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Abstract: A system of initially immobile spherical liquid drops placed in another liquid in the field
of a propagating acoustic wave is considered. The acoustic radiation force acting on each spherical
liquid drop is determined as the function of the incident wave frequency, making use of the solution
of a problem of plane harmonic wave scattering on a system of two spherical bodies. The problem is
solved by the variable separation method. To satisfy the boundary conditions on spherical surfaces,
the expansion of the incident and reflected wave potentials over the spherical wave functions are
used. Required constants in the solution are calculated from an infinite system of the algebraic
equations, which is solved by a truncation method. It is established that the value of the acoustic
radiation force affecting each liquid drop depends significantly on the densities, speed of sound
in the outer and internal liquid, as well as on the distance between drops. It is also found that the
acoustic radiation force has the same or opposite direction as the incident sound wave depending on
its frequency. As result, at different frequencies, the liquid drops can start moving towards or further
away from each other.

Keywords: acoustic radiation force; spherical liquid drop; ideal compressible fluid; plane harmonic
wave; sound field

MSC: 76Q05

1. Introduction

A harmonic wave propagating in the acoustic medium causes several remarkable
effects. The periodic acoustic pressure and constant component of sound radiation are
among them. The latter one is usually referred to as acoustic radiation pressure and is
averaged over the incident wave period and over the surface of an object placed in the
medium results in the acoustic radiation force (ARF) (see, for example [1–3]). From a
mechanical point of view, the ARF is generated if an average impulse transferred by the
wave over the correspondent period of oscillation varies in some volume of medium due
to the presence of a foreign body located there.

The phenomenon mentioned is of great interest for technological applications either
already developed or potentially valuable. This has resulted in a large number of studies
in the field (see, for instance [3–5]). It is worth mentioning here that the researchers
applied several techniques to estimate the ARF. The range of methods comprise the exact
analytical solution and its approximations (see, for instance [3,6,7]) as well as a vast variety
of numerical simulations (see [8–10]).

Various aspects of the ARF phenomenon were addressed in the scientific works over
the decades: type of wave, properties of bearing medium, geometry and properties of sub-
merged body, and the boundedness of the region filled with the acoustic medium, to name
a few. For instance, generation of the acoustic radiation force by the plane traveling wave,
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plane standing wave, double orthogonal standing waves, acoustic beams with arbitrary
wavefronts, and Bessel helicoidal beam were studied in several publications [5,7,9–11].
Due to practical applications, the ideal and viscous fluids were usually considered as the
acoustic bearing medium [4,5]. Obviously, the complex geometry of the submerged body
(solid, liquid, or gaseous), complicated functions describing viscous properties, effects of
acoustic streaming, etc., demand the application of sophisticated numerical techniques to
attack the problem (see [8–10,12] for details). Nevertheless, usage of analytical approaches
has significant advantage when investigating cylindrical and spherical bodies located in
the infinite medium and has proved to be applicable to study ARF even for the bodies
placed in the vicinity of a flat wall or free boundary [6].

As well as being of theoretical interest, the effect of the acoustic radiation force acting
upon the body in the acoustic field finds its industrially valuable application in various
technologies [1,2,13]. Remote manipulation and control (or suspension) of the rigid particle,
drop of liquid, or bubble of gas placed in the acoustic medium, non-crucible glass fusing,
multi-components casting, preserving the cloud of the object at the targeted location
and acoustic levitation, facilitation of coagulation and degassing processes of the liquids,
ultrasonic cleaning, as well as crystal growing, etc., are among both well-established and
prospective fields of ARF application [13].

Another level of complexity for the problem under consideration is introduced by the
oscillatory and wave processes that occur in the liquid containing foreign solid, liquid, or
gaseous inclusions [14,15]. The interactions of particles, drops of liquid, and gas bubbles
in the acoustic field, acoustic levitation, numerous cavitation effects in fuel pipelines and
various propulsion systems, as well as bubble generation in a liquid by fast moving solids,
are among them. The special significance of the ARF study is obvious for the medicine
industry and health care. Being injected into the circulatory system of the living organisms,
the microscopic solid particles, liquid drops, or gaseous bubbles provide great opportunities
for morphology investigation and for visualization of a variety of processes in the organs.
This approach can also be used for drug delivery applications to ensure the prescribed drug
doses with specific localization at the targeted organ [16].

As mentioned above, the ARF affecting an object submerged in a liquid is determined
as a time-averaged value of the acoustic pressure over the object surface. Thus, the Lagrange
reference frame is more suitable to derive the problem statement for this case. To apply this
approach, the acoustic pressure in the vicinity of the object considered has to be calculated
with accuracy up to the second order of magnitude. It means the deviation of the acoustic
pressure from the harmonic law has to be accounted for in the region around the object [1–3].
It is obvious that the linear approximation of the pressure results in the zero value of the
ARF. It is caused by the fact the pressure is a periodic function of time, and being averaged
over the wave period yields zero. For details, see [17], for example. Therefore, the second
order terms have to be preserved in the wave equation to provide a reliable estimation
of the ARF. In other words, the second order approximation has to be used. Fortunately,
as was shown by L.V.King in his pioneering work [3], to address the issue, the velocity
field potential derived as the solution of a linear problem of an incident wave scattering
on an object placed in an acoustic medium can be made use of. The remarkable result
of [3] allows one to evaluate the acoustic pressure with accuracy to the quadratic terms,
providing that the velocity field potential obtained from a linear diffraction problem is used
in the present paper as well.

The acoustic radiation force can be used as a quantity to estimate the level of interaction
between the wave and the object placed in the acoustic field. As mentioned above, to
characterize this interaction qualitatively, the sound pressure averaged over the field
oscillation period and over the object surface has to be evaluated. Theoretical examination
of the ARF effect on the system of solid particles, liquid drops, or gaseous bubble is a
complicated problem [18,19]. It is necessary to account for a set of instances to attack it
properly: the shape of the object, its nature (solid, liquid, or gaseous), its size with regard to
the wave length, the properties of a bearing liquid (or gaseous) medium, wave scattering
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on the other particles, and their mutual effect (if system of solids, drops, or bubbles are
under investigation), etc. Some of these aspects were already addressed in the publications
devoted to the estimation on ARF for a case of solitary rigid, liquid, or gaseous particles
located in an infinite liquid space or in the vicinity of the plane boundary of a liquid (see
papers [5,6,16]).

In the present paper, the case of two spherical liquid drops placed in an ideal com-
pressible liquid is under investigation. The plane acoustic wave propagates along the line
passing through the centers of the spherical drops. The purpose of the work is to study the
interaction regularities between liquid spherical particles and to estimate the ARF induced
by the acoustic wave irradiation of the system of the drops. The technique of the problem
solution is elaborated. It comprises two basic steps according to the version of approach
developed in the paper by Guz and Zhuk [5]. At the first step, solution to the problem of the
incident wave scattering on the system of two liquid particles (drops) is addressed. Once
the problem is solved and the velocity field potential is derived, the main features of the
two-drop system and acoustic wave can be studied. At the second step, the hydrodynamic
forces experienced by each of the particles are calculated. Then, the ARFs are obtained by
the time-averaging over the period of the primary wave oscillation. The results of the ARF
case studies for the variety of liquid media and spheres’ liquid properties, as well as for
different geometrical parameters of the system are presented. Conclusions on the main
regularities for ARF affecting both liquid spherical particles are drawn.

2. The Problem of the Velocity Potential Determination

To clarify the problem statement even further, it is worth mentioning here that the
velocity of the translational movement of each spherical particle is supposed to be negligibly
small in comparison to the velocity of the incident acoustic wave. Therefore, the particle
displacement is considered to be quite small. In fact, the solution of the problem is derived
from a system of two immobile suspended liquid spherical drops in the present paper
(see Figure 1). Accounting for the translational motion of the target results in the non-
linear problem formulation and essentially complicates the solution procedure. The linear
problem formulation chosen provides a relatively straightforward way to derive the exact
analytical solution for the velocity potential determination while accounting for the incident
wave scattering on the spheres. As such, the boundary conditions on both spherical surfaces
are satisfied exactly.
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Figure 1. Two liquid drops placed in an ideal compressible liquid and affected by the acoustic field.
The plane acoustic wave propagates along the line passing through the centers of the spherical drops
in the direction O1O2.

The linear approximation problem statement for the first step mentioned above, i.e.,
the problem of determination of the fluid velocity potential field in a tube is described
below. The procedure adopted for this aim corresponds to the approach developed in other
papers [5,15]. It is assumed that an ideal compressible fluid of density ρ0 fills the outer
space continuously. The velocity of the plane sound wave propagating in the liquid is a0.
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Two spherical drops of another ideal liquid are placed in the medium. The distance between
the drops’ centers is denoted with l. Furthermore, the number 1 is always assigned to
the sphere which is placed first on the way of propagating acoustic wave, while number
2 is assigned to the second drop in a row (see Figure 1). Let us denote the density of
the liquid of the first and second drop as ρ1 and ρ2, respectively. Notations a1 and a2
are used for the speed of sound in the liquid of the first and second drops, respectively,
while R1 and R2 are the drop radii, respectively. The main coordinate system is chosen
to be the rectangular Cartesian coordinate system Oxyz with the origin located in the
middle between the drop centers. Two other Cartesian rectangular Osxsyszs and spherical
Osrsθs ϕs, s = 1, 2 coordinate systems attached to the spherical drops are introduced in such
a manner that their origins Os coincide with the drop centers and the axis Ozs runs along
the line that passing through the sphere centers (see Figure 1). Let us apply the model of
compressible barotropic liquid to describe the response of both the liquid medium and the
drops. Conditions of a potential flow are assumed to be valid to determine the medium’s
effect on the drops.

