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Abstract: In this paper, the notion of generalized Reynolds operators on Lie-Yamaguti algebras is
introduced, and the cohomology of a generalized Reynolds operator is established. The formal
deformations of a generalized Reynolds operator are studied using the first cohomology group.
Then, we show that a Nijenhuis operator on a Lie-Yamaguti algebra gives rise to a representation
of the deformed Lie-Yamaguti algebra and a 2-cocycle. Consequently, the identity map will be a
generalized Reynolds operator on the deformed Lie-Yamaguti algebra. We also introduce the notion
of a Reynolds operator on a Lie-Yamaguti algebra, which can serve as a special case of generalized
Reynolds operators on Lie-Yamaguti algebras.
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1. Introduction

The notion of a Rota-Baxter operator on an associative algebra was introduced by
Baxter [1] in his study of fluctuation theory in probability. Then Kupershmidt [2] introduced
the notion of a relative Rota-Baxter operator (also called O- operator) on a Lie algebra.
Reynolds operators were introduced by Reynolds [3] in his study of fluctuation theory
in fluid dynamics. In [4], Kampé de Fériet coined the concept of the Reynolds operator
and regarded the operator as a mathematical subject in general. Generalized Reynolds
operators (also called twisted Rota-Baxter operators) introduced by Uchino [5] in the
context of associative algebras are algebraic analogue of twisted Poisson structure. The
cohomology and deformations of twisted Rota-Baxter operators on associative algebras
was studied by Das [6]. Twisted Rota-Baxter operators have been introduced and widely
studied for other algebraic structures such as Lie algebras [7], Leibniz algebras [8] and 3-Lie
algebras [9,10].

As a generalization of a Lie algebra and a Lie-triple system, the notion of a Lie-
Yamaguti algebra was introduced by Kinyon and Weinstein [11] in their study of Courant
algebroids. This structure can be traced back to Nomizu’s work on the invariant affine con-
nections on homogeneous spaces [12] and Yamaguti’s work on Lie triple systems [13] and
general Lie triple algebras [14]. Recently, there has been significant research focused on var-
ious aspects of Lie-Yamaguti algebras in both mathematics and physics. These include de-
formations [15,16], quasi-derivations [17], Nijenhuis operators [18], modules over quadratic
spaces and representations [19] of Lie-Yamaguti algebras, equivariant Lie-Yamaguti al-
gebras [20], relative Rota-Baxter operators [21,22], relative differential operators [23] and
weighted Rota-Baxter operators [24] on Lie-Yamaguti algebras.

Motivated by the mentioned work on the generalized Reynolds operators and consid-
ering the importance of Lie-Yamaguti algebra, cohomology and deformation, this paper

Axioms 2023, 12, 934. https://doi.org/10.3390/axioms12100934 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12100934
https://doi.org/10.3390/axioms12100934
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms12100934
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12100934?type=check_update&version=3


Axioms 2023, 12, 934 2 of 16

aims to study the cohomology theory and deformations of generalized Reynolds operators
on Lie-Yamaguti algebras.

This paper is organized as follows. In Section 2, we briefly recall basics about repre-
sentations and cohomology of Lie-Yamaguti algebras. Section 3 introduces the notion of
generalized Reynolds operators on Lie-Yamaguti algebras. Moreover, we construct new
generalized Reynolds operators out of an old one by suitable modifications. Section 4
introduces the cohomology of a generalized Reynolds operator on a Lie-Yamaguti alge-
bra. In Section 5, we use the cohomological approach to study formal deformations of
generalized Reynolds operators. In Section 6, we study two special classes of generalized
Reynolds operators on Lie-Yamaguti algebras which are provided by Nijenhuis operators
and Reynolds operators on Lie-Yamaguti algebras.

2. Preliminaries

Throughout this paper, we work on an algebraically closed field K of characteristics
different from 2 and 3. We recall some basic definitions of Lie-Yamaguti algebra from [11,14].

Definition 1 ([11]). A Lie-Yamaguti algebra is a 3-tuple (L, [·, ·], {·, ·, ·}) in which L is a vector
space together with a binary operation [·, ·] and a ternary operation {·, ·, ·} on L such that

(LY01) [x, y] = −[y, x],

(LY02) {x, y, z} = −{y, x, z},
(LY03) ([[x, y], z] + {x, y, z}) + c.p. = 0,

(LY04) {[x, y], z, a}+ {[z, x], y, a}+ {[y, z], x, a} = 0,

(LY05) {a, b, [x, y]} = [{a, b, x}, y] + [x, {a, b, y}],
(LY06) {a, b, {x, y, z}} = {{a, b, x}, y, z}+ {x, {a, b, y}, z}+ {x, y, {a, b, z}},

for all x, y, z, a, b ∈ L and where c.p. denotes the sum over cyclic permutation of x, y, z, that is
([[x, y], z] + {x, y, z}) + c.p. = ([[x, y], z] + {x, y, z}) + ([[z, x], y] + {z, x, y}) + ([[y, z], x] +
{y, z, x}).

A homomorphism between two Lie-Yamaguti algebras (L, [·, ·], {·, ·, ·}) and (L′, [·, ·]′,
{·, ·, ·}′) is a linear map ϕ : L→ L′ satisfying

ϕ([x, y]) = [ϕ(x), ϕ(y)]′, ϕ({x, y, z}) = {ϕ(x), ϕ(y), ϕ(z)}′, ∀ x, y, z ∈ L.

Yamaguti introduced the concept of representation of Lie-Yamaguti algebra in [14].

Definition 2 ([14]). Let (L, [·, ·], {·, ·, ·}) be a Lie-Yamaguti algebra and V be a vector space. A
representation of (L, [·, ·], {·, ·, ·}) on V consists of a linear map ρ : L→ End(V) and two bilinear
maps D, θ : L× L→ End(V) such that

(R01) D(x, y)− θ(y, x) + θ(x, y) + ρ([x, y])− ρ(x)ρ(y) + ρ(y)ρ(x) = 0,

(R02) D([x, y], z) + D([y, z], x) + D([z, x], y) = 0,

(R03) θ([x, y], a) = θ(x, a)ρ(y)− θ(y, a)ρ(x),

(R04) D(a, b)ρ(x) = ρ(x)D(a, b) + ρ({a, b, x}),
(R05) θ(x, [a, b]) = ρ(a)θ(x, b)− ρ(b)θ(x, a),

(R06) D(a, b)θ(x, y) = θ(x, y)D(a, b) + θ({a, b, x}, y) + θ(x, {a, b, y}),
(R07) θ(a, {x, y, z}) = θ(y, z)θ(a, x)− θ(x, z)θ(a, y) + D(x, y)θ(a, z),

for all x, y, z, a, b ∈ L. In this case, we also call V a L-module.

It can be concluded from (R06) that

(R06)′ D(a, b)D(x, y) = D(x, y)D(a, b) + D({a, b, x}, y) + D(x, {a, b, y}).
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Example 1. Let (L, [·, ·], {·, ·, ·}) be a Lie-Yamaguti algebra. We define linear maps ad : L →
End(L),L,R : ⊗2L→ End(L) by

ad(x)(z) := [x, z],L(x, y)(z) := {x, y, z},R(x, y)(z) := {z, x, y},

for all x, y, z ∈ L. Then (L; ad,L,R) forms a representation of L on itself, called the adjoint
representation.

Representations of a Lie-Yamaguti algebra can be characterized by the semidirect
product Lie-Yamaguti algebras.

Proposition 1. Let (L, [·, ·], {·, ·, ·}) be a Lie-Yamaguti algebra and V be a vector space. Let
ρ : L→ End(V) and D, θ : L× L→ End(V) be linear maps. Then (ρ, D, θ) is a representation
of (L, [·, ·], {·, ·, ·}) on V if and only if L⊕V is a Lie-Yamaguti algebra under the following maps:

[x + u, y + v]n := [x, y] + ρ(x)(v)− ρ(y)(u),

{x + u, y + v, z + w}n := {x, y, z}+ D(x, y)(w)− θ(x, z)(v) + θ(y, z)(u),

for all x, y, z ∈ L and u, v, w ∈ V. In the case, the Lie-Yamaguti algebra L⊕V is called a semidirect
product of L and V, denoted by L n V = (L⊕V, [·, ·]n, {·, ·, ·}n).

Let us recall the cohomology theory on Lie-Yamaguti algebras in [14]. Let (V; ρ, D, θ)
be a representation of a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·}), and we denote the set of
n + 1-cochains by Cn+1

LY (L, V), where

Cn+1
LY (L, V) =

 Hom(∧2L⊗ · · · ⊗ ∧2L︸ ︷︷ ︸
n

, V)×Hom(∧2L⊗ · · · ⊗ ∧2L︸ ︷︷ ︸
n

⊗L, V) n ≥ 1,

Hom(L, V) n = 0.

In the sequel, we recall the coboundary map of n+ 1-cochains on Lie-Yamaguti algebra
L with the coefficients in the representation (V; ρ, D, θ):

If n ≥ 1, for any ( f , g) ∈ Cn+1
LY (L, V), Ki = xi ∧ yi ∈ ∧2L, (i = 1, 2, · · · , n + 1), z ∈ L,

the coboundary map δ = (δI , δI I) : Cn+1
LY (L, V)→ Cn+2

LY (L, V), ( f , g) 7→ (δI( f , g), δI I( f , g))
is given as follows:

δI( f , g)(K1, · · · , Kn+1)

=(−1)n(ρ(xn+1)g(K1, · · · , Kn, yn+1)− ρ(yn+1)g(K1, · · · , Kn, xn+1)

− g(K1, · · · , Kn, [xn+1, yn+1])) +
n

∑
k=1

(−1)k+1D(Kk) f (K1, · · · , K̂k · · · , Kn+1)

+ ∑
1≤k<l≤n+1

(−1)k f (K1, · · · , K̂k · · · , {xk, yk, xl} ∧ yl + xl ∧ {xk, yk, yl}, · · · , Kn+1),

δI I( f , g)(K1, · · · , Kn+1, z)

=(−1)n(θ(yn+1, z)g(K1, · · · , Kn, xn+1)− θ(xn+1, z)g(K1, · · · , Kn, yn+1))

+
n+1

∑
k=1

(−1)k+1D(Kk)g(K1, · · · , K̂k · · · , Kn+1, z)

+ ∑
1≤k<l≤n+1

(−1)kg(K1, · · · , K̂k · · · , {xk, yk, xl} ∧ yl + xl ∧ {xk, yk, yl}, · · · , Kn+1, z)

+
n+1

∑
k=1

(−1)kg(K1, · · · , K̂k · · · , Kn+1, {xk, yk, z}).

where ̂ denotes omission.
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For the case that n = 0, for any f ∈ C1
LY(L, V) , the coboundary map δ = (δI , δI I):

C1
LY(L, V)→ C2

LY(L, V), f → (δI( f ), δI I( f )) is given by:

δI( f )(x, y) =ρ(x) f (y)− ρ(y) f (x)− f ([x, y]),

δI I( f )(x, y, z) =D(x, y) f (z) + θ(y, z) f (x)− θ(x, z) f (y)− f ({x, y, z}).

The corresponding cohomology groups are denoted byH∗LY(L, V).

3. Generalized Reynolds Operators on Lie-Yamaguti Algebras

In this section, we introduce Generalized Reynolds operators on Lie-Yamaguti algebras
and provide some new constructions.

Let (L, [·, ·], {·, ·, ·}) be a Lie-Yamaguti algebra and (V; ρ, D, θ) be a representation of it.
Then H = (H1, H2) ∈ C2

LY(L, V) is a 2-cocycle, if δ(H1, H2) = 0, i.e., (H1, H2) satisfies

{x, y, H1(x1, y1)} − H1({x, y, x1}, y1)− H1(x1, {x, y, y1}) + H2(x, y, [x1, y1])

− [x1, H2(x, y, y1)]− [H2(x, y, x1), y1] = 0, (1)

{x, y, H2(x1, y1, z))} − {H2(x, y, x1), y1, z} − {x1, H2(x, y, y1), z} − {x1, y1, H2(x, y, z)}
+ H2(x, y, {x1, y1, z})− H2({x, y, x1}, y1, z)− H2(x1, {x, y, y1}, z)

− H2(x1, y1, {x, y, z}) = 0, (2)

for all x, y, z, x1, y1 ∈ L.

Definition 3. A linear map T:V → L is said to a generalized Reynolds operators if T satisfies

[Tu, Tv] =T(ρ(Tu)v− ρ(Tv)u + H1(Tu, Tv)), (3)

{Tu, Tv, Tw} =T(D(Tu, Tv)w + θ(Tv, Tw)u− θ(Tu, Tw)v + H2(Tu, Tv, Tw)), (4)

for u, v, w ∈ V.

Remark 1. (i) When a Lie-Yamaguti algebra reduces to a Lie triple system, that is [·, ·] = 0, we get
the notion of a generalized Reynolds operator on a Lie triple system immediately.
(ii) When a Lie-Yamaguti algebra reduces to a Lie algebra, that is {·, ·, ·} = 0, we get the notion of a
generalized Reynolds operator on a Lie algebra. See [7] for more details about generalized Reynolds
operators on Lie algebras.

Example 2. Any relative Rota-Baxter operator (in particular, Rota-Baxter operator of weight 0) on a
Lie-Yamaguti algebra is a generalized Reynolds operator with (H1, H2) = 0. See [21,22,24] for more
details about relative Rota-Baxter operators and weighted Rota-Baxter operators on Lie-Yamaguti
algebras.

Example 3. Let (V; ρ, D, θ) be a representation of a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·}). Sup-
pose that h ∈ C1

LY(L, V) is an invertible 1-cochain. Take H1 = −δI(h) and H2 = −δI I(h). Then

H1(Tu, Tv) = −δI(h)(Tu, Tv) = −ρ(Tu)v + ρ(Tv)u + h([Tu, Tv]),

H2(Tu, Tv, Tw) = −δI I(h)(Tu, Tv, Tw)

= −D(Tu, Tv)h(Tw)− θ(Tv, Tw)h(Tu) + θ(Tu, Tw)h(Tv) + h({Tu, Tv, Tw}),

for u, v, w ∈ V. This shows that T = h−1 is a generalized Reynolds operator.

Let T:V → L be a generalized Reynolds operator. Suppose (V′; ρ′, D′, θ′) is a represen-
tation of another Lie-Yamaguti algebra (L′, [·, ·]′, {·, ·, ·}′), and (H′1, H′2) ∈ C2

LY(L′, V′) is a
2-cocycle. Let T′ : V′ → L′ be a generalized Reynolds operator.
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Definition 4. A morphism of generalized Reynolds operators from T to T′ consists of a pair (ϕ, φ)
of a Lie-Yamaguti algebra morphism ϕ : L→ L′ and a linear map φ : V → V′ satisfying

ϕ ◦ T = T′ ◦ φ,

φ(ρ(x)u) = ρ′(ϕ(x))φ(u),

φ(D(x, y)u) = D′(ϕ(x), ϕ(y))φ(u), φ(θ(x, y)u) = θ′(ϕ(x), ϕ(y))φ(u),

φ ◦ H1 = H′1 ◦ (ϕ⊗ ϕ), φ ◦ H2 = H′2 ◦ (ϕ⊗ ϕ⊗ ϕ),

forx, y ∈ L, u ∈ V.

Given a 2-cocycle (H1, H2) in the cochain complex of L with coefficients in V, one can
construct the twisted semidirect product algebra. More precisely, the direct sum L⊕ V
carries a Lie-Yamaguti algebra structure with the bracket given by

[x + u, y + v]H : = [x, y] + ρ(x)(v)− ρ(y)(u) + H1(x, y),

{x + u, y + v, z + w}H : = {x, y, z}+ D(x, y)(w)− θ(x, z)(v) + θ(y, z)(u) + H2(x, y, z),

for x, y, z ∈ L, u, v, w ∈ V.
We denote this twisted semidirect product Lie-Yamaguti algebra by L nH V. Using

this twisted semidirect product, one can characterize generalized Reynolds operators by
their graph.

Proposition 2. A linear map T : V → L is a generalized Reynolds operator if and only if its graph
Gr(T) = {Tu + u | u ∈ V} is a subalgebra of the twisted semidirect product L nH V.

Proof. Let T:V → L be a linear operator. Then, for all u, v, w ∈ V, we have

[Tu + u, Tv + v]H = [Tu, Tv] + ρ(Tu)v− ρ(Tv)u + H1(Tu, Tv),

{Tu + u, Tv + v, Tw + w)}H

= {Tu, Tv, Tw}+ D(Tu, Tv)w− θ(Tu, Tw)v + θ(Tv, Tw)u + H2(Tu, Tv, Tw),

which implies that the graph Gr(T) is a subalgebra of L nH V if and only if T satisfies
Equations (3) and (4), which means that T is a generalized Reynolds operator.

Since V and Gr(T) are isomorphic as vector spaces, we get the following result immediately.

Proposition 3. Let T:V → L be a generalized Reynolds operator on Lie-Yamaguti algebra
(L, [·, ·], {·, ·, ·}) with respect to the representation (V; ρ, D, θ). Then (V, [·, ·]T , {·, ·, ·}T) is a
Lie-Yamaguti algebra, where

[u, v]T =ρ(Tu)v− ρ(Tv)u + H1(Tu, Tv), (5)

{u, v, w}T =D(Tu, Tv)w− θ(Tu, Tw)v + θ(Tv, Tw)u + H2(Tu, Tv, Tw), (6)

for all u, v, w ∈ V. Moreover, T is a homomorphism from (V, [·, ·]T , {·, ·, ·}T) to (L, [·, ·], {·, ·, ·}).

At the end of this section, we construct new generalized Reynolds operators out of an
old one by suitable modifications. We start with the following.

Proposition 4. Let (V; ρ, D, θ) be a representation of a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·}).
For any 2-cocycle (H1, H2) ∈ C2

LY(L, V) and 1-cochain h ∈ C1
LY(L, V), the Lie-Yamaguti algebra

L nH V and L nH+δh V are isomorphic.
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Proof. We define an isomorphism Φh : L nH V → L nH+δh V of the underlying vector
spaces by Φh(x + u) := x + u− h(x), for x + u ∈ L nH V. Moreover, we have

Φh[x + u, y + v]H
= [x, y] + ρ(x)v− ρ(y)u + H1(x, y)− h([x, y])

= [x, y] + ρ(x)v− ρ(y)u + H1(x, y)− ρ(x)h(y) + ρ(y)h(x) + δI(h)(x, y)

= [x + u− h(x), y + v− h(y)]H+δI h

= [Φh(x + u), Φh(y + v)]H+δI h,

Φh{x + u, y + v, z + w}H

= {x, y, z}+ D(x, y)(w)− θ(x, z)(v) + θ(y, z)(u) + H2(x, y, z)− h({x, y, z})
= {x, y, z}+ D(x, y)(w)− θ(x, z)(v) + θ(y, z)(u) + H2(x, y, z)

− D(x, y)h(z)− θ(y, z)h(x) + θ(x, z)h(y) + δI I(h)(x, y, z)

= {x + u− h(x), y + v− h(y), z + w− h(z)]H+δI I h

= {Φh(x + u), Φh(y + v), Φh(z + w)}H+δI I h.

This shows that Φh is in fact an isomorphism of Lie-Yamaguti algebras.

Proposition 5. Let T:V → L be a generalized Reynolds operator, for any 1-cochain h ∈ C1
LY(L, V),

if the linear map (IdV − h ◦ T) : V → V is invertible, then the map T ◦ (IdV − h ◦ T)−1 : V → L
is a generalized Reynolds operator.

Proof. Consider the subalgebra Gr(T) ⊂ L nH V of the twisted semidirect product. Thus
by Proposition 4, we get that Φh(Gr(T)) = {Tu + u − h(Tu) | u ∈ V} ⊂ L nH+δh V is
a subalgebra. Since the map (IdV − h ◦ T) : V → V is invertible, we have Φh(Gr(T))
is the graph of the linear map T ◦ (IdV − h ◦ T)−1. Hence by Proposition 2, the map
T ◦ (IdV − h ◦ T)−1 is a generalized Reynolds operator.

Let T:V → L be a generalized Reynolds operator. Suppose B ∈ C1
LY(L, V) is a 1-cocycle.

Then B is said to be T-admissible if the linear map (IdV + B ◦ T) : V → V is invertible.
With this notation, we have the following.

Proposition 6. Let B ∈ C1
LY(L, V) be a T-admissible 1-cocycle. Then the map T ◦ (IdV + B ◦

T)−1 : V → L is a generalized Reynolds operator.

Proof. Consider the deformed subspace

τB(Gr(T)) = {Tu + u + B ◦ Tu | u ∈ V} ⊂ L nH V.

Since B is a 1-cocycle, τB(Gr(T)) ⊂ L nH V turns out to be a subalgebra. Further, the map
(IdV + B ◦ T) is invertible implies that τB(Gr(T)) is the graph of the map T ◦ (IdV + B ◦
T)−1. Then it follows from Proposition 2 that T ◦ (IdV + B ◦ T)−1 : V → L is a generalized
Reynolds operator.

The generalized Reynolds operator in the above proposition is called the gauge trans-
formation of T associated with B. We denote this generalized Reynolds operator simply
by TB.

Proposition 7. Let T:V → L be a generalized Reynolds operator and B ∈ C1
LY(L, V) be a T-

admissible 1-cocycle. Then the Lie-Yamaguti algebra structures on V induced from the generalized
Reynolds operators T and TB are isomorphic.
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Proof. Consider the linear isomorphism (IdV + B ◦ T) : V → V. Moreover, for any
u, v, w ∈ V, we have

[(IdV + B ◦ T)u, (IdV + B ◦ T)v]TB

= ρ(Tu)(IdV + B ◦ T)v− ρ(Tv)(IdV + B ◦ T)u + H1(Tu, Tv)

= ρ(Tu)v− ρ(Tv)u + ρ(Tu)(B ◦ T)v− ρ(Tv)(B ◦ T)u + H1(Tu, Tv)

= ρ(Tu)v− ρ(Tv)u + B[Tu, Tv] + H1(Tu, Tv)

= [u, v]T + B ◦ T([u, v]T)

= (IdV + B ◦ T)([u, v]T),

{(IdV + B ◦ T)u, (IdV + B ◦ T)v, (IdV + B ◦ T)w}TB

= D(Tu, Tv)(IdV + B ◦ T)w− θ(Tu, Tw)(IdV + B ◦ T)v + θ(Tv, Tw)(IdV + B ◦ T)u

+ H2(Tu, Tv, Tw)

= D(Tu, Tv)w− θ(Tu, Tw)v + θ(Tv, Tw)u + D(Tu, Tv)(B ◦ T)w− θ(Tu, Tw)(B ◦ T)v

+ θ(Tv, Tw)(B ◦ T)u + H2(Tu, Tv, Tw)

= {u, v, w}T + B ◦ T({u, v, w}T)

= (IdV + B ◦ T)({u, v, w}T).

