Some New Families of Finite Orthogonal Polynomials in Two Variables
Abstract
:1. Introduction
2. Infinite and Finite Univariate Families of Orthogonal Polynomials
2.1. The Jacobi Polynomials
2.2. The Generalized Laguerre Polynomials
2.3. The Hermite Polynomials
2.4. First Class of Finite Classical Orthogonal Polynomials
2.5. Second Class of Finite Classical Orthogonal Polynomials
2.6. Third Class of Finite Classical Orthogonal Polynomials
3. The Finite Sets of the Bivariate Orthogonal Polynomials Obtained by the Product of a Finite and an Infinite Univariate Orthogonal Polynomials
3.1. The Set of Polynomials
3.2. The Set of Polynomials
3.3. The Set of Polynomials
3.4. The Set of Polynomials
3.5. The Set of Polynomials
3.6. The Set of Polynomials
3.7. The Set of Polynomials
3.8. The Set of Polynomials
3.9. The Set of Polynomials
3.10. The Set of Polynomials
3.11. The Set of Polynomials
3.12. The Set of Polynomials
3.13. The Set of Polynomials
3.14. The Set of Polynomials
3.15. The Set of Polynomials
3.16. The Set of Polynomials
3.17. The Set of Polynomials
3.18. The Set of Polynomials
3.19. The Set of Polynomials
3.20. The Set of Polynomials
3.21. The Set of Polynomials
3.22. The Set of Polynomials
3.23. The Set of Polynomials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bochner, S. Über Sturm–Liouvillesche Polynomsysteme. Math. Z. 1929, 29, 730–736. [Google Scholar] [CrossRef]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Nikiforov, A.F.; Suslov, S.K.; Uvarov, V.B. Classical Orthogonal Polynomials of a Discrete Variable; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Masjed-Jamei, M. Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation. Integral Transform. Spec. Funct. 2002, 13, 169–190. [Google Scholar] [CrossRef]
- Atakishiyev, N.M.; Rahman, M.; Suslov, S.K. On classical orthogonal polynomials. Constr. Approx. 1995, 11, 181–223. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R. Classical orthogonal polynomials. In Polynômes Orthogonaux et Applications; Lecture Notes in Mathematics; Brezinski, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1985; Volume 1171. [Google Scholar]
- Labelle, J.; d’Askey, T. Polynômes Orthogonaux et Applications; Lecture Notes in Mathematics; Brezinski, C., Draux, A., Magnus, A.P., Maroni, P., Ronveaux, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; Volume 1171. [Google Scholar]
- Güldoğan, E.; Aktaş, R.; Masjed-Jamei, M. On Finite Classes of Two-Variable Orthogonal Polynomials. Bull. Iran. Math. Soc. 2020, 46, 1163–1194. [Google Scholar] [CrossRef]
- Koornwinder, T.H. Two-variable analogues of the classical orthogonal polynomials. In Theory and Application of Special Functions; Askey, R., Ed.; Academic Press: New York, NY, USA, 1975; pp. 435–495. [Google Scholar]
- Güldoğan Lekesiz, E.; Aktaş, R.; Masjed-Jamei, M. Fourier Transforms of Some Finite Bivariate Orthogonal Polynomials. Symmetry 2021, 13, 452. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, version 13.3; Wolfram Research, Inc.: Champaign, IL, USA, 2023. [Google Scholar]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited, Chichester): New York, NY, USA, 1984. [Google Scholar]
- Wilf, H.S. Generatingfunctionology; Academic Press, Inc.: Cambridge, MA, USA, 1994. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications Inc.: New York, NY, USA, 1965. [Google Scholar]
- Szegö, G. Orthogonal Polynomials, American Mathematical Society Colloquium Publications, 4th ed.; American Mathematical Society: Rhode Island, NY, USA, 1975; Volume 23. [Google Scholar]
- Mastroianni, G.; Milovanovic, G.V. Interpolation Processes-Basic Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Froehlich, J. Parameter derivatives of the Jacobi polynomials and the gaussian hypergeometric function. Integral Transform. Spec. 1994, 2, 253–266. [Google Scholar] [CrossRef]
- Ronveaux, A.; Zarzo, A.; Area, I.; Godoy, E. Classical orthogonal polynomials: Dependence of parameters. J. Comput. Appl. Math. 2000, 121, 95–112. [Google Scholar] [CrossRef]
- Carlitz, L. Some generating functions for Laguerre polynomials. Duke Math. J. 1968, 35, 825–827. [Google Scholar] [CrossRef]
- Koepf, W. Identities for families of orthogonal polynomials and special functions. Integral Transform. Spec. Funct. 1997, 5, 69–102. [Google Scholar] [CrossRef]
- Güldoğan Lekesiz, E.; Aktaş, R. Some limit relationships between some two-variable finite and infinite sequences of orthogonal polynomials. J. Diff. Equations Appl. 2021, 27, 1692–1722. [Google Scholar] [CrossRef]
- Dunkl, C.F.; Xu, Y. Orthogonal Polynomials of Several Variables. In Encyclopedia of Mathematics and Its Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014; Volume 155. [Google Scholar]
- Krall, H.L.; Sheffer, I.M. Orthogonal polynomials in two variables. Ann. Mat. Pura Appl. 1967, 76, 325–376. [Google Scholar] [CrossRef]
- Suetin, P.K. Orthogonal Polynomials in Two Variables, 1st ed.; Gordon and Breach Science Publishers: Moscow, Russia, 1988. [Google Scholar]
- Fernández, L.; Pérez, T.E.; Piñar, M.A. On Koornwinder classical orthogonal polynomials in two variables. J. Comput. Appl. Math. 2012, 236, 3817–3826. [Google Scholar] [CrossRef]
- Castro, M.M.; Grünbau, F.A. A new commutativity property of exceptional orthogonal polynomials. arXiv 2023, arXiv:2210.13928. [Google Scholar]
- Romanovski, V. Sur quelques classes nouvelles de polynomes orthogonaux. C. R. Acad. Sci. Paris 1929, 188, 1023–1025. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güldoğan Lekesiz, E.; Area, I. Some New Families of Finite Orthogonal Polynomials in Two Variables. Axioms 2023, 12, 932. https://doi.org/10.3390/axioms12100932
Güldoğan Lekesiz E, Area I. Some New Families of Finite Orthogonal Polynomials in Two Variables. Axioms. 2023; 12(10):932. https://doi.org/10.3390/axioms12100932
Chicago/Turabian StyleGüldoğan Lekesiz, Esra, and Iván Area. 2023. "Some New Families of Finite Orthogonal Polynomials in Two Variables" Axioms 12, no. 10: 932. https://doi.org/10.3390/axioms12100932
APA StyleGüldoğan Lekesiz, E., & Area, I. (2023). Some New Families of Finite Orthogonal Polynomials in Two Variables. Axioms, 12(10), 932. https://doi.org/10.3390/axioms12100932