In this configuration, the steady wave process is under consideration. The incident
plane harmonic wave propagating in a positive direction of the Oz axis is governed by a
potential Φi. Let us denote the potentials of the waves scattered on the spherical drops as
Φ(s)

d (s = 1, 2). The general potential of the velocity field Φ is, therefore, the combination of
the abovementioned potentials. Then, the pressure p in the bearing liquid (medium) can be
determined by making use of the potential Φ, with accuracy up to the squares of the Mach
number according to the following formula [3,5]:

p = −ρ0
∂Φ
∂t
− 1

2
ρ0(g r a d Φ)2 +

ρ0

2a2
0

(
∂ Φ
∂ t

)2
, (1)

where potential Φ is the solution of the following wave equation:

∆Φ− 1
a2

0

∂2Φ
∂ t2 = 0. (2)

Then, determination of the ARF acting upon the target in the liquid is reduced to the
time-averaging of the hydrodynamic force, as follows:

F = −
x

S

pNdS, (3)

where N is a vector of a unit normal to the external surface S of the target.
The linearity of the Equation (2) allows one to apply the superposition principle for the

determination of the velocity field in the case of the system of objects placed in the liquid
and, therefore, to determine the solution to the problem of the interaction of the bodies.

Let the incident wave potential (the solution of the Equation (2)) be as follows:

Φi = A exp[i(kz−ω t)], (4)

where A is the amplitude; k = ω/a0 is the wave number; ω is the angular frequency; t is
the time. An incident wave with potential Φi propagates along the positive direction of the
Oz axis.

As mentioned above, the wave field in the bearing liquid (medium) is formed by the
interference of the incident wave (4) and waves scattered on the spherical drops, as follows:

Φ = Φi +
2

∑
s=1

Φ(s)
d . (5)
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Furthermore, index s (either subscript or superscript) is used to denote the quantity
related to the drop with number s.

From the mathematical point of view, determination of the potentials (5) of the station-
ary wave field in a liquid is reduced to the solution of a linear problem of incident wave
(4) scattering on the liquid spherical drops over the multiply connected region, i.e., the
problem is reduced to finding solution to the linear differential Equation (2) that meets the
boundary conditions on the surfaces of spherical drops.

The boundary conditions demand continuity of the radial components of velocity
in the outer and internal liquids on the drop surfaces, as well as continuity of pressure
through the surfaces. They can be written in the following form:

v(s)rs

∣∣∣
rs=Rs

= v(s)rs

∣∣∣
rs=Rs

, p(s)
∣∣∣
rs=Rs

= p(s)
∣∣∣
rs=Rs

; s = 1, 2. (6)

Let us emphasize here that potentials of the waves scattered on the spherical drops
have to meet the Sommerfeld radiation condition for infinitely distant points. Furthermore,
the drop surface tension is not taken into account in boundary condition formulations. It is
also assumed the amplitude of the drop surface oscillations is small enough to consider the
drop radius to be constant. In Equation (6), the bar over a symbol denotes the quantities
characterizing the state of the liquid inside the corresponding drop.

3. Wave Field Potential Construction: Determination of the Acoustic Pressure

As mentioned above, the ARF affecting an object submerged in a liquid is determined
as a time-averaged value of the acoustic pressure over the object surface. Thus, the Lagrange
reference frame is more suitable to derive the problem statement for this case. To apply this
approach, the acoustic pressure in the vicinity of the object considered has to be calculated
with accuracy up to the second order of magnitude. It means that the deviation of the
acoustic pressure from the harmonic law has to be accounted for in the region around
the object [1–3]. Let us emphasize once again that a linear approximation of the radiation
pressure in the vicinity of the object yields zero ARF, which contradicts the experimental
data. Therefore, preservation of the quadratic terms in the wave equation is needed to
avoid occurrence of the zero ARFs. Evaluating the acoustic pressure with accuracy to the
quadratic terms, thus, providing the velocity field potential, is achieved by using a linear
diffraction problem in the present paper.