Thus IdV + B ◦ T is an isomorphism of Lie-Yamaguti algebras from (V, [·, ·]T , {·, ·, ·}T) to
(V, [·, ·]TB , {·, ·, ·}TB).

4. Cohomology of Generalized Reynolds Operators

In this section, we define cohomology of a generalized Reynolds operator T as the
cohomology of the Lie-Yamaguti algebra (V, [·, ·]T , {·, ·, ·}T) constructed in Proposition 3
with coefficients in a suitable representation on L. In the next section, we will use this
cohomology to study deformations of T.

Proposition 8. Let T:V → L be a generalized Reynolds operator. Define linear maps ρT : V →
End(L) and θT , DT :⊗2 V → End(L) by

ρT(u)x : = [Tu, x] + T(ρ(x)u + H1(x, Tu)),

θT(u, v)x : = {x, Tu, Tv} − T(D(x, Tu)v− θ(x, Tv)u + H2(Tu, Tv, x)),

DT(u, v)x : = {Tu, Tv, x} − T(θ(Tv, x)u− θ(Tu, x)v + H2(Tu, Tv, x)),

for all u, v ∈ V, x ∈ L. Then (L; ρT , θT , DT) is a representation of the Lie-Yamaguti algebra
(V, [·, ·]T , {·, ·, ·}T).

Proof. By a direct calculation using (LY01)–(LY06), (R01)–(R07) and (1)–(6), for all u, v, w, u1,
u2 ∈ V, x ∈ L, we have

DT(u, v)x− θT(v, u)x + θT(u, v)x + ρT([u, v]T)x− ρT(u)ρT(v)x + ρT(v)ρT(u)x

= {Tu, Tv, x} − T(θ(Tv, x)u− θ(Tu, x)v + H2(Tu, Tv, x))− {x, Tv, Tu}+ T(D(x, Tv)u

− θ(x, Tu)v + H2(Tv, Tu, x)) + {x, Tu, Tv} − T(D(x, Tu)v− θ(x, Tv)u + H2(Tu, Tv, x))

+ [T[u, v]T , x] + T(ρ(x)[u, v]T + H1(x, T[u, v]T))− [Tu, [Tv, x]]− T(ρ([Tv, x])u + H1([Tv, x], Tu))

− [Tu, T(ρ(x)v)]− T(ρ(T(ρ(x)v))u + H1(T(ρ(x)v), Tu))− [Tu, TH1(x, Tv))]

− T(ρ(TH1(x, Tv)))u + H1(TH1(x, Tv)), Tu)) + [Tv, [Tu, x]] + T(ρ([Tu, x])v + H1([Tu, x], Tv))

+ [Tv, T(ρ(x)u)] + T(ρ(T(ρ(x)u))v + H1(T(ρ(x)u), Tv)) + [Tv, TH1(x, Tu))]

+ T(ρ(TH1(x, Tu)))v + H1(TH1(x, Tu)), Tv))

= 0,
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DT([u, v]T , w)x + DT([v, w]T , u)x + DT([w, u]T , v)x

= {T[u, v]T , Tw, x} − T(θ(Tw, x)[u, v]T − θ(T[u, v]T , x)w + H2(T[u, v]T , Tw, x))

+ {T[v, w]T , Tu, x} − T(θ(Tu, x)[v, w]T − θ(T[v, w]T , x)u + H2(T[v, w]T , Tu, x))

+ {T[w, u]T , Tv, x} − T(θ(Tv, x)[w, u]T − θ(T[w, u]T , x)v + H2(T[w, u]T , Tv, x))

= 0,

θT([u, v]T , w)x− θT(u, w)ρT(v)x + θT(v, w)ρT(u)x

= {x, T[u, v]T , Tw} − T(D(x, T[u, v]T)w− θ(x, Tw)[u, v]T + H2(T[u, v]T , Tw, x))

− {[Tv, x], Tu, Tw}+ T(D([Tv, x], Tu)w− θ([Tv, x], Tw)u + H2(Tu, Tw, [Tv, x]))

− {T(ρ(x)v), Tu, Tw}+ T(D(T(ρ(x)v), Tu)w− θ(T(ρ(x)v), Tw)u + H2(Tu, Tw, T(ρ(x)v)))

− {TH1(x, Tv), Tu, Tw}+ T(D(TH1(x, Tv), Tu)w− θ(TH1(x, Tv), Tw)u + H2(Tu, Tw, TH1(x, Tv)))

+ {[Tu, x], Tv, Tw} − T(D([Tu, x], Tv)w− θ([Tu, x], Tw)v + H2(Tv, Tw, [Tu, x]))

+ {T(ρ(x)u), Tv, Tw} − T(D(T(ρ(x)u), Tv)w− θ(T(ρ(x)u), Tw)v + H2(Tv, Tw, T(ρ(x)u)))

+ {TH1(x, Tu), Tv, Tw} − T(D(TH1(x, Tu), Tv)w− θ(TH1(x, Tu), Tw)v + H2(Tv, Tw, TH1(x, Tu)))

= 0,

DT(u, v)ρT(w)x− ρT(w)DT(u, v)x− ρT({u, v, w}T)x

= {Tu, Tv, [Tw, x]} − T(θ(Tv, [Tw, x])u− θ(Tu, [Tw, x])v + H2(Tu, Tv, [Tw, x]))

+ {Tu, Tv, T(ρ(x)w)} − T(θ(Tv, T(ρ(x)w))u− θ(Tu, T(ρ(x)w))v + H2(Tu, Tv, T(ρ(x)w)))

+ {Tu, Tv, TH1(x, Tw)} − T(θ(Tv, TH1(x, Tw))u− θ(Tu, TH1(x, Tw))v + H2(Tu, Tv, TH1(x, Tw)))

− [Tw, {Tu, Tv, x}]− T(ρ({Tu, Tv, x})w + H1({Tu, Tv, x}, Tw)) + [Tw, T(θ(Tv, x)u)]

+ T(ρ(T(θ(Tv, x)u))w + H1(T(θ(Tv, x)u), Tw))− [Tw, Tθ(Tu, x)v]

− T(ρ(Tθ(Tu, x)v)w + H1(Tθ(Tu, x)v, Tw)) + [Tw, TH2(Tu, Tv, x)]

+ T(ρ(TH2(Tu, Tv, x))w + H1(TH2(Tu, Tv, x), Tw))− [T{u, v, w}T , x]

− T(ρ(x){u, v, w}T + H1(x, T{u, v, w}T))

= 0.

Similarly,

θT(w, [u, v]T)x− ρT(u)θT(w, v)x + ρT(v)θT(w, u)x = 0,

DT(u, v)θT(u1, u2)x− θT(u1, u2)DT(u, v)x− θT({u, v, u1}T , u2)x− θT(u1, {u, v, u2}T)x = 0,

θT(u1, {u, v, w}T)x− θT(v, w)θT(u1, u)x + θT(u, w)θT(u1, v)x− DT(u, v)θT(u1, w)x = 0.

