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Abstract: We introduce and study a new pseudo-type «-fold symmetric bi-univalent function class
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estimated. In addition, we uncover pertinent links to previous results and give a few observations.
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1. Preliminaries

Let {¢ € C: [¢] < 1} =D, where C is the set of all complex numbers. Let .4 denote
the class of all regular functions of the type

s(g) =¢+ Y did/
j=2

)

with s(0) ='(0) =1 =0, ¢ € D and S denote the subfamily of functions € .4 which are
univalent in ®. For T > 1, the class of T-pseudo-convex functions is defined as

/ nt
= feam(HE8) 50 cenl,
the class of T-pseudo-starlike functions is given by
/ T
s focam(SE90) L o)

and the class of T-pseudo-bounded turning is introduced as

b (ced),

The class K was explored by Guney and Murugusundaramoorthy [1] and the class
ST was examined in [2]. We note that S! = S. Al-Amiri and Reade [3] presented the class
M(v) (v < 1) of functions s € A with s'(¢) # 0 in © which satisfy

RT={s€ A:R(s'(c))" >0,

W) L1 v)s'(g)) >0, (cem).
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In [4], Sukhjit Singh and Sushma Gupta gave certain criteria for univalence by proving
R(s'(¢)) > 0, whenever

m<vW+(1—y)s/(g)) >g (0<v<10<&<lgeD).

The Koebe theorem (see [5]) ensures that s(D), s € S, contains a disc of radius 1/4.
Thus, any function s admits an inverse ¢ = s~! defined by g(s(g)) = ¢, and s(g(%)) =
x, | x| <ro(s), ro(s) > 1/4,¢ € D, € D, where

§(3¢) = 5 — dpsc® + (243 — d3)5° — (5d3 — 5ddody +dy)sc* + - -- @)

Ifs € Sands~! € S, then a member s of A given by (1) is called bi-univalent in D
and the collection of such functions in ® is symbolized by ¢. For a brief study, and to know
some interesting properties of the family o, see [6]. Some subfamilies of the family ¢ that
are comparable to the well-known subfamilies of the family S have been introduced by
Tan [7], Brannan and Taha [8], and Srivastava et al. [9]. In fact, as sequels to the above
subfamilies of ¢, a number of different subfamilies of o have since then been explored by
many authors (see, for example, [10-14]). Most of these works are devoted to the study of
the Fekete-Szego issue of functions in various subfamilies of ¢.

LetN=1{1,2,3,--- }and R = (—o0, +0).

If, forx € N, s(e% g) = e%s(g), ¢ € ®, then a regular function s is called a x-fold
symmetric («-FS). The function s, defined by s(¢) = (f(¢¥))V/*, k € N, f € S, is univalent
and maps D into a x-fold symmetry region. We indicate by Sy the class of x-fold symmetric
univalent (x-FSU) functions in ®. A function s € S has the following form:

s(g) =¢+ Y dyjs1- ¢ (keNgeD). 3)
j=1

Clearly §; = S.

Similar to the idea of S, Srivastava et al. [15] investigated the class o of x-fold
symmetric bi-univalent (x-FSBU) functions. A few intriguing findings were made, including
the series

Sil(%) = 2 — dp 12+ [(1+ K)d%+1 - d2K+1]%2K+1 N
- [%(1 +K)(2+3K)d3 | — (24 3K)dy 11 + d3K+l:| AR R @)

when s € 0.

Note that the functions
B 1 1+gK 1/x B gK 1/x B /K
()= (3os(15)) st = (155) 0 ssle) = (a1 =g, -

with the corresponding inverses

27— r s\ VF e —1 o
909 = Sy ) o= (2s) s = (5]

are elements of 0. We obtain (2) from (4) on taking « = 1.

The focus on the initial coefficients of functions in some subfamilies of oy is an inter-
esting topic and this opened an area for many developments. New subfamilies of i were
introduced and examined in depth by many researchers (see, for example, [16-19]). We
mention here some recent works on this topic. Initial coefficient bounds for new subfamilies
of o, were determined in [20]. The Fekete-Szego (FS) issue |dpy,+1 — (501%1 411, 0 € R(see[21])
for certain special families of 0, was examined by Swamy et al. [22,23]; and another spe-
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cial family of oy satisfying certain subordination conditions was examined by Aldawish
et al. [24]; initial coefficients estimates for elements belonging to certain new families of oy
were obtained by Breaz and Cotirld in [25] (see [26-28]), indicating the developments in
this domain.

For functions s1 and s, regular in ©, s; is said to subordinate s;, if there is a Schwarz
function ¢ in ®, such that ¥(0) = 0, |¢(z)] < 1 and s1(z) = s2(¥(z)), z € D. This
subordination is indicated as s; < sp. If s € S, then s1(z) < s2(z) is equivalent to
$1(0) = s2(0) and s1(D) C 52(D).

Inspired by the efforts of Al-Amiri [3] and the authors of [19], we introduce a new
class By (17,v,¢), n € C* = C—-{0},0 < v < 1, and ¢(g) is a regular function, such
that R(¢(g)) > 0, ¢'(0) > 0, ¢(0) = 1, (D) is symmetric with respect to the real
axis. In Section 2, we estimate the upper bounds of |d,;1|, |daxr1| and |doxy1 — 5d%+1|
(0 € R), for functions that belong to the class By (77, v, ¢). We consider two special cases

Q _
28, (v, 1) = PL0v, (1££)7),0 < o < 1and X5 (p,v,7) = L (v, HGEE),

0 < ¢ < 1,in Section 3 and Section 4, respectively. We also identify connections to
existing results and present a few new observations.

2. The Class B;._(17,v, ¢)

Throughout this paper, s (3) = g(3) isasin (4), y € C* = C\{0},g € D,% € D
and ¢(¢) will be a regular function such that R(¢(g)) > 0, ¢'(0) > 0, ¢(0) =1, and ¢ (D)
is symmetric with respect to the real axis. An expansion of ