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Abstract: In this paper, we derive the L-moments for some distributions, such as logistic, generalized
logistic, doubly truncated logistic, and doubly truncated generalized logistic distributions. We also
establish some new axioms and identities, including recurrence relations satisfied by the L-moment
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1. Introduction

Order statistics play an important role in the statistical inference of parametric and
nonparametric statistics, estimation theory, and hypothesis testing. Order statistics have
also found important applications, including life testing, reliability theory, characterization,
statistical quality control, detection of outliers, analysis of censored data, goodness-of-fit
tests, single image processing, and many other fields. Order statistics received attention
from numerous researchers, among them Arnold et al. [1] and David and Nagaraja [2]. For
a detailed discussion on the moments of order statistics, one can refer to [3].

Like other statistical moments, L-moments characterize the geometry of distributions,
summarization, and description of theoretical probability distributions (observed data sam-
ples), estimation of parameters and quantiles of probability distributions, and hypotheses
testing for probability distributions. L-moments are directly analogous to that and have
similar interpretations as the moments. This makes L-moments conceptually accessible to
many potential users.

Hosking [4] has defined the L-moments as based on linear combinations of differences
in the expectations of order statistics, which are based on powers (exponents) of differences.
They can be defined for any random variable whose mean exists. Hosking [5] concludes
that “L-moments can provide good summary measures of distributional shape and may be
preferable to moments for this purpose”. Sillitto [6] has introduced population L-moments
as alternatives to the classical population central moments determined by the population
distribution. Greenwood et al. [7] have introduced probability weighted moments, which
are an alternative statistical “moment” that, like the moments, characterize the geometry
of distributions and are useful for parameter estimation. Karian and Dudewicz [8] have
studied the method of L-moments in some of their examples, where the overall performance
appears comparable to the overall performance of the percentile method, where the method
of percentiles and the method of L-moments are related in the sense that they both are
based on order statistics.

Sahu et al. [9] have described regionalization procedures for hydrological and clima-
tological assessment of ungauged watersheds, where different techniques together with
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L-moments are being utilized by many researchers and hydrologists for almost every
extreme event, viz., extreme rainfall, low flow, flood, and drought. Domański et al. [10]
have presented an application of L-moment statistics and the respective L-moment ratio
diagrams to assess control performance, in particular, in terms of control system sustain-
ability. In addition, the evolution in their performance over time is depicted visually.
L-moment diagrams are common in extreme event analysis and are considered a very
powerful tool in this field at the regional level. Anderson [11] has shown that the results
of L-moments and L-moment ratios were less sensitive than traditional moments for the
Barabási–Albert, Erdös–Rényi, and Watts–Strogratz network models when his research
centered on finding the statistical moments, network measures, and statistical tests that are
most sensitive to various node degradations for these three different network models. Fal-
lahgoul et al. [12] have developed and applied a novel semiparametric estimation method
based on L-moments. Unlike conventional moments, L-moments are linear in the data and
therefore robust to outliers. Additionally, an extensive empirical analysis of portfolio choice
under nonexpected utility demonstrated the effectiveness of the L-moment approach.

In this paper, we display the L-moments and the sample L-moments, some of their
general properties, and how to use the sample L-moments to develop the method of L-
moments for estimating the parameters that are described in Section 2. In Section 3, we
establish general recurrence relations between L-moments for any distribution. Next, we
derive the exact explicit expressions for L-moments of underlying distributions, namely,
logistic distribution, generalized logistic distribution, doubly truncated logistic distribution,
and doubly truncated generalized logistic distribution in Section 4. Then, in Section 5, we
establish some recurrence relations by L-moments from specific distributions. Finally, we
provide our conclusions in Section 6.

2. L-Moments

In this section, we present the definitions of the probability weight moments, L-
moments, and L-moment ratios. Next, we establish some properties of L-moments and
L-moment ratios.

2.1. Population of L-Moments

The probability weighted moments of a random variable X with a pdf f (x), cdf F(x),
and quantile xu are defined by the expectations as

Mp,r,s = E
[
Xp(F(X))r(1− F(X))s] = ∫ 1

0
xp

uur(1− u)sdu,

where p, r, and s are integers. The most common probability weighted moment is

βr = M1,r,0 = E
[
X(F(X))r] = ∫ 1

0 xu urdu = 1
r+1 E[Xr+1:r+1] for r = 0, 1, 2, . . ., (1)

where

E[Xr:n] = µr:n =
∫ ∞
−∞ x fr:n(x)dx

=
∫ ∞
−∞ xCr:n[F(x)]r−1[1− F(x)]n−r f (x)dx,−∞ < x < ∞, Cr:n = n!

(r−1)!(n−r)! ,
(2)

gives the single moments for order statistics of Xr:n, 1 ≤ r ≤ n, n = 1, 2, 3, . . . (see [1]).
Landwehr et al. [13–15] have considered the L-moments as beginning with the statisti-

cal needs for researchers of surface-water hydrology with an interest in floods and extreme
rainfall hydrology. Historically, L-moments were developed from probability weighted
moments. The core theory of L-moments for univariate applications was unified in the
late 1980s to early 1990s. Hosking [16] has confirmed that probability weighted moments
(or L-moments) are sometimes more popular than maximum likelihood because of their
good performance for small samples. Additionally, L-moments can serve as a good choice
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for the starting values in the iterative numerical procedure required to obtain maximum
likelihood estimates.

Hosking [4] has unified discussion and estimation of distributions using L-moments
and used particular ratios of them as measures of skewness and kurtosis. They can
be defined for any random variable whose mean exists. Hosking has also defined the
theoretical L-moments from rth-shifted Legendre polynomials:

λr =
∫ 1

0
xu P∗r−1(u) du for r ≥ 1, (3)

where
P∗r−1(u) = ∑r−1

k=0 p∗r−1,kuk, (4)

p∗r−1,k = (−1)r−1−k
(

r− 1
k

)(
r− 1 + k

k

)
. (5)

is the shifted Legendre polynomial (see [17]) and xu is a quantile function. The first few
L-moments are

λ1 = E[X] =
∫ 1

0 xu du,
λ2 =

∫ 1
0 xu × (2u− 1) du,

λ3 =
∫ 1

0 xu × (6u2 − 6u + 1) du,
λ4 =

∫ 1
0 xu × (20u3 − 30u2 + 12u− 1) du.

The L-moment ratios of X are the quantities

τr = λr/λ2 for r = 3, 4, 5, . . .,

satisfying |τr| < 1. Note that τ3 = λ3/λ2 is called L-skewness and τ4 = λ4/λ2 is called
L-kurtosis. The L-moments λ1 and λ2 and the L-moment ratios τ3 and τ4 are the most
useful quantities for summarizing probability distributions. The most important property is
that if X and Y are random variables with L-moments λr and λ∗r , respectively, and suppose
that Y = aX + b, then,

λ∗1 = aλ1 + b,
λ∗r = (sign a)r|a|λr, r ≥ 2,

τ∗r = (sign a)rτr, r ≥ 3.