Therefore, we deduce that (L; ρT , θT , DT) is a representation of the Lie-Yamaguti algebra
(V, [·, ·]T , {·, ·, ·}T).

Let δT = (δT
I , δT

II) : Cn+1
LY (V, L)→ Cn+2

LY (V, L) be the corresponding coboundary oper-
ator of the Lie-Yamaguti algebra (V, [·, ·]T , {·, ·, ·}T) with coefficients in the representation
(L; ρT , θT , DT). More precisely, δT( f , g) = (δT

I ( f , g), δT
II( f , g)) is given by

δT
I ( f , g)(U1, · · · , Un+1)

=(−1)n([Tun+1, g(U1, · · · , Un, vn+1)] + Tρ(un+1)g(U1, · · · , Un, vn+1)

+ TH1(g(U1, · · · , Un, vn+1), Tun+1)− [Tvn+1, g(U1, · · · , Un, un+1)]

− Tρ(vn+1)g(U1, · · · , Un, un+1)− TH1(g(U1, · · · , Un, un+1), Tvn+1)

− g(U1, · · · , Un, ρ(Tun+1)vn+1 − ρ(Tvn+1)un+1 + H1(Tun+1, Tvn+1)))

+
n

∑
k=1

(−1)k+1({uk, vk, f (U1, · · · , Ûk · · · , Un+1)} − Tθ(Tvk, f (U1, · · · , Ûk · · · , Un+1))uk

+ Tθ(Tuk, f (U1, · · · , Ûk · · · , Un+1))vk − TH2(Tuk, vk, f (U1, · · · , Ûk · · · , Un+1)))
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+ ∑
1≤k<l≤n+1

(−1)k f (U1, · · · , Ûk · · · , (D(Tuk, Tvk)ul − θ(Tuk, Tul)vk + θ(Tvk, Tul)uk + H2(Tuk, Tvk, Tul)) ∧ vl

+ ul ∧ (D(Tuk, Tvk)vl − θ(Tuk, Tvl)vk + θ(Tvk, Tvl)uk + H2(Tuk, Tvk, Tvl)), · · · , Un+1),

δT
II( f , g)(U1, · · · , Un+1, w)

=(−1)n({g(U1, · · · , Un, un+1), Tvn+1, Tw} − T(D(g(U1, · · · , Un, un+1), Tvn+1)w

− θ(g(U1, · · · , Un, un+1), Tw)vn+1 + H2(Tvn+1, Tw, g(U1, · · · , Un, un+1)))

− {g(U1, · · · , Un, vn+1), Tun+1, Tw}+ T(D(g(U1, · · · , Un, vn+1), Tun+1)w

− θ(g(U1, · · · , Un, vn+1), Tw)un+1 + H2(Tun+1, Tw, g(U1, · · · , Un, vn+1))))

+
n+1

∑
k=1

(−1)k+1({Tuk, Tvk, g(U1, · · · , Ûk · · · , Un+1, w)} − T(θ(Tvk, g(U1, · · · , Ûk · · · , Un+1, w))uk

− θ(Tuk, g(U1, · · · , Ûk · · · , Un+1, w))vk + H2(Tuk, Tvk, g(U1, · · · , Ûk · · · , Un+1, w))))

+ ∑
1≤k<l≤n+1

(−1)kg(U1, · · · , Ûk · · · , (D(Tuk, Tvk)ul − θ(Tuk, Tul)vk + θ(Tvk, Tul)uk + H2(Tuk, Tvk, Tul)) ∧ vl

+ ul ∧ (D(Tuk, Tvk)vl − θ(Tuk, Tvl)vk + θ(Tvk, Tvl)uk + H2(Tuk, Tvk, Tvl)), · · · , Un+1, w)

+
n+1

∑
k=1

(−1)kg(U1, · · · , Ûk · · · , Un+1, D(Tuk, Tvk)w− θ(Tuk, Tw)vk + θ(Tvk, Tw)uk + H2(Tuk, Tvk, Tw)).

where Ui = ui ∧ vi ∈ ∧2V, (i = 1, 2, · · · , n + 1), w ∈ V.
For the case that n = 0, for any f ∈ C1

LY(V, L), the coboundary map δT = (δT
I , δT

II):
C1

LY(V, L)→ C2
LY(V, L), f 7→ (δT

I ( f ), δT
II( f )) is given by:

δT
I ( f )(u, v) =[Tu, f (v)] + T(ρ( f (v))u + H1( f (v), Tu))− [Tv, f (u)]

− T(ρ( f (u))v + H1( f (u), Tv))− f (ρ(Tu)v− ρ(Tv)u + H1(Tu, Tv)),

δT
II( f )(u, v, w) ={Tu, Tv, f (w)} − T(θ(Tv, f (w))u− θ(Tu, f (w))v + H2(Tu, Tv, f (w)))

+ { f (u), Tv, Tw} − T(D( f (u), Tv)w− θ( f (u), Tw)v + H2(Tv, Tw, f (u)))

− { f (v), Tu, Tw}+ T(D( f (v), Tu)w− θ( f (v), Tw)u + H2(Tu, Tw, f (v)))

− f (D(Tu, Tv)w− θ(Tu, Tw)v + θ(Tv, Tw)u + H2(Tu, Tv, Tw)).

Proposition 9. Let T be a generalized Reynolds operator on a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·})
with respect to the representation (V; ρ, D, θ). For any K = a ∧ b ∈ L ∧ L, we define ℘(K) : V →
L by

℘(K)v := T(D(K)v + H2(K, Tv))− {K, Tv}, ∀v ∈ V.

Then ℘(K) is a 1-cocycle on the Lie-Yamaguti algebra (V, [·, ·]T , {·, ·, ·}T) with coefficients in the
representation (L; ρT , θT , DT).

Proof. For any u, v, w ∈ V, we have

δT
I (℘(K))(u, v)

=[Tu,℘(K)(v)] + T(ρ(℘(K)(v))u + H1(℘(K)(v), Tu))− [Tv,℘(K)(u)]

− T(ρ(℘(K)(u))v + H1(℘(K)(u), Tv))− ℘(K)(ρ(Tu)v− ρ(Tv)u + H1(Tu, Tv))

=[Tu, T(D(K)v + H2(K, Tv))− {K, Tv}] + T(ρ(T(D(K)v + H2(K, Tv))− {K, Tv})u
+ H1(T(D(K)v + H2(K, Tv))− {K, Tv}, Tu))− [Tv, T(D(K)u + H2(K, Tu))− {K, Tu}]
− T(ρ(T(D(K)u + H2(K, Tu))− {K, Tu})v + H1(T(D(K)u + H2(K, Tu))− {K, Tu}, Tv))

− T(D(K)(ρ(Tu)v− ρ(Tv)u + H1(Tu, Tv)) + H2(K, T(ρ(Tu)v− ρ(Tv)u + H1(Tu, Tv)))

− {K, T(ρ(Tu)v− ρ(Tv)u + H1(Tu, Tv))}
=0,
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δT
II(℘(K))(u, v, w)

={Tu, Tv,℘(K)(w)} − T(θ(Tv,℘(K)(w))u− θ(Tu,℘(K)(w))v + H2(Tu, Tv,℘(K)(w)))

+ {℘(K)(u), Tv, Tw} − T(D(℘(K)(u), Tv)w− θ(℘(K)(u), Tw)v + H2(Tv, Tw,℘(K)(u)))

− {℘(K)(v), Tu, Tw}+ T(D(℘(K)(v), Tu)w− θ(℘(K)(v), Tw)u + H2(Tu, Tw,℘(K)(v)))