To construct the solution to the problem (2), let us apply the variable separation method
with respect to the local spherical coordinate systems associated with the corresponding
drop. The potential of the incident wave (1) with respect to the spherical coordinate system
Osrsθs ϕs, s = 1, 2 is as follows:

Φ(s)
i =

∞

∑
n=0

2Ae(−1)sikl/2in jn(krs)Pn(cos θs)e−iωt, s = 1, 2, (7)

where jn(krs) are the spherical Bessel functions of the first kind, and Pn(cos θs) are the
orthonormalized Legendre polynomials.

The potential of the wave scattered on the sth drop, Φ(s)
d (s = 1, 2), (i.e., the solution of

Equation (2) satisfying the radiation condition for infinitely distant points) is represented
by the generalized Fourier series expansion over the spherical wave functions, as follows:

Φ(s)
d =

∞

∑
n=0

A(s)
n h(1)n (krs)Pn(cos θs)e−iωt, s = 1, 2. (8)

where h(1)n (krs) is the spherical Hankel function of the first kind.



Axioms 2023, 12, 940 6 of 14

The potential Ψ(s), s = 1, 2, of the wave field in the liquid inside the corresponding
spherical drop (which is solution of Equation (2) that meet the boundedness condition) can
be written as follows:

Ψ(s) =
∞

∑
n=0

A(s)
n jn

(
ksrs

)
Pn(cos θs)e−iωt, s = 1, 2. (9)

To find the expansion coefficients A(s)
n and A(s)

n , s = 1, 2, in expressions (8) and (9),
the boundary conditions (6) on the spherical surfaces are used. Therefore, the potential
(5) of the acoustic field in the outer liquid should be rewritten with respect to each local
spherical coordinate system. The addition theorems for spherical wave functions have to
be implemented to realize it. As a result, the following expression can be derived:

Φ(s) =
∞

∑
n=0

[
2Ae(−1)skl/2in jn(krs) + A(s)

n h(1)n (krs) + S(s)
n jn(krs)

]
Pn(cos θs), s = 1, 2, (10)

where multiplier exp(−iωt) is omitted.
The following notations are used in (10):

S(s)
n =

∞

∑
n=0

A(s)
p Q(s,q)

0n0p
(
kRsq, θsq

)
, s, q = 1, 2; s 6= q;

Q(s,q)
0n0p

(
kRsq, θsq

)
= 2in−p

p+n

∑
σ=|p−n|

iσb(p0n0)
σ h(1)σ

(
kRsq

)
P
(
cos θsq

)
, rs < Rsq;

b(p0n0)
σ =

√
(2n + 1)(2p + 1)

2(2σ + 1)
(pn00|σ0)2;

pn00

∣∣∣∣∣σ0 =

{
(−1)σ+w/2

(w
2
)
!(w

2 − n
)
!
(w

2 − p
)
!
(w

2 − σ
)
!
×

×
[
(2σ + 1)(w− 2n)!(w− 2p)!(w− 2σ)!

(w + 1)!

] 1
2
, if w even;

pn00|σ0 = 0, if w is odd; w = n + p + σ.

Here
(

Rsq, θsq, ϕsq
)

are spherical coordinates of the pole Oq located at the sphere
center with respect to sth local spherical coordinate system, i.e., they are coordinates of
the center (pole) O2 with respect to the center (pole) O1 and vice versa. Thus, the relations
Rsq = Rqs = l are true for the particular geometry under consideration.

At the first stage of the ARF determination (i.e., to solve the linear problem of the
incident wave scattering on the spherical drops), the following formulae are used to
calculate the pressure and disturbance of liquid inside the drops:

p(s) = −ρo
∂Φ(s)

∂ t
, vrs =

∂Φ(s)

∂rs
, p(s) = −ρs

∂Ψ(s)

∂ t
, vrs =

∂Ψ(s)

∂ rs
, s = 1, 2. (11)

Making use of the boundary conditions on the drop surfaces and taking into account
the expressions for the potentials (9), (10), along with the formulae for pressure and velocity
of liquid, yields an infinite system of algebraic equations with respect to the unknown
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coefficients A(s)
n and A(s)

n , s = 1, 2 of the generalized Fourier series expansions for the
potentials Φ(s)

d and Ψ(s)
d , as follows:

kh(1)n
′(kRs)A(s)

n − ks j′n(ksRs)A(s)
n + kS(s)

n j′n(kRs)

= −2Ake(−1)sikl/2in j′n(kRs), s = 1, 2;

ρ0h(1)n (kRs)A(s)
n − ρs jn(ksRs)A(s)

n + ρ0S(s)
n jn(kRs)

= −2Aρ0e(−1)sikl/2in jn(kRs), s = 1, 2.