Hosking [5] concludes that “L-moments can provide good summary measures of
distributional shape and may be preferable to moments for this purpose”. Royston [18]
and Vogel and Fennessey [19] have discussed the advantages of L-skewness and L-kurtosis
over their classical counterparts.

The system of linear equations relating L-moments λr to probability weighted mo-
ments βr can be obtained (see [20]) for r ≥ 0 as follows:

λr+1 = ∑r
m=0 p∗r,m βm. (6)

The first four L-moments in terms of probability weighted moments are

λ1 = β0,
λ2 = 2β1 − β0,
λ3 = 6β2 − 6β1 + β0,
λ4 = 20β3 − 30β2 + 12β1 − β0.

Note that λ1 = E[X] is the L-location or the mean of the distribution, while λ2 is a
measure of the scale or dispersion of the random variable X, so λ2 is the L-scale.



Axioms 2023, 12, 928 4 of 22

2.2. Sample L-Moments and Method of L-Moments

For any distribution with finite means, Hosking [4] defined the sample L-moments λ̂r
as follows:

λ̂r =
1

r
(

n
r

)∑n
i=1

(
∑r−1

j=0 (−1)j
(

r− 1
j

)(
i− 1

r− 1− j

)(
n− i

j

))
xi:n,

where x1:n ≤ x2:n ≤ . . . ≤ xn:n are the sample order statistics. We see that the statistic λ̂1 is
the sample mean, the sample L-scale λ̂2 is half Gini’s mean difference (see [21]), λ̂3 is used
by Sillitto [6] as a measure of symmetry and by Locke and Spurrier [22] to test for symmetry,
and λ̂4 is used by Hosking [4] as a measure of kurtosis. The rth sample L-moment ratios
are the following quantities (see [23]):

τ̂r = λ̂r/λ̂2 , r = 3, 4, 5, . . . .

Note that τ̂3 = λ̂3/λ̂2 is a measure of skewness, and τ̂4 = λ̂4/λ̂2 is a measure of
kurtosis. These are, respectively, the sample L-skewness and sample L-kurtosis. The
quantities λ̂1, λ̂2, τ̂3, and τ̂4 are useful summary statistics for a data sample. They can be
used to identify the distribution from which a sample was drawn and applied to estimate
parameters when fitting a distribution to a sample by equating the sample and population
L-moments (see [24]).

From a random sample of size n, obtained from a probability distribution, the method
of L-moments (LMOMs) is to equate the L-moments of the distribution to the sample
L-moments such that λr = λ̂r for the p number of unknown parameters is chosen for a
distribution (see [25]).

3. General Relationships Based on L-Moments

The moments of order statistics have acquired considerable interest in recent years
and, in fact, have been tabulated quite extensively for many distributions. Many authors
have investigated and derived several recurrence relations because one could list the
following four main reasons why these recurrence relations for the moments of order
statistics are important:

1. They reduce the number of direct computations greatly;
2. They usefully express the higher order moments of order statistics in terms of the

lower order moments and hence make the evaluation of higher order moments easy;
3. They are very useful in checking the computation of the moments of order statistics;
4. Results can be used for characterizing the distributions.

Now, for the same main reasons in the moments of order statistics, Hosking [26] has
studied the recurrence relations between trimmed L-moments with different degrees of
trimming, and he found the relation between trimmed L-moments and L-moments.

In order to establish new general recurrence relations between the L-moments, we
need to review the most important lemmas that are necessary later in the theorem:

Lemma 1. If

Pn(x) =
1
2n ∑[n/2]

k=0 (−1)k
(

n
k

)(
2n− 2k

n

)
xn−2k,

where [n
2

]
=

{ n
2 , n even,

n−1
2 , n odd.
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is the Legendre polynomial (see [27]) of degree n = 0, 1, 2, . . . for x ∈ [−1, 1] and P∗n (x) is the
shifted Legendre polynomial of degree n = 0, 1, 2, . . . . on the interval [0, 1] in Equation (4), we
then have

d
dx

P∗n (x) = 2P′n(2x− 1) where P′n(x) =
d

dx
Pn(x). (7)

The shifted Legendre polynomial satisfies the following recurrence relations, n = 0, 1, . . . .. ,

P∗n+1(x) = P∗n (x)− 2
n + 1

(1− x)∑n
i=0 (2i + 1)P∗i (x), (8)

and
P∗n+1(x) = 2 ∑n

i=0 (2i + 1) q∗i+1(x)− P∗n (x). (9)

where
q∗i+1(x) =

∫ x

0
P∗i (t)dt = ∑i

k=0
1

k + 1
p∗i,kxk+1 for i > 0,

is the integrated shifted Legendre polynomial.

Proof. To prove (7), by compensating x for (2x − 1) in the differentiation of the Legen-
dre polynomial

P′n(x) =
d

dx
Pn(x) = ∑[(n−1)/2]

r=0 (2n− 4r− 1)Pn−2r−1(x),

(see [28]) and use P∗n (x) = Pn(2x− 1) (see [23]), we obtain

P′n(2x− 1) =
d

dx
Pn(2x− 1) = ∑[(n−1)/2]

i=0 (2n− 4i− 1)P∗n−2i−1(x). (10)

By the comparison between the differentiation of shifted Legendre polynomials,

d
dx

P∗n (x) = 2∑[(n−1)/2]
i=0 (2n− 4i− 1)P∗n−2i−1(x),

(see [29–31]) and P′n(2x− 1) in (10), we can express the relationship (7).
To prove (8), we have the recursive formula for Legendre polynomials (see [28]) for

n = 0, 1, 2, . . . .,

Pn+1(x) = Pn(x)− 1
n + 1

(1− x)∑n
i=0 (2i + 1)Pi(x), (11)

and then compensate x for (2x− 1) in (11) and use P∗n (x) = Pn(2x− 1) (see [23]).
Now, for Equation (9), by bringing a recursive formula for Legendre polynomials

(see [28]) for n = 0, 1, 2, . . . ., this relates the polynomials and their derivatives to each other
as follows:

P′n+1(x) = ∑n
i=0 (2i + 1)Pi(x)− P′n(x), (12)

where we compensate x to (2x − 1) in (12), use P∗n (x) = Pn(2x − 1) (see [23]) and (7);
we have,

d
dx

P∗n+1(x) = 2∑n
i=0 (2i + 1)P∗i (x)− d

dx
P∗n (x), (13)

and afterward integrating both sides with respect to t from t = 0 to t = x in (13).
Hence,

P∗n+1(x)− P∗n+1(0) = 2∑n
i=0 (2i + 1)

∫ x

0
P∗i (t)dt− (P∗n (x)− P∗n (0)), (14)

and using that P∗n (0) = (−1)n∀n = 0, 1, 2 . . . . (see [23]). �
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Theorem 1. Let X be a continuous random variable with cdf u = F(x) and quantile function xu;
0 ≤ u ≤ 1. Then, L-moments λr satisfy the following recurrence relations:

λr+2 =
2r + 1
r + 1

(2Ar+1 − λr+1)−
r

r + 1
λr, r = 0, 1, . . . .., (15)

λr+2 = λr+1 −
2

r + 1∑r
i=0 (2i + 1)(λi+1 − Ai+1), r = 0, 1, . . . .., (16)

λr+2 = 2(2r + 1)Br+1 + λr, r = 1, 2, . . . .., (17)

λr+2 = 2∑r
i=0 (2i + 1) Bi+1 − λr+1, r = 0, 1, . . . .., (18)

where Ar+1 = ∑r
k=0 p∗r,kβk+1, Br+1 = ∑r

k=0
1

k+1 p∗r,kβk+1, and p∗r,k are in (5) and βk+1 is in (1).

