn = t f , (29)

tk − tk−1 = ηk, (30)

xk ≤ ηk ≤ yk, k = 1, . . . , n.

p1
k , p2

k , xk, and yk are given non-negative constants.
We first construct a transformation from t ∈ [0, T] to s ∈ [0, n], which maps the

injection time 0, t1, t2, . . . , tn−1, T to a definite time point s = 0, 1, . . . , n.
We introduce time scaling changes

dt(s)
ds

= ν(s).

There are initial conditions
t(0) = 0.

ν(s) is called time scaling control and is piecewise constant function that may be discontin-
uous at Pulse Time s = 1, 2, . . . , n− 1, then

ν(s) =
n

∑
k=1

ηkχ(k−1,k)(s).

χI(s) is the indicating function of I, defining

χI(t) =

{
1, t ∈ I,

0, else.
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After the time scaling transformation, Equation (27) transformed into

dT1(s)
ds

= ν(s)

[
λ1T1

[
1− T1a11 + T2a12

K1

]
− µ1T1

]
,

dT2(s)
ds

= ν(s)

[
λ2T2

[
1− T1a21 + T2a22

K2

]
− µ2T2

]
,


s ∈ [0, n],

T1(k+) = (1− pk)T1(tk),

T2(k+) = (1 + qk)T2(tk),

}
k = 1, 2, . . . , n− 1.

(31)

The objective function becomes

J̃(η, p) =
n−1

∑
k=1

pkC + T1(n) + T2(n). (32)

Since (32) is still difficult to solve, we introduce the time translation transform
For k = 1, . . . , n− 1, n, define

T1k(s) = T1(s + k− 1), T2k(s) = T2(s + k− 1), πk(s) = t(s + k− 1). (33)

Time translation transform defined by (33), system (31), and (32) transformed into

dT1k(s)
ds

= ν(s)

[
λ1T1k(s)

[
1− T1k(s)a11 + T2k(s)a12

K1

]
− µ1T1k(s)

]
,

dT2k(s)
ds

= ν(s)

[
λ2T2k(s)

[
1− T1k(s)a21 + T2k(s)a22

K2

]
− µ2T2k(s)

]
,


s ∈ [0, 1],

T1k(0) = (1− pk−1)T1k−1(1),

T2k(0) = (1 + qk−1)T2k−1(1),

}
k = 2, . . . , n,

dπk
ds

= ηk, k = 1, . . . , n.

(34)

The corresponding objective function is

Ĵ(η, p) =
n−1

∑
k=1

pkC + T1n(1) + T2n(1). (35)

According to reference [18], we define the Hamiltonian function
Hk(s, ν(s), T1k(s), T2k(s), λk(s), pk) = λk

1(s)
˙Tk

1 (s) + λk
2(s)

˙Tk
2 (s).

Theorem 4. If the continuous functions λk(s) satisfy the adjoint equations

λ̇k
1(s) = −

∂Hk
∂T1k

= −ηk

(
λk

1(s)[λ1 −
(2a11T1k(s) + a12T2k(s))λ1

K1
− µ1]− λk

2(s)
λ2a21T2k

K2

)
. (36)

λ̇k
2(s) = −

∂Hk
∂T2k

= −ηk

(
λk

2(s)[λ2 −
(2a22T2k(s) + a21T1k(s))λ2

K2
− µ2]− λk

1(s)
λ1a12T1k

K1

)
. (37)

With boundary conditions
λk

1(1) = 1, λk
2(1) = 1. (38)

λk
1(1) = (1− pk)λ

k+1
1 (0), λk

2(1) = (1 + qk)λ
k+1
2 (0). (39)
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The gradient of the formula with respect to ηj(j = 1, 2, . . . , n− 1) is

∇ηj J(ηj, pk) =
∫ 1

0

(
λ

j
1(s)

[
λ1T1j(s)(1−

a11T1j(s) + a12T2j(s)
K1

)− µ1T1k

]
+ λ

j
2(s)

[
λ2T2j(s)(1−

a21T1j(s) + a22T2j(s)
K2

)− µ2T2k

])
ds.

For j = 2, . . . , n.
∇pk J(ηj, pk) = C− (λ1

k+1(0)T1k(1)).

For k = 1, 2, . . . , n− 1.

Proof. Known using Theorem 4.

λ̇k
1(s) = −

∂Hk
∂T1k

, λ̇k
2(s) = −

∂Hk
∂T2k

. (40)

With boundary conditions
λk

1(1) = 1, λk
2(1) = 1, (41)

λk
1(1) = (1− pk)λ

k+1
1 (0), λk

2(1) = (1− qk)λ
k+1
2 (0). (42)

we define
N(1) =

(
T1(1) T2(1)

)T ,

Nk(0) = ψk−1(Nk−1(1), pk, qk).

From (34), we can obtain

ψk−1(Nk−1(0), pk, qk) =
(
(1− pk)T1k(1) (1 + qk)T2k(1)

)
.

Using the gradient Formula [15],

∇ηj J(ηj, p1) =
∫ 1

0

n

∑
k=1

∂Hk(s, τ, T1k(s), T2k(s), λk(s), P)
∂ηj

ds

=
∫ 1

0

(
λ

j
1(s)

[
λ1T1j(s)(1−

a11T1j(s) + a12T2j(s)
K1

)− µ1T1k

]
+ λ

j
2(s)

[
λ2T2j(s)(1−

a21T1j(s) + a22T2j(s)
K2

)− µ2T2k

])
ds.

For j = 2, . . . , n.

∇pk J(ηj, pk) = C +
n−1

∑
k=1

(λk+1(0))T ∂ψk(Nk(1), pk, qk)

∂pk

= C− (λ1
k+1(0)T1k(1)).

For k = 1, 2, . . . , n− 1.
Based on Theorem 4, we briefly consider the latter two measures.
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3.2. The Optimal Dosage at a Fixed Time

If pk = p1, ηk = η1, then

∇p1 J(p1) = (n− 1)C +
n−1

∑
k=1

(λk+1(0))T ∂ψk(Nk(1), p1, q1)

∂p1

= (n− 1)C−
n−1

∑
k=1

(λ1
k+1(0)T1k(1)).

3.3. Optimal Pulse Time and Constant Drug Dose

If pk = p1, ηj = (η1, η1, . . . , ηn−1), then

∇ηj J(ηj, p1) =
∫ 1

0

n

∑
k=1

∂Hk(s, τ, T1k(s), T2k(s), λk(s), P)
∂ηj

ds

=
∫ 1

0

(
λ

j
1(s)

[
λ1T1j(s)(1−

a11T1j(s) + a12T2j(s)
K1

)− µ1T1k

]
+ λ

j
2(s)

[
λ2T2j(s)(1−

a21T1j(s) + a22T2j(s)
K2

)− µ2T2k

])
ds.

For j = 2, . . . , n− 1.

∇p1 J(ηj, p1) = (n− 1)C +
n−1

∑
k=1

(λk+1(0))T ∂ψk(Nk(1), p1, q1)

∂p1

= (n− 1)C−
n−1

∑
k=1

(λ1
k+1(0)T1k(1)).

4. Numerical Simulation

In this section, we simulate three control strategies, and then select the most effective
strategy through the effect. We assume that drug-resistant cells grow at a rate of 0.01 and
obtain the optimal objective function by determining the appropriate control parameters,
namely pulse interval and drug dose.

Select the parameters

λ1 = 0.02, λ2 = 0.5, µ1 = 0.001, µ2 = 0.0005, a11 = 0.2,

a12 = 0.1, a21 = 0.170, a22 = 0.2, K1 = 1000, K2 = 1500.

The initial number of sensitive cells and resistant cells T1(0) = 8000, T2(0) = 1.

4.1. The Optimal Dosage at a Fixed Time

Suppose the period of the pulse η = 20. Drug therapy is performed at Pulse Time
Point t1 = 4, t2 = 8, t3 = 12, t4 = 18.

Suppose that the dosage constraints are as follows:

0 ≤ p1 ≤ 1.

The optimal dosage p∗1 = 0.5337, the optimal objective function J∗ = 1318.4819, and
T∗1 = 474.8244 and T∗2 = 736.9175 at the terminal time are calculated by using MATLAB
software 2018a. Figure 1 shows the optimal dose at a fixed time, Figure 2 shows how the
number of drug-sensitive and drug-resistant cells evolves at a given time under optimal
pulse control, initial pulse control, and no pulse control. The black dotted line represents the
trajectory of the cell under the optimal pulse control, and the blue dotted line represents the
trajectory of the cell under the optimal pulse control. O (474.8244, 736.9175), M (571.4893,
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653.6824), and N ( 9265.3104, 0) denote the number of sensitive and resistant cells at the
terminal moment under the three control strategies.

From Figure 2, we can see that the application of impulse control significantly reduces
the tumor burden.
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Figure 1. Optimal control strategy.
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Figure 2. The dynamic behavior of T1 and T2.

4.2. Optimal Pulse Time and Constant Drug Dose

The initial values for the pulse dose and time interval are assumed to be

η1 = η2 = η3 = η4 = 4.

p1 = 0.5.

The pulse interval satisfies constraint 1 ≤ ηi ≤ 10. The optimal pulse dosage and time
interval are obtained through numerical simulation

η∗1 = 10, η∗2 = 7, η∗3 = 1, η∗4 = 1, η∗5 = 1.

p∗1 = 0.7307.
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The number of T∗1 = 42.8566 and T∗2 = 133.6778 cells at the terminal moment and
the optimal value of objective function is J∗ = 322.6744. Figure 3 shows the optimal dose
at an unfixed time. Figure 4 shows how the number of drug-sensitive and drug-resistant
cells evolves over a given time period under optimal pulse control, initial pulse control,
and pulse-free control. O (42.8566, 133.6778), M (571.4893, 653.6824), and N ( 9265.3104,
0) indicate the number of terminal-moment-sensitive and -resistant cells under the three
control strategies. Obviously, this control strategy not only reduced the tumor burden, but
also further controlled the change in drug-resistant cells.

From Figure 4, we can see that tumor burden is significantly reduced by applying
pulse control, and that optimal pulse control can further inhibit the growth of drug-resistant
cells compared to initial pulse control.
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Figure 3. Optimal control strategy.
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Figure 4. The dynamic behavior of T1 and T2.

4.3. Optimal Pulse Time and Dose

The initial values for the pulse dose and time interval are assumed to be

η1 = η2 = η3 = η4 = 4.

p1 = p2 = p3 = p4 = 0.5.
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The pulse interval satisfies constraint 1 ≤ ηi ≤ 10. The optimal pulse dosage and time
interval are obtained through numerical simulation

η∗1 = 9.9964, η∗2 = 5.7180, η∗3 = 1.9823, η∗4 = 1.2926, η∗5 = 1.0074.

p∗1 = 0.7116, p∗2 = 0.6503, p∗3 = 0.7621, p∗4 = 0.8686.

The number of T∗1 = 25.7732 and T∗2 = 139.8360 cells at the terminal moment and the
optimal value of objective function is J∗ = 315.4579. Figure 5 shows the optimal strategy
under the combined control of pulse timing and dose. Figure 6 shows how the number
of drug-sensitive and drug-resistant cells evolves over a given time period under optimal
pulse control, initial pulse control, and pulse-free control. O (25.7732, 139.8360), M (571.4893,
653.6824), and N ( 9265.3104, 0) indicate the number of terminal-moment-sensitive and
-resistant cells under the three control strategies. Obviously, compared to the previous
strategy, the tumor burden is further reduced.

From Figure 6, we can see that the optimal control strategy also reduces the number of
sensitive cells and suppresses the number of drug-resistant cells.
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Figure 5. Optimal control strategy.
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Figure 6. The dynamic behavior of T1 and T2.

Based on the pulse optimal control strategy, it is found that the pulse intervention can
significantly reduce the tumor load. Compared with the three optimal controls, fixed-time
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optimal controls can reduce tumor burden, but lead to an increase in the number of drug-
resistant cells. Compared with an optimal strategy for a given dose, the mixed strategy
cannot only inhibit the growth of drug-resistant cells, but also minimize the terminal
tumor burden because, in the process of cancer treatment, along with the continuation
of the treatment cycle, the proportion of drug-resistant cells increases, ultimately leading
to treatment failure. Thus, for three optimal control strategies, the results of numerical
simulations suggest that mixed optimal control can effectively suppress the number of
drug-resistant cells while achieving a relatively small tumor burden. Therefore, a mixed
control strategy is the most effective way to treat cancer. In the process of cancer treatment,
pulse intervention, in order to find the optimal pulse interval and dose, can maintain a
small tumor burden and, at the same time, inhibit the rapid increase in drug-resistant cells,
delaying human life. Data were selected from reference [8], where λ2, µ1, µ2, a12, a21; the
remaining data, in order to obtain better results, were random values.

5. Conclusions

As a new approach to cancer treatment, adaptive therapy is a dynamic regulatory
process. However, with the continuation of the treatment cycle, there will be a large number
of drug-resistant cells, and this will ultimately lead to treatment failure. Using the research
methods in references [15,20], this paper proposes a competition model between sensitive
cells and drug-resistant cells, in which multiple pulse intervention measures are introduced.
Firstly, the permanence and global attractiveness of the model are analyzed, which provide
a theoretical basis for the following work. At the same time, pulse intervention can reduce
the number of sensitive cells, further affecting the number of drug-resistant cells. Therefore,
how should we reasonably select the time and dose of pulse intervention in order to achieve
the best results? In this paper, based on different pulse control theories, three kinds of
pulse optimal control are studied with the time and dose of pulse intervention as control
variables; the three optimal control strategies are compared in terms of the tumor burden
and the effect on drug-resistant cells. The results show that the mixed control strategy
is the most effective for cancer treatment, because it cannot only suppress the number
of drug-resistant cells, but also, at the terminal moment, the tumor burden is relatively
minimal. Our study provides new ideas for the treatment of cancer; on the other hand,
there are few studies on the application of pulse intervention during cancer treatment.
Therefore, there are still more challenges in theoretical research, numerical analysis, etc.
More research ideas are worth further exploration.
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