(12)

Let us emphasize there is no need to use the bar over symbols ks and Rs in (12).

The infinite system of algebraic Equation (12) has a unique solution
{

A(s)
n , A(s)

n

}
,

n = 0, 1, 2, . . . that can be found by the truncation method. Calculation of the coefficients

A(s)
n and A(s)

n , s = 1, 2 of truncated system (12) of the algebraic equations formally completes
the procedure of determination of the velocity field potentials for both the outer liquid
and the liquids inside the drops. The accuracy needed is achieved by the comparison of
calculation results for a consecutively growing number of equations.

4. Determination of the Acoustic Radiation Forces Acting upon Liquid Drops

The acoustic radiation force affecting two spherical drop submerged in a liquid is
equal to the hydrodynamic force acting on each spherical particle averaged over the period
of an incident wave and is, in fact, the constant component of this force. In the system
configuration under study, the hydrodynamic forces acting on each drop are directed along
the Oz axis because the liquid velocity field is symmetrical with respect to this axis. This
force can be calculated as an integral of the pressure p(s) over the correspondent drop
surface [20], as follows:

F (s)
z = −R2

s

x

S

Rep(s) cos θs sin θs dθsdϕs, s = 1, 2. (13)

where pressure p(s) is calculated by making use of Expression (1) where the real part of the
complex potential (10) has to be used. As a result, the formula can be derived as follows:

ReΦ(s) =
∞

∑
n=0

(
K(s)

n cos ωt + L(s)
n sin ωt

)
Pn(cos θs), s = 1, 2. (14)

Here, the following notations are used:

K(s)
n = B(s)

1n + C(s)
1n + D(s)

1n , L(s)
n = B(s)

2n + C(s)
2n + D(s)

2n ; .

B(s)
1n = 2A

[
cos
(

n
π

2

)
cos
(

k
l
2

)
− (−1)s sin

(
n

π

2

)
sin
(

k
l
2

)]
jn(krs); .

B(s)
2n = 2A

[
sin
(

n
π

2

)
cos
(

k
l
2

)
+ (−1)s cos

(
n

π

2

)
sin
(

k
l
2

)]
jn(krs); .

C(s)
1n = A(s)

1n jn(krs)− A(s)
2n yn(krs), C(s)

2n = A(s)
1n yn(krs) + A(s)

2n jn(krs); .

A(s)
n = ReA(s)

n + ImA(s)
n = A(s)

1n + iA(s)
2n ;

D(s)
1n = ReS(s)

n jn(krs), D(s)
2n = ImS(s)

n jn(krs).

For the sake of brevity, the symbol Re denoting the real part ReΦ(s) of the potential
Φ(s) will be omitted.
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The contribution of the first term in the righthand side of Expression (1) is zero because
it varies sinusoidally over time [5,6]. This term will, therefore, not be taken into considera-
tion for ARF calculation any further. Finally, taking account of the reasoning concerning
Equation (1), as mentioned, the expression for the pressure p takes the following form:

p(s) =
1
2

ρ0

a2
0

(
∂Φ(s)

∂t

)2

− 1
2

ρ0

(
∂Φ(s)

∂rs

)
− 1

2
ρ0

r2
s

(
∂Φ(s)

∂θs

)2

. (15)

Let us emphasize here that the pressure is calculated on the surface of the spherical
drop (i.e., rs = Rs).

Let us determine the contribution to the hydrodynamic force (13) (and, therefore, to
ARF) of each additive from Formula (15) for the pressure.

The contribution of the first term to the force F(s)
z , s = 1, 2 is governed by an integral,

as follows:

F(s)
z1 = −πρ0R2

s

a2
0

π∫
0

(
∂Φ(s)

∂t

)2

sin θs cos θsdθs, s = 1, 2. (16)

Taking into account (14) and the following condition:

1∫
−1

Pn(µ)Pm(µ)µdµ =


2(n + 1)

(2n + 1)(2n + 3)
, if m = n + 1,

0, if m 6= n + 1,
. (17)

where µ = cos θs, integration of (16) yields the expression for the contribution of the first
term from (15) to the total value of the hydrodynamic force F(s)

z , as follows:

F(s)
z1 = −4πρ0(kRs)

2
∞

∑
n=0

2(n + 1)
(2n + 1)(2n + 3)

(
K(s)

n K(s)
n+1 sin2 ωt + L(s)

n L(s)
n+1 cos2 ωt

)
. (18)

The terms resulting in nonzero values being averaged over the period are preserved
in Expression (18) only. Time-averaging of (18) over the period of the incident wave yields
the contribution of the first term from the expression for pressure (15) to the total value of
the acoustic radiation force, as follows:〈

F(s)
z1

〉
= −2πρ0(kRs)

2
∞

∑
n=0

n + 1
(2n + 1)(2n + 3)

(
K(s)

n K(s)
n+1 + L(s)

n L(s)
n+1

)
. (19)

The contribution of second term from (15) is governed by an integral, as follows:

F(s)
z2 = πρ0R2

s

π∫
0

(
∂Φ(s)

∂rs

)2

cos θs sin θsdθs, s = 1, 2. (20)

Making use of Expression (14) and Condition (17), the integration of (20) yields the
following formula for the estimation of the second term contribution to the force F(s)

z :

F(s)
z2 = 4πρ0(kRs)

2
∞

∑
n=0

n + 1
(2n + 1)(2n + 3)

(
K(s)

n
′K(s)

n+1
′ cos2 ωt + L(s)

n
′L(s)

n+1
′ sin2 ωt

)
. (21)

In Formula (21), the derivatives are taken with respect to αs = krs at rs = Rs. The
terms resulting in zero values being averaged over the period are not taken into account in
(21). Time-averaging of (21) over the period of the incident wave yields the contribution
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of the second term from the expression for pressure (15) to the total value of the ARF,
as follows:〈

F(s)
z2

〉
= 2πρ0(kRs)

2
∞

∑
n=0

n + 1
(2n + 1)(2n + 3)

(
K(s)

n
′K(s)

n+1
′ + L(s)

n
′L(s)

n+1
′
)

. (22)

The contribution of the third term from (15) is, in turn, determined by an integral,
as follows:

F(s)
z3 = πρ0

π∫
0

(
∂Φ(s)

∂θs

)2

cos θs sin θsdθs. (23)

Taking account for (14) and the following condition:

1∫
−1

P′n(µ)P′n+1(µ)µ
(

1− µ2
)

dµ =


2n(n + 1)(n + 2)
(2n + 1)(2n + 3)

, if m = n + 1

0, if m 6= n + 1
,

integration of (23) yields the expression for the contribution of the third term from (15) to
the total value of the hydrodynamic force F(s)

z , as follows:

F(s)
z3 = 4πρ0

∞

∑
n=0

n(n + 1)(n + 2)
(2n + 1)(2n + 3)

(
K(s)

n K(s)
n+1 cos2 ωt + L(s)

n L(s)
n+1 sin2 ωt

)
. (24)

The terms resulting in zero values being averaged over the period are not taken into
account in (24). Time-averaging of (21) over the period of the incident wave yields the
contribution of the third term from the expression for pressure (15) to the total value of the
ARF, as follows:〈

F(s)
z3

〉
= 2πρ0

∞

∑
n=0

n(n + 1)(n + 2)
(2n + 1)(2n + 3)

(
K(s)

n K(s)
n+1 + L(s)

n L(s)
n+1

)
. (25)

Summation of the expressions (19), (22), and (25) gives the final formula for the acoustic
radiation force affecting each of the two spherical liquid drops placed in the outer liquid
(bearing acoustic medium), provided that the acoustic wave propagates along the line
passing through the centers of the drops, as follows:〈

F(s)
z

〉
= 2πρ0

∞
∑

n=0

n + 1
(2n + 1)(2n + 3)

{(
K(s)

n K(s)
n+1 + L(s)

n L(s)
n+1

)
×

×
[
n(n + 2)− α2

s
]
+
(

K(s)
n
′K(s)

n+1
′ + L(s)

n
′L(s)

n+1
′
)

α2
s

}
, αs = kRs.

(26)

The formulae obtained through the mathematical manipulations above show that the
expressions for the ARF are of the same form as the ones derived in [20]. Nevertheless, let
us emphasize here that the expressions are similar only in appearance. In fact, they predict
absolutely different responses of the system depending on the nature of acoustic medium,
constituents, and the region under investigation.

5. Numerical Results of ARF Calculation and Discussion

As an example of the developed theory application, investigation of the acoustic radi-
ation force influencing a system consisting of the two liquid spherical drops placed in the
liquid medium in the acoustic field is carried out. Calculations are performed numerically,
making use of Equation (15) for pressure and (26) for the ARF itself. It is worth mentioning
here that ARF is of primary interest due to the technological applications mentioned in
the Introduction section. With this idea in mind, several types of bearing outer liquid
(liquid medium) and liquids filling the drops were considered. The parameters of the
incident sound wave were chosen to correspond to moderate radiated power. Dimen-
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sionless amplitude A in Expression (4) is chosen to be equal to 0.918 × 10–4 for the case
under consideration.

The calculation algorithm is organized as a two-stage procedure. At the first stage, the
determination of the velocity field potential according to Expression (5) is carried out. For

this aim, calculation of the coefficients A(s)
n and A(s)

n , s = 1, 2, from the truncated system
of the algebraic Equation (12) with account of the Expression (10), is carried out with the
preset accuracy of 10–6, which is secured by comparison of the evaluation results for the
sequentially increasing number of the equations in the truncated system. As soon as the

A(s)
n and A(s)

n are found, the absolute value of the linear hydrodynamic acoustic pressure is
calculated with making use of the expressions (8), (9), and (10).

In the second stage, the ARF itself is calculated, making use of (26).
As mentioned in the Introduction, estimation of the ARF is of interest for the techno-

logical applications listed above. The approach proposed and expressions derived allow
one to characterize the ARF without direct determination of the acoustic pressure field,
which is not of primary interest in the present paper.

In the present study, water is considered as a bearing liquid (liquid medium) for the
system of two drops. The following characteristics of the water are used: sound velocity
is a0 = 1500 m/sand density is ρ0 = 1000 kg/m3. The properties of the drop liquids and
geometrical parameters of the system will be individually indicated for each particular case.

To study the influence of the drop radii on the ARF behavior, dependencies of the
ARF on the incident wave frequency are shown in Figure 2 for two carbon tetrachloride
drops placed in water on the distance l = 50 mm between drop centers. The sound
velocity and density of the carbon tetrachloride are chosen to be equal to a = 926 m/s
and ρ = 1594 kg/m3, respectively. The radius of the first drop, R1, is always equal to
5 mm, while the radius of the second drop, R2, varies in Figure 2 (values are shown at
the corresponding curve). The ARF acting upon the first drop,

〈
F(1)

z

〉
, is shown with

dashed line, while the same quantity for the second drop,
〈

F(2)
z

〉
, is depicted with a solid

line elsewhere in the paper. Let us reiterate here that we agreed that the acoustic wave
propagates in the direction from the first drop to the second one.
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Figure 2. Dependencies of the ARF on the incident wave frequency for the system of two carbon
tetrachloride drops placed in water on the distance l = 50 mm. (a) Graphs of the ARF for the radius
of the first drop R1 = 5 mm and radius of the second drop R2 = 5, 4, 3, 2, 1 mm; (b) details of the〈

F(2)
z

〉
behavior.

Figure 2a shows that ARF acting upon the first drop is independent of the radius of the
second drop (the dashed lines coincide to the drawing accuracy). It always remains negative
for the case studies within the radius range of interest. This means that the direction of
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〈
F(1)

z

〉
is always opposite to the direction of incident wave propagation. Therefore, ARF

causes the start of drop motion towards the direction of sound wave propagation. These
results corresponds to the data obtained in [5,20].

The values and direction of
〈

F(2)
z

〉
vary depending on the incident wave frequency.

Details are shown by the solid lines in Figure 2b. Here again, the radii of the second drop
are written at the corresponding lines. It is obvious there are frequency intervals where the
direction of the

〈
F(2)

z

〉
is opposite to the

〈
F(1)

z

〉
leading to the divergence of drops (they

drift out of each other). In the other intervals where the directions are the same, the drops
start to drift unidirectionally. Figure 2 illustrates one more remarkable situation. There are
frequency values at which the ARF acting upon the second drop is equal to zero, meaning
that it remains immobile.

In contrast to Figure 2, where R1 ≥ R2, Figure 3 contains curves that illustrate the
same dependencies but for the system where the second drop radius is larger than the one
of the first drop, i.e., R1 ≤ R2. The behavior of the curves for the ARF acting upon the first
drop,

〈
F(1)

z

〉
, is quite different from the one depicted in Figure 2.
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Figure 3. Dependencies of the ARF on the incident wave frequency for the system of two carbon
tetrachloride drops placed in water on the distance l = 50 mm. Radius of the second drop R2 = 5 mm.
(a) Graphs of the ARF for radius of the first drop R1 = 5, 4, and 3 mm; (b) graphs of the ARF for
radius of the first drop R1 = 2 and 1 mm.

The value of this ARF decreases as the drop radius becomes smaller. It can be explained
by the general reduction in the drop surface and, therefore, integration over the smaller
surface leads to the lower ARF value. Nevertheless

〈
F(1)

z

〉
remains negative for all values

of geometrical parameters and frequencies investigated. The behavior of the acoustic
radiation force acting upon the second drop,

〈
F(2)

z

〉
, is qualitatively the same as in Figure 2.

Therefore, one can again control the drop’s movement by varying the frequency of the
incident wave.

The next geometrical parameter that significantly influences the ARF response is the
distance, l, between the drop centers. In Figure 4, the dependencies of

〈
F(1)

z

〉
and

〈
F(2)

z

〉
on the l are shown for several different frequencies of the incident wave for the same
system of two carbon tetrachloride drops of equal radii R1 = R2 = 5 mm placed in water.
The wave frequency is written by the correspondent curve. Analysis of the figure evidently
shows that the closer drops are located, the higher values of ARF observed. An increase in
the distance l leads to a decrease in the interaction between drops.
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Figure 4. Dependencies of the ARF on the distance, l, between the drop centers. (a) Curves for the
incident wave frequencies of 40 and 50 kHz; (b) details of the ARF acting on the second drop for
frequencies of 10, 20, 30, 40, and 50 kHz.

The following features of the ARF behavior can be noted: at all frequencies investi-
gated, the value of ARF acting upon the first drop remains negative, causing the start of the
drop shift in the direction which is opposite to the direction of incident wave propagation
(see Figure 4a). The direction of the

〈
F(2)

z

〉
varies depending on the distance between

the drop centers. Once again, it can be directed either towards the first drop or away
from it, and there are specific values of the frequency providing zero values of the

〈
F(2)

z

〉
.

This means that the second drop remains immobile and doesn0t start to move under the
conditions mentioned.

Figure 5 illustrates the influence of the physical characteristics of the liquids involved
(both the outer liquid medium and the liquid inside the drops) on the acoustic radiation
forces. Here, typical results for the system under investigation are shown. The outer
liquid is always water, while drops are considered to be ones of the same liquid (carbon
tetrachloride, benzene, or mercury) possessing the range of densities and speeds of sound
in them.
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Figure 5. Example of the liquid properties’ effect on the ARF behavior for two drops of carbon
tetrachloride, benzene, and mercury placed in water. (a) Dependencies of the ARF on the incident
wave frequency; (b) ARF dependencies on the distance between drop centers.
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In Figure 5a, dependencies of the ARF on the incident wave frequency are shown for
two drops of carbon tetrachloride, benzene (a = 1298 m/s and ρ = 870 kg/m3), and mercury
(a = 1450 m/s and ρ = 13593 kg/m3). The drops are of the same radii, i.e., R1 = R2 = 5 mm.
The distance between centers is l = 30 mm. The liquid of the drops is labeled by the
corresponding curve.

It can be seen that the density of the inner liquid affects ARF, acting on the first drop
significantly. A denser liquid (mercury) causes changes even in the ARF direction. This
corresponds to the case of a rigid particle placed in an ideal compressible liquid [5]. The〈

F(2)
z

〉
force changes its sign in comparison to the cases of benzene and carbon tetrachloride

as well. The ARF acting on the second drop is of variable direction depending on the
incident wave frequency, as was mentioned for Figure 2. The frequencies providing zero
value

〈
F(2)

z

〉
= 0 occurred as well.

The same tendency for more dense liquids is preserved for the ARF dependencies
on the distance between drop centers presented in Figure 5b for the same system as in
Figure 5a for incident wave frequency 40 kHz. The values of the ARF are of the opposite
sign and are much higher than for the less dense liquids. In all the cases, the behavior is
also influenced by the speed of sound in the liquid. The variations in the direction of the
ARF acting upon the second drop are also observed.

6. Conclusions

The case of two immobile spherical liquid drops placed in an ideal compressible fluid
in the field of an acoustic wave propagating along the line passing through the drop centers
is under investigation. The approach to estimate the acoustic radiation force induced due to
acoustic pressure imposed onto the drops and the interaction between them is elaborated.

The calculation algorithm is organized as a two-stage procedure. At the first stage, the
determination of the velocity field potential is carried out. The problem is solved by the
variable separation method. To satisfy the boundary conditions on spherical surfaces, the
expansion of the incident and reflected wave potentials over the spherical wave functions
are used. Required constants in the solution are calculated from an infinite system of
algebraic equations, which is solved by a truncation method.

At the second stage, encompassing the determination of hydrodynamic forces acting
on the liquid spheres with their subsequent averaging over the suitable time interval, the
ARF itself is calculated making use of the expression derived.

The main regularities of the interaction between liquid spherical particles as well as
ARF induced by the acoustic wave irradiation of the system of the drops are studied with
the application of the proposed approach. It was found the behavior of the ARF depends
significantly on the geometrical parameters of the system, properties of the liquids involved,
and frequency of the incident wave. The possibility of controlling the drops’ movement by
varying the frequency of the incident wave for a particular setup of the system is defined.
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