Proof. For (15), we have a recurrence relation between shifted Legendre polynomials for
n = 0, 1, 2 . . ., (see [29–31]):

P∗r+1(u) =
2r + 1
r + 1

(2u− 1)P∗r (u)−
r

r + 1
P∗r−1(u), r = 0, 1, . . . ..,

By multiplying both sides by xu and integrating over u, we obtain

λr+2 =
2r + 1
r + 1

[
2
∫ 1

0
uP∗r (u)xudu− λr+1

]
− r

r + 1
λr. (19)

Then,

∫ 1

0
uP∗r (u)xudu =

∫ 1

0
u

(
r

∑
k=0

p∗r,kuk

)
xudu =

r

∑
k=0

p∗r,k

∫ 1

0
uk+1xudu =

r

∑
k=0

p∗r,kβk+1 = Ar+1. (20)

using (20) in (19), the proof is complete. For (16), the same technique as the method of proof
for (15) is used, but begins by using (8).

Now, also for (17) and (18), they have the same technique as the method of proof, begun
by using the recurrence relation between shifted Legendre polynomials for n = 0, 1, 2 . . .,
(see [29–31]):

2(2n + 1) q∗n+1(x) = P∗n+1(x)− P∗n−1(x),

and (9), respectively, and multiplying both sides by xu and integrating over u. �

All Equations (15)–(18) in Theorem 1 are equal to λ2, λ3, . . . ., those given equations
relating λr to βr obtained by Zafirakou-Koulouris et al. [20] in (6).

4. L-Moments from the Logistic Distributions

In this section, we present some statistical distributions, like logistic, generalized
logistic, doubly truncated logistic and doubly truncated generalized logistic with their first
four implicit L-moments. Then, we derive the LMOMs for the unknown parameters from
these distributions.

4.1. L-Moments of the Logistic Distribution

The pdf of a logistic distribution with the location parameter ζ (the mode, median,
and mean) and scale parameter α is reported by Balakrishnan [32] and Walck [33]:

f (x) =
1
α

e−(
x−ζ

α )[
1 + e−(

x−ζ
α )
]2 ,−∞ < x < ∞,−∞ < ζ < ∞, α > 0,
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and the cdf is

F(x) =
1

1 + e−(
x−ζ

α )
,−∞ < x < ∞,−∞ < ζ < ∞, α > 0.

For 0 < u < 1, the quantile is

xu = ζ + α ln
(

u
1− u

)
,−∞ < ζ < ∞, α > 0.

The mean of the logistic distribution is E[X] = ζ. The random variable of standard
logistic Z can be obtained by putting ζ = 0 and α = 1.

The rth probability weighted moment in (1) can be obtained by (see [34])

βr =
ζ

r + 1
+

α

r + 1
[ψ(r + 1) + γ] =

1
r + 1

[ζ + α[ψ(r + 1) + γ]], r = 0, 1, 2, . . . ,

where γ = −ψ(1) = 0.577216 is Euler’s constant and ψ(·) is the digamma function, which
is defined as

ψ(r) = Γ′(r)
Γ(r) = d

dr ln Γ(r), r 6= 0,−1,−2, . . . .,

and Γ(.) is a gamma function. Thus, the first four βr can be computed as follows:

β0 = ζ, β1 =
ζ + α

2
, β2 =

ζ

3
+

α

2
and β3 =

ζ

4
+

11α

24
,

where ψ(1) = −γ, ψ(2)= 1− γ , ψ(3) = 3
2 − γ and ψ(4) = 11

6 − γ. Then, the first four
L-moments in (6) are given as (see [34])

λ1 = β0 = ζ, λ2 = 2β1 − β0 = α, λ3 = 6β2 − 6β1 + β0 = 0, τ3 = λ3
λ2

= 0,
λ4 = 20β3 − 30β2 + 12β1 − β0 = α

6 and τ4 = λ4
λ2

= 1
6 .

(21)

The L-moment estimators for location parameter ζ and scale parameter α can be
obtained from the first and second L-moments (λ1, λ2) in (21) as

ζ̂ = λ̂1 and α̂ = λ̂2. (22)

4.2. L-Moments of the Generalized Logistic Distribution

The generalized logistic distribution has three parameters and is thus fit to the mean,
scale, and shape of a data set. The pdf and cdf of the generalized logistic distribution are
given, respectively, for −∞ < ζ < ∞ and α > 0, as reported by Burr [35] and Asquith [25]:

f (x) = 1
α

[
1−δ

(
x−ζ

α

)] 1
δ
−1

[
1+
[
1−δ

(
x−ζ

α

)]1/δ
]2 ,−∞ < x ≤ ζ + α

δ if 0 < δ < 1,

, ζ + α
δ ≤ x < ∞ if − 1 < δ < 0,

and
F(x) = 1

1+
[
1−δ

(
x−ζ

α

)]1/δ ,−∞ < x ≤ ζ + α
δ if 0 < δ < 1,

, ζ + α
δ ≤ x < ∞ if − 1 < δ < 0.

For 0 < u < 1, the quantile is

xu = ζ +
α

δ

[
1−

(
1− u

u

)δ
]

,−∞ < ζ < ∞, α > 0, δ 6= 0.
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The random variable of the standard generalized logistic Z can be obtained by putting
ζ = 0 and α = 1. The first four moments, k = 1, 2, 3, 4 of the standard generalized logistic
random variable are as follows (see [3]):

E
[

Zk
]
=

1
δk ∑k

j=0

(
k
j

)
(−1)jβ(1− jδ, 1 + jδ), |δ| < 1

k
.

where β(1− jδ, jδ + 1) is the beta function and can be defined by the integral

β(a, b) =
∫ 1

0
ta−1(1− t)b−1dt, a, b > 0.

Now, we derive the first moment for the order statistics of the standard generalized
logistic random variable.

Lemma 2. The moments of order statistics in (2) of the standard generalized logistic random
variable Zj:n are

µj:n =
1
δ

(
1− Γ(j− δ)Γ(n− j + 1 + δ)

Γ(j)Γ(n− j + 1)

)
, − 1 < δ < 1. (23)

Proof. The jth moment of order statistics is

µj:n = E[Zj:n] =
∫

z f j:n(z)dz = n!
(j−1)!(n−j)!

∫
z[F(z)]j−1 f (z)[1− F(z)]n−jdz

= n!
(j−1)!(n−j)!

1∫
0

zuuj−1(1− u)n−jdu

= n!
(j−1)!(n−j)!

1
δ

∫ 1
0

(
uj−1(1− u)n−j − uj−1−δ(1− u)n−j+δ

)
du

= n!
(j−1)!(n−j)!

1
δ (β(j, n− j + 1)− β(j− δ, n− j + δ + 1)),

after some simplification, we obtain the required result. �

Note that:

• By letting n = j = 1 in Lemma 2, we deduce the first moment established for a
standard generalized logistic distribution.

• By letting the shape parameter δ→ 0 in Lemma 2, we deduce the moment of order
statistics of the standard logistic distribution (see [36]):

µr:n = E[Zr:n] = ψ(j)− ψ(n− j + 1), j = 1, 2, . . . , n. (24)

Now, the rth, r = 0, 1, 2, . . . , probability weighted moment in (1) for generalized logistic
distribution can be stated as follows:

βr = (ζ + αµr+1:r+1)/(1 + r) = 1
r+1
(
ζ + α

δ

)
− α

δ β(r + 1− δ, δ + 1)

= 1
r+1
(
ζ + α

δ

)
− α

δ β(1− δ, δ + 1) (1−δ)(r)

Γ(r+2) , − 1 < δ < 1,

where

(1− δ)(r) =
Γ(1− δ + r)

Γ(1− δ)
= ∏r

i=1(i− δ),

are rising factorials.
Therefore, the L-moments in (6) are (see [25])

λ1 =
(
ζ + α

δ

)
− α

δ β(1− δ, δ + 1), λ2 = αβ(1− δ, δ + 1), λ3 = −αδβ(1− δ, δ + 1), τ3 = −δ,
λ4 = 1+5δ2

6 αβ(1− δ, δ + 1) and τ4 = 1+5δ2

6 .
(25)
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The L-moments estimators for location parameter ζ, scale parameter α, and shape
parameter δ can be obtained from the first and second L-moments (λ1, λ2) and L-skewness
τ3 (τ3 = λ3/λ2 is a function of δ only) in (25), which are measures of location, scale, and
skewness, respectively, as

ζ̂ = λ̂1 −
α̂

δ̂

(
1− β(1− δ̂, δ̂ + 1)

)
, α̂ =

λ̂2

β(1− δ̂, δ̂ + 1)
and δ̂ = −τ̂3. (26)

4.3. L-Moments of the Doubly Truncated Logistic Distribution

The standard doubly truncated logistic distribution has been extended by Balakrishnan
and Rao [3] with pdf:

f (z) =
1

P−Q
e−z/(1 + e−z)

2, Q1 ≤ z ≤ P1,

and with cdf (see [32]):

F(z) =
1

P−Q

[
1

1 + e−z −Q
]

, Q1 ≤ z ≤ P1,

where Q and 1− P (0 < Q < P < 1) are given by

P = F(P1) and Q = F(Q1),

where F(·) is given in the standard logistic distribution. Then,

Q1 = log
(

Q
1−Q

)
and P1 = log

(
P

1− P

)
.

The quantile is

zu = log
[

u(P−Q) + Q
1− [u(P−Q) + Q]

]
, 0 < u < 1.

The first moment of Z is given by

E[Z] =
PP1 −QQ1 + log

[
1−P
1−Q

]
P−Q

.

Note that by letting Q→ 0 and P→ 1 , we deduce the first moment for the logistic
distribution, which is equal to zero.

Next, we find the first four L-moments for the doubly truncated logistic distribution.
In the following lemma, we derive the moment of order statistics of the random variable
from a doubly truncated logistic distribution.

Lemma 3. The moment of order statistics from the doubly truncated logistic distribution is given
by, for j = 1, 2, . . . , n,

µj:n = n!
(j−1)!(n−j)!

n−j
∑

i=0

(
n− j

i

)
(−1)i(−Q)i+j−1

(P−Q)i+j

[
PP1 −QQ1 + log

[
1−P
1−Q

]]
+ n!

(j−1)!(n−j)!

n−j
∑

i=0

i+j−1
∑

l=1

(
n− j

i

)(
i + j− 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j(l+1)

×
[

Pl+1P1 −Ql+1Q1 + log
[

1−P
1−Q

]
+

l−1
∑

s=0

1
s+1
(

Ps+1 −Qs+1)].

(27)
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Proof. The jth moment of order statistics is

µj:n = E
[
Zj:n

]
= n!

(j−1)!(n−j)!

P1∫
Q1

z[F(z)]j−1 f (z)[1− F(z)]n−jdz

= n!
(j−1)!(n−j)!

P1∫
Q1

z
[

1
P−Q

[
1

1+e−z −Q
]]j−1

[
1

P−Q
e−z

(1+e−z)2

]
×
[
1−

[
1

P−Q

[
1

1+e−z −Q
]]]n−j

dz

= n!
(j−1)!(n−j)!

n−j
∑

i=0

i+j−1
∑

l=0

(
n− j

i

)(
i + j− 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j I1,

(28)

where

I1 =

P∫
Q

log
(

t
1− t

)
tldt =

1
l + 1

Pl+1 log
(

P
1− P

)
−Ql+1 log

(
Q

1−Q

)
−

P∫
Q

tl

1− t
dt

, (29)

substituting (29) into (28), we obtain

µj:n = n!
(j−1)!(n−j)!

n−j
∑

i=0

(
n− j

i

)
(−1)i(−Q)i+j−1

(P−Q)i+j

[
P log

(
P

1−P

)
−Q log

(
Q

1−Q

)
− I2

]
+ n!

(j−1)!(n−j)!

n−j
∑

i=0

i+j−1
∑

l=1

(
n− j

i

)(
i + j− 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j(l+1)

×
[

Pl+1 log
(

P
1−P

)
−Ql+1 log

(
Q

1−Q

)
− I3

]
,

(30)

where

I2 =

P∫
Q

1
1− t

dt= − log(1− t)|t=P
t=Q = − log(1− P) + log(1−Q), (31)

and

I3 =

P∫
Q

tl

1− t
dt = −

l−1

∑
s=0

P∫
Q

ts +

P∫
Q

1
1− t

dt = −
l−1

∑
s=0

1
s + 1

(
Ps+1 −Qs+1

)
− log(1− P) + log(1−Q). (32)

Finally, by substituting (31) and (32) in (30) and doing some simplification, we obtain
the required result. �

Note that:

• By letting n = j = 1 in Lemma 3, we deduce the first moment established for the
doubly truncated logistic distribution.

• Furthermore, letting Q→ 0 and P→ 1 in Lemma 3 and using Proposition 1 as
follows, we deduce the single moments order statistics for the logistic distribution
established in (24).

Proposition 1. Let j = 1, 2, . . . n and n− j a non-negative integer. Then,

n−j

∑
i=0

(
n− j

i

)
(−1)i 1

i + j
=

(j− 1)!(n− j)!
n!

,

n!
(j− 1)!(n− j)!

n−j

∑
i=0

(
n− j

i

)
(−1)i 1

i + j
ψ(i + j) = ψ(j)− ψ(n− j + 1)− γ

where γ is Euler’s constant.
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Proof. For the first equation, we proceed by induction on n. As n = 1, it is 1 = 1, and
the proposition immediately follows. Assume now the proposition for n and observe that,

since
(

n + 1− j
i

)
=

(
n− j

i

)
+

(
n− j
i− 1

)
, then for n + 1 it holds:

n−j+1

∑
i=0

(
n− j + 1

i

)
(−1)i 1

i + j
=

n−j

∑
i=0

(
n− j

i

)
(−1)i 1

i + j
−

n−j

∑
i=0

(
n− j

i

)
(−1)i 1

i + 1 + j
.

The hypothesis of induction yields

n−j

∑
i=0

(
n− j

i

)
(−1)i 1

i + j
=

(j− 1)!(n− j)!
n!

,

and
n−j

∑
i=0

(
n− j

i

)
(−1)i 1

i + 1 + j
=

j!(n− j)!
(n + 1)!

= j
(j− 1)!(n− j)!

(n + 1)!
.

Therefore, the proposition is proved.
Now for the second equation, we proceed by induction on n. As n = 1, it is ψ(1) = −γ,

and the proposition immediately follows. Assume now the proposition for n and observe

that, since
(

n + 1− j
i

)
=

(
n− j

i

)
+

(
n− j
i− 1

)
, then for n + 1 it holds:

(n+1)!
(j−1)!(n−j+1)!

n−j+1
∑

i=0

(
n− j + 1

i

)
(−1)i 1

i+j ψ(i + j)

= (n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n− j

i

)
(−1)i 1

i+j ψ(i + j)

− (n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n− j

i

)
(−1)i 1

i+1+j ψ(i + 1 + j).

The hypothesis of induction yields

(n + 1)!
(j− 1)!(n− j + 1)!

n−j

∑
i=0

(
n− j

i

)
(−1)i 1

i + j
ψ(i + j) =

n + 1
n− j + 1

(ψ(j)− ψ(n− j + 1)− γ),

and

(n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n− j

i

)
(−1)i 1

i+1+j ψ(i + 1 + j)

= 1
n−j+1 + j

n−j+1 (ψ(j)− ψ(n− j + 1)− γ),
(

by using ψ(1 + j) = ψ(j) + 1
j

)
.

Therefore, we perform some simplification by using 1/(n− j + 1) = ψ(n− j + 2)−
ψ(n− j + 1), and obtain the required result. �

Lemma 4. The L-moments for the doubly truncated logistic distribution are given by

λ1 =
PP1−QQ1+log

[
1−P
1−Q

]
P−Q , λ2 =

P−Q−PP1Q+PQQ1−(−1+P+Q) log
[

1−P
1−Q

]
(P−Q)2 ,

λ3 = 1
(P−Q)3

(
2(−1 + Q)Q + P

(
2 + Q2(P1 −Q1)

)
+ P2(−2 + P1Q−QQ1)

+
(
2 + (−3 + P)P− 3Q + 4PQ + Q2) log

[
1−P
1−Q

])
,

λ4 = 1
6(P−Q)4

(
Q(−30 + (45− 16Q)Q) + P3(16− 6P1Q + 6QQ1)

+6P
(
5 + Q2(−7− P1Q + QQ1)

)
+ 3P2(−15 + 2Q(7− 3P1Q + 3QQ1))

−6(−1 + P + Q)
(
5 + P2 + (−5 + Q)Q + P(−5 + 8Q)

)
log
[

1−P
1−Q

])
.

(33)
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Proof. The rth, r = 0, 1, 2, . . ., probability weighted moments are obtained easily by the
Lemma 3 as

βr =
P1∫

Q1

z[F(z)]r f (z)dz =
1∫

0
zuurdu = 1

1+r µr+1:r+1,

= (−Q)r

(P−Q)r+1

[
PP1 −QQ1 + log

[
1−P
1−Q

]]
+ 1

(P−Q)r+1

r
∑

l=1

(
r
l

)
(−Q)r−l

(l+1)

[
Pl+1P1 −Ql+1Q1 + log

[
1−P
1−Q

]
+

l−1
∑

s=0

1
s+1
(

Ps+1 −Qs+1)],

and by using (6), the proof is completed. �

The L-moment estimators for location parameter ζ and scale parameter α of the
random variable of doubly truncated logistic X = αZ + ζ can be obtained from the first
and second L-moments (λ1, λ2) in (33) and using the linear transformation as

ζ̂ = λ̂∗1 − α̂λ1 and α̂ =
λ̂∗2
λ2

. (34)

where λ̂∗1 and λ̂∗2 are the sample L-moments of X.

4.4. L-Moments of the Doubly Truncated Generalized Logistic Distribution

The doubly truncated standard generalized logistic pdf

f (z) = 1
P−Q

(1−δz)
1
δ
−1[

1+(1−δz)1/δ
]2 , Q1 < z < P1 < 1

δ if 0 < δ < 1,

, 1
δ < Q1 < z < P1 if − 1 < δ < 0,

with cdf

F(z) = 1
P−Q

[
1

1+(1−δz)1/δ −Q
]

, Q1 < z < P1 < 1
δ if 0 < δ < 1,

, 1
δ < Q1 < z < P1 if − 1 < δ < 0,

where Q and 1− P (0 < Q < P < 1) are given by

P = F(P1) and Q = F(Q1),

where F(·) is given in the standard generalized logistic distribution. Then,

Q1 =
1
δ

[
1−

(
1−Q

Q

)δ
]

and P1 =
1
δ

[
1−

(
1− P

P

)δ
]

.

The quantile is

zu =
1
δ

[
1−

[
1− [u(P−Q) + Q]

u(P−Q) + Q

]δ
]

, 0 < u < 1.

The kth, k = 1, 2, 3, 4, moment of Z is

E[Zk] =

∑k
j=0(−1)j

(
k
j

)
[β(P; 1− jδ, jδ + 1)− β(Q; 1− jδ, jδ + 1)]

δk(P−Q)
, |δ| < 1

k
.
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where β(· ; 1− jδ, jδ + 1) is the lower incomplete beta function and can be defined by the
variable limit integrals

β(x; a, b) =
∫ x

0
ta−1(1− t)b−1dt, 0 ≤ x ≤ 1, a, b > 0.

Note that by letting Q→ 0 and P→ 1 , we deduce the moment for the generalized
logistic distribution. Furthermore, by letting the shape parameter δ→ 0 , we deduce the
mean of the standard doubly truncated logistic distribution.

Now, we are about to find the first four L-moments for the doubly truncated general-
ized logistic distribution. In the following lemma, we derive the first moment for the order
statistic of the random variable from a doubly truncated generalized logistic distribution.

Lemma 5. The moments of order statistics from the doubly truncated generalized logistic distribu-
tion are given by, for j = 1, 2, . . . , n,

µj:n = 1
δ

[
1− n!