− ℘(K)(D(Tu, Tv)w− θ(Tu, Tw)v + θ(Tv, Tw)u + H2(Tu, Tv, Tw))

={Tu, Tv, T(D(K)w + H2(K, Tw))− {K, Tw}} − T(θ(Tv, T(D(K)w + H2(K, Tw))

− {K, Tw})u− θ(Tu, T(D(K)w + H2(K, Tw))− {K, Tw})v + H2(Tu, Tv, T(D(K)w + H2(K, Tw))

− {K, Tw})) + {T(D(K)u + H2(K, Tu))− {K, Tu}, Tv, Tw} − T(D(T(D(K)u + H2(K, Tu))− {K, Tu}, Tv)w

− θ(T(D(K)u + H2(K, Tu))− {K, Tu}, Tw)v + H2(Tv, Tw, T(D(K)u + H2(K, Tu))− {K, Tu}))
− {T(D(K)v + H2(K, Tv))− {K, Tv}, Tu, Tw}+ T(D(T(D(K)v + H2(K, Tv))− {K, Tv}, Tu)w

− θ(T(D(K)v + H2(K, Tv))− {K, Tv}, Tw)u + H2(Tu, Tw, T(D(K)v + H2(K, Tv))− {K, Tv}))
− T(D(K)(D(Tu, Tv)w− θ(Tu, Tw)v + θ(Tv, Tw)u + H2(Tu, Tv, Tw))

+ H2(K, T(D(Tu, Tv)w− θ(Tu, Tw)v + θ(Tv, Tw)u + H2(Tu, Tv, Tw))))

− {K, T(D(Tu, Tv)w− θ(Tu, Tw)v + θ(Tv, Tw)u + H2(Tu, Tv, Tw))}
=0.

This finishes the proof.

Now, we give a cohomology of generalized Reynolds operators on Lie-Yamaguti algebras.

Definition 5. Let T be a generalized Reynolds operator on a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·})
with respect to the representation (V; ρ, D, θ). Define the set of p-cochains by

C p
T(V, L) =

{
Cp

LY(V, L) p ≥ 1,
L ∧ L p = 0.

Define ∂T : C p
T(V, L)→ C p+1

T (V, L) by

∂T =

{
δT p ≥ 1,
℘ p = 0.

Then (⊕∞
p=0C

p
T(V, L), ∂T) is a cochain complex. Denote the set of p-cocycles by Z p

T(V, L) and the
set of p-coboundaries by Bp

T(V, L). Denote by

Hp
T(V, L) :=

Z p
T(V, L)
Bp

T(V, L)

the p-th cohomology group which will be taken to be the p-th cohomology group for the generalized
Reynolds operator T.

5. Formal Deformations of Generalized Reynolds Operator

Let K[[t]] be a ring of power series of one variable t, and let L[[t]] be the set of
formal power series over L. If (L, [·, ·], {·, ·, ·}) is a Lie-Yamaguti algebra, then there is a
Lie-Yamaguti algebra structure over the ring K[[t]] on L[[t]] given by

[
∞

∑
i=0

xiti,
∞

∑
i=0

yjtj] =
∞

∑
s=0

∑
i+j=s

[xi, yj]ts, {
∞

∑
i=0

xiti,
∞

∑
i=0

yjtj,
∞

∑
k=0

zktk} =
∞

∑
s=0

∑
i+j+k=s

{xi, yj, zk}ts. (7)
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For any representation (V; ρ, D, θ) of a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·}), there is a
nature representation of the Lie-Yamaguti algebra L[[t]] on the K[[t]]-module V[[t]], which
is given by

ρ(
∞

∑
i=0

xiti)(
∞

∑
i=0

vjtj) =
∞

∑
s=0

∑
i+j=s

ρ(xi)vjts, (8)

D(
∞

∑
i=0

xiti,
∞

∑
i=0

yjtj)(
∞

∑
k=0

vktk) =
∞

∑
s=0

∑
i+j+k=s

D(xi, yj)vkts, (9)

θ(
∞

∑
i=0

xiti,
∞

∑
i=0

yjtj)(
∞

∑
k=0

vktk) =
∞

∑
s=0

∑
i+j+k=s

θ(xi, yj)vkts. (10)

Similarly, the 2-cocycle (H1, H2) can be extended to a 2-cocycle (denoted by the same
notation (H1, H2)) on the Lie-Yamaguti algebra L[[t]] with coefficients in V[[t]]. Consider a
power series

Tt =
∞

∑
i=0

Titi, Ti ∈ Hom(V, L), (11)

that is, Tt ∈ Hom(V, L)[[t]] = Hom(V, L[[t]]). Extend it to be a K[[t]]-module map from
V[[t]] to L[[t]] which is still denoted by Tt.

Definition 6. If Tt = ∑∞
i=0 Titi with T0 = T satisfies

[Ttu, Ttv] =Tt(ρ(Ttu)v− ρ(Ttv)u + H1(Ttu, Ttv)), (12)

{Ttu, Ttv, Ttw} =Tt(D(Ttu, Ttv)w + θ(Ttv, Ttw)u− θ(Ttu, Ttw)v + H2(Ttu, Ttv, Ttw)), (13)

for all u, v, w ∈ V, we say that Tt is a formal deformation of the generalized Reynolds operator T.

By applying Equations (7)–(11) to expand Equations (12) and (13) and collecting
coefficients of tn, we see that Equations (12) and (13) are equivalent to the system of
equations

∑
i+j=n

[Tiu, Tjv] = ∑
i+j=n

Ti(ρ(Tju)v− ρ(Tjv)u) + ∑
i+j+k=n

Ti(H1(Tju, Tkv)), (14)

∑
i+j+k=n

{Tiu, Tjv, Tkw} = ∑
i+j+k=n

Ti(D(Tju, Tkv)w + θ(Tjv, Tkw)u− θ(Tju, Tkw)v)

+ ∑
i+j+k+l=n

Ti(H1(Tju, Tkv, Tlw)). (15)

Note that (14) and (15) hold for n = 0 as T0 = T is a generalized Reynolds operator.

Proposition 10. Let Tt = ∑∞
i=0 Titi is a formal deformation of a generalized Reynolds operator T

on a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·}) with respect to the representation (V; ρ, D, θ). Then T1
is a 1-cocycle of the generalized Reynolds operator T, called the infinitesimal of the deformation Tt.

Proof. When n = 1, Equations (14) and (15) are equivalent to

[T1u, Tv] + [Tu, T1v] = T1(ρ(Tu)v− ρ(Tv)u) + T(ρ(T1u)v− ρ(T1v)u) + T1(H1(Tu, Tv))

+ T(H1(T1u, Tv)) + T(H1(Tu, T1v)),

{T1u, Tv, Tw}+ {Tu, T1v, Tw}+ {Tu, Tv, T1w}
= T1(D(Tu, Tv)w + θ(Tv, Tw)u− θ(Tu, Tw)v) + T(D(T1u, Tv)w + θ(T1v, Tw)u− θ(T1u, Tw)v)

+ T(D(Tu, T1v)w + θ(Tv, T1w)u− θ(Tu, T1w)v) + T1(H1(Tu, Tv, Tw))

+ T(H1(T1u, Tv, Tw)) + T(H1(Tu, T1v, Tw)) + T(H1(Tu, Tv, T1w)).
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This implies that ∂T
I (T1)(u, v) = 0 and ∂T

II(T1)(u, v, w) = 0. Hence the linear term T1 is a
1-cocycle in the cohomology of the generalized Reynolds operator T.