(j−1)!(n−j)!

n−j
∑

i=0

i+j−1
∑

l=0

(
n− j

i

)(
i + j− 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j

×[β(P; 1− δ + l, 1 + δ)− β(Q; 1− δ + l, 1 + δ)]

]
, |δ| < 1.

(35)

Proof. The jth moment of order statistics

µj:n = E
[
Zj:n

]
= n!

(j−1)!(n−j)!

P1∫
Q1

z[F(z)]j−1 f (z)[1− F(z)]n−jdz

= n!
(j−1)!(n−j)!

1∫
0

zuuj−1(1− u)n−jdu = n!
(j−1)!(n−j)!

1
δ [I1 − I2],

(36)

where

I1 =

1∫
0

uj−1(1− u)n−jdu = β(j, n− j + 1), (37)

and

I2 =
1∫

0
uj−1(1− u)n−j

[
1−[u(P−Q)+Q]
[u(P−Q)+Q]

]δ
du

=
n−j
∑

i=0

i+j−1
∑

l=0

(
n− j

i

)(
i + j− 1

l

)
(−1)i(−Q)i+j−1−l

(P−Q)i+j

×[β(P; 1− δ + l, 1 + δ)− β(Q; 1− δ + l, 1 + δ)], |δ| < 1.

(38)

Substituting (37) and (38) in (36), we obtain (35) and thus complete the proof. �

Note that:

• By letting n = j = 1 in Lemma 5, we deduce the first moment established for the
doubly truncated generalized logistic distribution.

• Furthermore, by letting Q→ 0 and P→ 1 in Lemma 5 and using Proposition 2, we
have the single moments order statistics established in (23) from the generalized
logistic distribution.

• By letting the shape parameter δ→ 0 in Lemma 5, we deduce the first moment for the
order statistic of the random variable from the doubly truncated logistic distribution
in Lemma 3.
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Proposition 2. Let j = 1, 2, . . . n and n− j a non-negative integer. Then,

n!
(j− 1)!(n− j)!

n−j

∑
i=0

(
n− j

i

)
(−1)iβ(i + j− δ, 1 + δ) =

Γ(j− δ)Γ(n− j + 1 + δ)

Γ(j)Γ(n− j + 1)
,

where |δ| < 1.

Proof. We proceed by induction on n. As n = 1, it is β(1− δ, 1 + δ) = Γ(1− δ)Γ(1 + δ),
and the proposition immediately follows. Assume now the proposition for n and observe

that, since
(

n + 1− j
i

)
=

(
n− j

i

)
+

(
n− j
i− 1

)
, then for n + 1 it holds:

(n+1)!
(j−1)!(n−j+1)!

n−j+1
∑

i=0

(
n− j + 1

i

)
(−1)iβ(i + j− δ, 1 + δ)

= (n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n− j

i

)
(−1)iβ(i + j− δ, 1 + δ)

− (n+1)!
(j−1)!(n−j+1)!

n−j
∑

i=0

(
n− j

i

)
(−1)iβ(i + 1 + j− δ, 1 + δ).

The hypothesis of induction yields

(n + 1)!
(j− 1)!(n− j + 1)!

n−j

∑
i=0

(
n− j

i

)
(−1)iβ(i + j− δ, 1 + δ) =

n + 1
n− j + 1

Γ(j− δ)Γ(n− j + 1 + δ)

Γ(j)Γ(n− j + 1)
,

and
(n+1)!

(j−1)!(n−j+1)!

n−j
∑

i=0

(
n− j

i

)
(−1)iβ(i + 1 + j− δ, 1 + δ)

= j
n−j+1

Γ(1+j−δ)Γ(n−j+1+δ)
Γ(1+j)Γ(n−j+1) ,

(by using Γ(1 + j− δ) = (j− δ)Γ(j− δ) and Γ(1 + j) = jΓ(j))
= j−δ

n−j+1
Γ(j−δ)Γ(n−j+1+δ)

Γ(j)Γ(n−j+1) ,

therefore, we perform some simplification by using

(n− j + 1 + δ)Γ(n− j + 1 + δ)/(n− j + 1)Γ(n− j + 1)= Γ(n− j + 2 + δ)/Γ(n− j + 2),

and we obtain the required result. �

Lemma 6. The first four L-moments for doubly truncated generalized logistic distribution are

λ1 = 1
(P−Q)δ [(P−Q)− (β(P; 1− δ, 1 + δ)− β(Q; 1− δ, 1 + δ))],

λ2 = 1
(P−Q)2δ

[(P + Q)(β(P; 1− δ, 1 + δ)− β(Q; 1− δ, 1 + δ))

−2(β(P; 2− δ, 1 + δ)− β(Q; 2− δ, 1 + δ)) ],
λ3 = 1

(P−Q)3δ

[
−
(

P2 + 4PQ + Q2)(β(P; 1− δ, 1 + δ)− β(Q; 1− δ, 1 + δ))

+6(P + Q)(β(P; 2− δ, 1 + δ)− β(Q; 2− δ, 1 + δ))
−6(β(P; 3− δ, 1 + δ)− β(Q; 3− δ, 1 + δ)) ],

λ4 = 1
(P−Q)4δ

[(
P3 + 9P2Q + 9PQ2 + Q3)(β(P; 1− δ, 1 + δ)− β(Q; 1− δ, 1 + δ))

−12
(

P2 + 3PQ + Q2)(β(P; 2− δ, 1 + δ)− β(Q; 2− δ, 1 + δ))
+30(P + Q)(β(P; 3− δ, 1 + δ)− β(Q; 3− δ, 1 + δ))
−20(β(P; 4− δ, 1 + δ)− β(Q; 4− δ, 1 + δ)) ].

(39)

and using the above L-moments, we can obtain τ3 and τ4.
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Proof. By applying Lemma 5, βr becomes:

βr =
P1∫

Q1

z[F(z)]r f (z)dz =
1∫

0
zuurdu = 1

1+r µr+1:r+1

= 1
δ

 1
r+1 −

∑r
l=0

(
r
l

)
(−Q)r−l(β(P;1−δ+l,1+δ)−β(Q;1−δ+l,1+δ))

(P−Q)r+1

, |δ| < 1.

Since βr is given as

β0 = 1
δ

[
1− 1

P−Q (β(P; 1− δ, 1 + δ)− β(Q; 1− δ, 1 + δ))
]
,

β1 = 1
δ

[
1
2 −

1
(P−Q)2 (−Q[β(P; 1− δ, 1 + δ)− β(Q; 1− δ, 1 + δ)]

+[β(P; 2− δ, 1 + δ)− β(Q; 2− δ, 1 + δ)])],

β2 = 1
δ

[
1
3 −

1
(P−Q)3

(
Q2[β(P; 1− δ, 1 + δ)− β(Q; 1− δ, 1 + δ)]

−2Q[β(P; 2− δ, 1 + δ)− β(Q; 2− δ, 1 + δ)]
+[β(P; 3− δ, 1 + δ)− β(Q; 3− δ, 1 + δ)])],

β3 = 1
δ

[
1
4 −

1
(P−Q)4

(
−Q3[β(P; 1− δ, 1 + δ)− β(Q; 1− δ, 1 + δ)]

+3Q2[β(P; 2− δ, 1 + δ)− β(Q; 2− δ, 1 + δ)]
−3Q[β(P; 3− δ, 1 + δ)− β(Q; 3− δ, 1 + δ)]
+[β(P; 4− δ, 1 + δ)− β(Q; 4− δ, 1 + δ)])].

and by using (6), the proof is completed. �

If we denote λr in (39) by λr(δ), then the L-moments estimators for location parameter
ζ, scale parameter α, and shape parameter δ of the random variable of doubly truncated
generalized logistic X = αZ + ζ can be obtained from the first and second L-moments
(λ1(δ), λ2(δ)) and L-skewness τ3(δ)(τ3(δ) = λ3(δ)/λ2(δ)) in (39) and using the linear
transformation, which are measures of location, scale, and skewness, respectively, as solved
numerically in the three systems of the nonlinear equations:

ζ̂ = λ̂∗1 − α̂λ1
(
δ̂
)
,α̂ =

λ̂∗2
λ2
(
δ̂
) , and τ̂∗3 = τ3

(
δ̂
)
. (40)

where λ̂∗1 and λ̂∗2 are the sample L-moments of X and τ̂∗3 is the sample L-moment ratios.

5. Particular Relationships Based on L-Moments

In this section, we establish some particular recurrence relations between the L-
moments satisfying for logistic, generalized logistic, doubly truncated logistic, and doubly
truncated generalized logistic distributions that enables computation and allows for evalu-
ation of all the L-moments λr(r ≥ 2), starting from λ1 in a simple recurrent manner, where
the calculation of L-moments in the traditional way of greater degrees depends on special
functions that need more mathematical calculations and special programs.

The following lemma is important throughout the results in this section.

Lemma 7. For r = 0, 1, 2, 3, . . . , the relation between the L-moments in (3) and moments of order
statistics in (2) are

µr+1:r+1 = (r + 1)∑r
i=0 cr,iλi+1, (41)

and
µ1:r+1 = (r + 1)∑r

i=0 (−1)icr,iλi+1, (42)
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where the coefficients cr,i are given as

cr,i = (2i + 1)
∫ 1

0
urP∗i (u) du = (2i + 1)∑i

k=0 p∗i,k
1

r + k + 1
, i = 0, 1, 2, . . . , (43)

and p∗r,k is given in (5).

Proof. The function ur, which is sequence integrable on [0, 1], may be expressed in terms of
P∗i (u) as (see [37])

ur = ∑r
i=0 cr,iP∗i (u),0 ≤ u ≤ 1.

Multiplying both sides by xu and integrating over u, we obtain

1∫
0

xuurdu = ∑r
i=0 cr,i

1∫
o

xuP∗i (u)du,

then (41) is proved.
The function (1− u)r, which is sequence integrable on [0, 1], may be expressed in

terms of P∗i (1− u) as (see [37])

(1− u)r = ∑r
i=0 cr,iP∗i (1− u), 0 ≤ 1− u ≤ 1,

by using the property of a shifted Legendre polynomial function from Hetyei [38]:

(−1)iP∗i (−u) = P∗i (u + 1),

then,
P∗i (1− u) = P∗i (−u + 1) = (−1)iP∗i (u).

So, we have
(1− u)r = ∑r

i=0 (−1)icr,iP∗i (u).

Again, multiplying both sides by xu and integrating over u, we obtain

1∫
0

xu(1− u)rdu = ∑r
i=0 (−1)icr,i

1∫
o

xuP∗i (u)du,

then (42) is proved. �

5.1. Relations for Logistic Distribution

In this subsection, we establish recurrence relations satisfied by L-moments from a
logistic distribution.

Lemma 8. For r = 1, 2, . . . ., then the L-moments from standard logistic distribution satisfy

λr+1 =
1

(r + 1)(−1)rcr,r

[
∑r−1

i=0 (−1)i(−(r + 1)cr,i + rcr−1,i)λi+1 −
1
r

]
. (44)

where λ1 and c. , . are given in (21) and (43), respectively.

Proof. The recurrence relation of order statistics from standard logistic distribution follows
(see [3]):

µ1:r+1 = µ1:r −
1
r

, r ≥ 1,
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Substituting from (42), we have

(r + 1)∑r
i=0 (−1)icr,iλi+1 = r∑r−1

i=0 (−1)icr−1,iλi+1 −
1
r

.

Therefore,

(r + 1)(−1)rcr,rλr+1 = −(r + 1)∑r−1
i=0 (−1)icr,iλi+1 + r∑r−1

i=0 (−1)icr−1,iλi+1 − 1
r

= ∑r−1
i=0 (−1)i(−(r + 1)cr,i + rcr−1,i)λi+1 − 1

r ,

by simplifying the resulting expression, we obtain the relation. �

5.2. Relations for Generalized Logistic Distribution

In this subsection, we establish recurrence relations satisfied by L-moments from a
generalized logistic distribution.

Lemma 9. For r = 1, 2, . . . ., then the L-moments from standard generalized logistic distribu-
tion satisfy

λr+1 =
1

(r + 1)(−1)rcr,r

[
∑r−1

i=0 (−1)i(−(r + 1)cr,i + (r + δ)cr−1,i)λi+1 −
1
r

]
. (45)

where λ1 and c. , . are given in (25) and (43), respectively.

Proof. The recurrence relation for the single moments of order statistics follows (see [3]):

µ1:r+1 =

(
1 +

δ

r

)
µ1:n −

1
r

, r ≥ 1,

Substituting from (42), we have

(r + 1)∑r
i=0 (−1)icr,iλi+1 =

(
1 +

δ

r

)
r∑r−1

i=0 (−1)icr−1,iλi+1 −
1
r

.

Therefore,

(r + 1)(−1)rcr,rλr+1 = −(r + 1)∑r−1
i=0 (−1)icr,iλi+1 +

(
1 + δ

r

)
r∑r−1

i=0 (−1)icr−1,iλi+1 − 1
r

= ∑r−1
i=0 (−1)i(−(r + 1)cr,i + (r + δ)cr−1,i)λi+1 − 1

r ,

by simplifying the resulting expression, we obtain the relation. �

Letting the shape parameter δ→ 0 in Lemma 9, we deduce the recurrence relation for
L-moments from the standard logistic distribution in Lemma 8.

5.3. Relations for Doubly Truncated Logistic Distribution

Recurrence relations for doubly truncated logistic distribution are given by Lemma 10
in this subsection.