Definition 7. Let T be a generalized Reynolds operator on a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·})
with respect to the representation (V; ρ, D, θ). Two formal deformations T′t = ∑∞

i=0 T′i ti and
Tt = ∑∞

i=0 Titi are said to be equivalent if there exist an element K = a ∧ b ∈ L ∧ L such that two
linear maps

φt = IdL + t{K,−}+
∞

∑
i=2

φiti, φi ∈ End(L), (16)

ϕt = IdV + t(D(K)−+H2(K, T−)) +
∞

∑
i=2

ϕiti, ϕi ∈ End(V), (17)

meet the following equations:

φt[x, y] = [φt(x), φt(y)], φt{x, y, z} = {φt(x), φt(y), φt(z)},
ϕt(D(x, y)v) = D(φt(x), φt(y))ϕt(v), ϕt(θ(x, y)v) = θ(φt(x), φt(y))ϕt(v),

ϕt(ρ(x)v) = ρ(φt(x))ϕt(v),

Tt(ϕt(v)) = φt(T′t (v)), (18)

for all x, y, z ∈ L, v ∈ V.

Theorem 1. Let T be a generalized Reynolds operator on a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·})
with respect to the representation (V; ρ, D, θ). Two formal deformations T′t = ∑∞

i=0 T′i ti and
Tt = ∑∞

i=0 Titi of T are equivalent, then T′1 and T1 define the same cohomology class inH1
T(V, L).

Proof. Let φt and ϕt are two linear maps defined in Equations (16) and (17) such that
two deformations T′t = ∑∞

i=0 T′i ti and Tt = ∑∞
i=0 Titi are equivalent. By Equation (18),

we have T′1(v)− T1(v) = T(D(K)v + H2(K, Tv))− {K, Tv}. From Proposition 9, we can
get T′1(v) − T1(v) = ∂T(K)v ∈ B1

T(V, L), which implies that T′1 and T1 are in the same
cohomology class.

6. Nijenhuis Operators and Reynolds Operators on Lie-Yamaguti Algebras

First, we show that a Nijenhuis operator on a Lie-Yamaguti algebra gives rise to a
generalized Reynolds operator on a Lie-Yamaguti algebra.

Recall from [18] that a Nijenhuis operator on a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·})
is a linear map N : L→ L satisfies

[Nx, Ny] =N([Nx, y] + [x, Ny]− N[x, y]),

{Nx, Ny, Nz} =N({Nx, Ny, z}+ {Nx, y, Nz}+ {x, Ny, Nz})−
N2({Nx, y, z}+ {x, Ny, z}+ {x, y, Nz}) + N3{x, y, z},

for all x, y, z ∈ L. In this case the vector space L carries a new Lie-Yamaguti bracket
([·, ·]N , {·, ·, ·}N), which is defined by

[x, y]N =[Nx, y] + [x, Ny]− N[x, y], (19)

{x, y, z}N ={Nx, Ny, z}+ {Nx, y, Nz}+ {x, Ny, Nz}−
N({Nx, y, z}+ {x, Ny, z}+ {x, y, Nz}) + N2{x, y, z}. (20)

The Lie-Yamaguti algebra (L, [·, ·]N , {·, ·, ·}N) will be called the deformed Lie-Yamaguti
algebra, and denoted by LN . It is obvious that N is a homomorphism from the deformed
Lie-Yamaguti algebra (L, [·, ·]N , {·, ·, ·}N) to (L, [·, ·], {·, ·, ·}).
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Lemma 1. Let N be a Nijenhuis operator on a Lie-Yamaguti algebras (L, [·, ·], {·, ·, ·}). Define
ρN : LN → End(L) and θN , DN : ∧2LN → End(L) by

ρN(x)a := [Nx, a], DN(x, y)a := {Nx, Ny, a}, θN(x, y)a := {a, Nx, Ny}, (21)

for all x, y ∈ LN , a ∈ L. Then (L; ρN , DN , θN) is a representation of the deformed Lie-Yamaguti
algebra LN .

Proof. By using (LY01)–(LY06), (19)–(21), for any x, y, z, x1, x2 ∈ LN , a ∈ L, we have

DN(x, y)a− θN(y, x)a + θN(x, y)a + ρN([x, y]N)a− ρN(x)ρN(y)a + ρN(y)ρN(x)a

= {Nx, Ny, a} − {a, Ny, Nx}+ {a, Nx, Ny}+ [[Nx, Ny], a]− [Nx, [Ny, a]] + [Ny, [Nx, a]]

= 0,

DN([x, y]N , z)a + DN([y, z]N , x)a + DN([z, x]N , y)a

= {[Nx, Ny], Nz, a}+ {[Ny, Nz], Nx, a}+ {[Nz, Nx], Ny, a}
= 0,

θN([x, y]N , z)a− θN(x, z)ρN(y)a + θN(y, z)ρN(x)a

= {a, [Nx, Ny], Nz} − {[Ny, a], Nx, Nz}+ {[Nx, a], Ny, Nz}
= 0,

DN(x, y)ρN(z)a− ρN(z)DN(x, y)a− ρN({x, y, z}N)a

= {Nx, Ny, [Nz, a]} − [Nz, {Nx, Ny, a}]− [{Nx, Ny, Nz}, a]

= 0,

θN(z, [x, y]N)a− ρN(x)θN(z, y)a + ρN(y)θN(z, x)a

= {a, Nz, [Nx, Ny]} − [Nx, {a, Nz, Ny}] + [Ny, {a, Nz, Nx}]
= 0,

DN(x, y)θN(x1, x2)a− θN(x1, x2)DN(x, y)a− θN({x, y, x1}N , x2)a− θN(x1, {x, y, x2}N)a

= {Nx, Ny, {a, Nx1, Nx2}} − {{Nx, Ny, a}, Nx1, Nx2} − {a, {Nx, Ny, Nx1}, Nx2}
− {a, Nx1, {Nx, Ny, Nx2}}

= 0,

θN(x1, {x, y, z}N)a− θN(y, z)θN(x1, x)a + θN(x, z)θN(x1, y)a− DN(x, y)θN(x1, z)a

= {a, Nx1, {Nx, Ny, Nz}} − {{a, Nx1, Nx}, Ny, Nz}+ {{a, Nx1, Ny}, Nx, Nz}
− {Nx, Ny, {a, Nx1, Nz}}

= 0.

Therefore, we deduce that (L; ρN , DN , θN) is a representation of the deformed Lie-Yamaguti
algebra LN .

Theorem 2. Let N be a Nijenhuis operator on a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·}). Define
the map HN

1 : ∧2LN → L and HN
2 : ∧3LN → L by

HN
1 (x, y) =− N[x, y], (22)

HN
2 (x, y, z) =− N({Nx, y, z}+ {x, Ny, z}+ {x, y, Nz} − N{x, y, z}), (23)

for all x, y ∈ LN , z ∈ L. Then (HN
1 , HN

2 ) is a 2-cocycle of LN with coefficients in (L; ρN , DN , θN).
Moreover the identity map Id : L→ LN is a generalized Reynolds operator on LN with respect to
the representation (L; ρN , DN , θN).

Proof. For all x1, y1, x2, y2, z ∈ LN , by using (19)–(23), we have
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δI(HN
1 , HN

2 )(x1, y1, x2, y2)

=− ρN(x2)HN
2 (x1, y1, y2) + ρN(y2)HN

2 (x1, y1, x2) + HN
2 (x1, y1, [x2, y2]N)

+ DN(x1, y1)HN
1 (x2, y2)− HN

1 ({x1, y1, x2}N , y2)− HN
1 (x2, {x1, y1, y2}N)

=[Nx2, N({Nx1, y1, y2}+ {x1, Ny1, y2}+ {x1, y1, Ny2} − N{x1, y1, y2})]
− [Ny2, N({Nx1, y1, x2}+ {x1, Ny1, x2}+ {x1, y1, Nx2} − N{x1, y1, x2})]
− N({Nx1, y1, [x2, y2]N}+ {x1, Ny1, [x2, y2]N}+ {x1, y1, [Nx2, Ny2]} − N{x1, y1, [x2, y2]N})
− {Nx1, Ny1, N[x2, y2]}+ N[{x1, y1, x2}N , y2] + N(x2, {x1, y1, y2}N)

=0,

δI I(HN
1 , HN

2 )(x1, y1, x2, y2, z)

=− θN(y2, z)HN
2 (x1, y1, x2) + θN(x2, z)HN

2 (x1, y1, y2) + DN(x1, y1)HN
2 (x2, y2, z)

− DN(x2, y2)HN
2 (x1, y1, z)− HN

2 ({x1, y1, x2}N , y2, z)− HN
2 (x2, {x1, y1, y2}N , z)

− HN
2 (x2, y2, {x1, y1, z}N) + HN

2 (x1, y1, {x2, y2, z}N)

={N({Nx1, y1, x2}+ {x1, Ny1, x2}+ {x1, y1, Nx2} − N{x1, y1, x2}), Ny2, Nz}
− {N({Nx1, y1, y2}+ {x1, Ny1, y2}+ {x1, y1, Ny2} − N{x1, y1, y2}), Nx2, Nz}
− {Nx1, Ny1, N({Nx2, y2, z}+ {x2, Ny2, z}+ {x2, y2, Nz} − N{x2, y2, z})}
+ {Nx2, Ny2, N({Nx1, y1, z}+ {x1, Ny1, z}+ {x1, y1, Nz} − N{x1, y1, z})}
+ N({{Nx1, Ny1, Nx2}, y2, z}+ {{x1, y1, x2}N , Ny2, z}+ {{x1, y1, x2}N , y2, Nz})
+ N({Nx2, {x1, y1, y2}N , z}+ {x2, {Nx1, Ny1, Ny2}, z}+ {x2, {x1, y1, y2}N , Nz})
+ N({Nx2, y2, {x1, y1, z}N}+ {x2, Ny2, {x1, y1, z}N}+ {x2, y2, {Nx1, Ny1, Nz}})
− N2{{x1, y1, x2}N , y2, z} − N2{x2, {x1, y1, y2}N , z} − N2{x2, y2, {x1, y1, z}N}
− N({Nx1, y1, {x2, y2, z}N}+ {x1, Ny1, {x2, y2, z}N}+ {x1, y1, {Nx2, Ny2, Nz}})
+ N2{x1, y1, {x2, y2, z}N}

=0.

Thus, we deduce that (HN
1 , HN

2 ) is a 2-cocycle of LN with coefficients in (L; ρN , DN , θN).
Moreover, by (21)–(23), it is easy to prove that (3) and (4) are equivalent to (19) and (20),
which implies that the identity map Id : L→ LN is a generalized Reynolds operator on LN
with respect to the representation (L; ρN , DN , θN).

Next, we introduce the notion of a Reynolds operator on a Lie-Yamaguti algebra,
which turns out to be a special generalized Reynolds operator.

Definition 8. Let (L, [·, ·], {·, ·, ·}) be a Lie-Yamaguti algebra. A linear map R : L→ L is called a
Reynolds operator if

[Rx, Ry] =R([Rx, y] + [x, Ry]− [Rx, Ry]), (24)

{Rx, Ry, Rz} =R({Rx, Ry, z}+ {x, Ry, Rz}+ {Rx, y, Rz} − {Rx, Ry, Rz}), (25)

for all x, y, z ∈ L. Moreover, a Lie-Yamaguti algebra L with a Reynolds operator R is called a
Reynolds Lie-Yamaguti algebra. We denote it by (L, [·, ·], {·, ·, ·}, R).

The following results give the relation between Reynolds operators and generalized
Reynolds operators on Lie-Yamaguti algebras.
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Proposition 11. Let R be a Reynolds operator on a Lie-Yamaguti algebra (L, [·, ·], {·, ·, ·}). Then
R is a generalized Reynolds operator on L with respect to the adjoint representation (L; ad,L,R),
where (H1, H2) ∈ C2

LY(L, L) is defined by

H1(x, y) = −[x, y], H2(x, y, z) = −{x, y, z}, ∀x, y, z ∈ L.

Proof. Let (L, [·, ·], {·, ·, ·}) be a Lie-Yamaguti algebra. By (1) and (2), the Lie-Yamaguti
bracket ([·, ·], {·, ·, ·}) is a 2- cocycle with coefficients in the adjoint representation (L; ad,L,R),
which implies that R is a generalized Reynolds operator on L with respect to the adjoint
representation.

Proposition 12. Let (L, [·, ·], {·, ·, ·}, R) be a Reynolds Lie-Yamaguti algebra. Define multiplica-
tions [·, ·]R and {·, ·, ·}R on L by

[x, y]R =[Rx, y] + [x, Ry]− [Rx, Ry], (26)

{x, y, z}R ={Rx, Ry, z}+ {x, Ry, Rz}+ {Rx, y, Rz} − {Rx, Ry, Rz}, (27)

for all x, y, z ∈ L. Then (L, [·, ·]R, {·, ·, ·}R, R) is a Reynolds Lie-Yamaguti algebra. Moreover, R is
a homomorphism from the Lie-Yamaguti algebra (L, [·, ·]R, {·, ·, ·}R) to (L, [·, ·], {·, ·, ·}).

Proof. By Propositions 3 and 11, (L, [·, ·]R, {·, ·, ·}R) is a Lie-Yamaguti algebra and R is a
homomorphism from the Lie-Yamaguti algebra (L, [·, ·]R, {·, ·, ·}R) to (L, [·, ·], {·, ·, ·}). For
x, y, z ∈ L, by (24)–(27), we have

[Rx, Ry]R =[R2x, Ry] + [Rx, R2y]− [R2x, R2y]

=R([Rx, y]R + [x, Ry]R − [Rx, Ry]R),

{Rx, Ry, Rz}R ={R2x, R2y, Rz}+ {Rx, R2y, R2z}+ {R2x, Ry, R2z} − {R2x, R2y, R2z}
=R({Rx, Ry, z}R + {x, Ry, Rz}R + {Rx, y, Rz}R − {Rx, Ry, Rz}R),

which implies that R is a Reynolds operator on the Lie-Yamaguti algebra (L, [·, ·]R, {·, ·, ·}R).

7. Conclusions

In the current study, the cohomology theory of generalized Reynolds operators on Lie-
Yamaguti algebras is proposed to control the formal deformations of generalized Reynolds
operators on Lie-Yamaguti algebras. More precisely, the notion of generalized Reynolds
operators on Lie-Yamaguti algebras is introduced, and some new constructions are given.
Then, the cohomology theory of generalized Reynolds operators on Lie-Yamaguti algebras
is established. As an application, infinitesimals of formal deformations are classified by
the first cohomology group. Finally, we show that a Nijenhuis operator on a Lie-Yamaguti
algebra gives rise to a generalized Reynolds operator on a Lie-Yamaguti algebra and
introduce the notion of a Reynolds operator on a Lie-Yamaguti algebra, which turns out to
be a special generalized Reynolds operator. In particular, we obtain generalized Reynolds
operators and Reynolds operators on a Lie triple system when a Lie-Yamaguti algebra
reduces to a Lie triple system.
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