Lemma 10.
λ2 = (1− B)λ1 − AP1 − D1 (46)

and for r ≥ 2,

λr+1 = 1
(r+1)(−1)rcr,r

[
∑r−2

i=0 (−1)i[−(r + 1)cr,i + rBcr−1,i + (r− 1)Acr−2,i]λi+1

+(−1)r−1[−(r + 1)cr,r−1 + rBcr−1,r−1]λr + Dr

]
,

(47)
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where λ1 and c. , . are given in (33) and (43), respectively, and

A =
P2

P−Q
, B =

(2P− 1)
P−Q

, and Dm = − 1
P−Q

(
Q1Q2 +

1
m

)
f or m ≥ 1. (48)

Proof. First, before beginning the proof, denote that

P2 = P(1− P)/(P−Q) and Q2 = Q(1−Q)/(P−Q),

and we simplify the following recurrence relations (see [3]):

µ1:2 = Q1 +
1

P−Q
[P2(P1 −Q1) + (2P− 1)(µ1:1 −Q1)− 1],

for n ≥ 2,

µ1:n+1 = Q1 +
1

P−Q

[
P2(µ1:n−1 −Q1) + (2P− 1)(µ1:n −Q1)−

1
n

]
.

Note that by letting Q→ 0 and P→ 1 , we have the recurrence relation for the single
moments of the standard logistic distribution, so that we can rewrite them as

µ1:2 = AP1 + Bµ1:1 + D1, (49)

and for n ≥ 2:
µ1:n+1 = Aµ1:n−1 + Bµ1:n + Dn, (50)

where A, B, and Dm are given in (48).
Now, to prove (46), we have (49), which gives

µ1:1 = λ1, (51)

and µ1:2 can be found as follows by using (42):

µ1:2 = 2∑1
i=0 (−1)ic1,iλi+1 = λ1 − λ2, (52)

So, by substituting (51) and (52) into (49), it reduces to

λ1 − λ2 = AP1 + Bλ1 + D1.

By ordering this equation, we obtain the relation in (46).
Now, the second equation in the lemma can be proved by using (50), where we can

find µ1:r−1, µ1:r and µ1:r+1 by using (42), as follows:

µ1:r−1 = (r− 1)∑r−2
i=0 (−1)icr−2,iλi+1, (53)

µ1:r = r∑r−1
i=0 (−1)icr−1,iλi+1 = r(−1)r−1cr−1,r−1λr + r∑r−2

i=0 (−1)icr−1,iλi+1, (54)

µ1:r+1 = (r + 1)∑r
i=0 (−1)icr,iλi+1

= (r + 1)(−1)rcr,rλr+1 + (r + 1)(−1)r−1cr,r−1λr + (r + 1)∑r−2
i=0 (−1)icr,iλi+1.

(55)

Upon substituting (53), (54), and (55) in (50) and simplifying the resulting expression,
we obtain the relation given in (47). �

Note that by letting Q→ 0 and P→ 1 in Lemma 10, we obtain the simple recurrence
relations between L-moments of logistic distribution in Lemma 8.
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5.4. Relations for Doubly Truncated Generalized Logistic Distribution

In this subsection, we establish the recurrence relation for single moment order statis-
tics from the standard doubly truncated generalized logistic distribution in Lemma 11.
Then, recurrence relations for the doubly truncated generalized logistic distribution be-
tween the L-moments are given by Lemma 12.

Lemma 11. For n ≥ 2,
µ1:n+1 = Aµ1:n−1 + Bnµ1:n + Dn, (56)

and
µ1:2 = AP1 + B1µ1:1 + D1, (57)

where

A =
P2

P−Q
, Bm =

1
P−Q

[
(2P− 1) +

δ

m

]
, and Dm = − 1

P−Q

(
Q1Q2 +

1
m

)
for m ≥ 1. (58)

Proof. For n ≥ 1, denoting that

P2 = P(1− P)/(P−Q) and Q2 = Q(1−Q)/(P−Q),

let us consider the characterizing differential equation for the doubly truncated generalized
logistic population as follows:

(1− δz) f (z) = (1− 2Q)F(z)− (P−Q)[F(z)]2 + Q2
= (1− P−Q)F(z) + (P−Q)F(z)[1− F(z)] + Q2,

and
f1:n(z) = n f (z)[1− F(z)]n−1, Q1 < z < P1,

then,

1− δµ1:n

= n
[
(1− P−Q)

P1∫
Q1

F(z)[1− F(z)]n−1dz+(P−Q)
P1∫

Q1

F(z)[1− F(z)]ndz

+Q2

P1∫
Q1

[1− F(z)]n−1dz

]
,

(59)

By integrating by parts, treating 1 for integration, and the rest of the integrands for differ-
entiation, we obtain

1− δµ1:n = n[(1− P−Q)(µ1:n−1 − µ1:n) + (P−Q)(µ1:n − µ1:n+1) + Q2(µ1:n−1 −Q1)], (60)

The relation in (56) follows simply by rewriting (60).
Relation (57) is obtained by setting n = 1 in (59) and simplifying. �

Note that:

• By letting the shape parameter δ→ 0 in Lemma 11, we deduce the recurrence relations
established in (49) and (50) for the single moments of order statistics from the doubly
truncated logistic distribution.

• By letting Q→ 0 and P→ 1 , we deduce the recurrence relations for the generalized
logistic distribution, established in the proof of Lemma 9.

Lemma 12.
λ2 = (1− B1)λ1 − AP1 − D1, (61)
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and for r ≥ 2,

λr+1 = 1
(r+1)(−1)rcr,r

[
∑r−2

i=0 (−1)i[−(r + 1)cr,i + rBrcr−1,i + (r− 1)Acr−2,i]λi+1

+(−1)r−1[−(r + 1)cr,r−1 + rBrcr−1,r−1]λr + Dr

]
,

(62)

where λ1 and c. , . are given in (39) and (43), respectively, and A, Br, and Dr are given in (58).

Proof. This lemma has the same proof method that we used in Lemma 10, but by taking
(56) and (57) to prove (61) and (62), respectively. �

Note that:

• By letting Q→ 0 and P→ 1 in Lemma 12, we have the recurrence relations between
L-moments established in Lemma 9 from generalized logistic distribution.

• By letting the shape parameter δ→ 0 in Lemma 12, we obtain the recurrence relations
between L-moments of the doubly truncated logistic distribution in Lemma 10.

The results in Lemmas 8–12 can be applied in different fields that have actual data sets
from the logistics and generalized logistics distributions. These include network analysis
(see [11]), statistical inference, (see [39,40]), and rainfall modeling (see [41]).

6. Conclusions

In this paper, the L-moments are derived for some distributions, such as logistic,
generalized logistic, doubly truncated logistic, and doubly truncated generalized logistic.
Methods of estimation by L-moment are used to obtain the unknown parameters for logistic,
generalized logistic, doubly truncated logistic, and doubly truncated generalized logistic
distributions. Finally, some new recurrence relations based on L-moment are established
and used for calculating the higher moments, where sometimes calculating the moments
of order statistics for certain distributions may not be explicit, so recurrence relations are
used to calculate higher order moments using lower order moments to reduce the risk of
approximation in numerical calculations, which is very helpful. In the future, theoretical
results can be utilized in several directions, such as the process of estimating unknown
values using the modified moments method, and to some applications for linear moments,
especially in electrical engineering, architecture, natural sciences and network analysis.
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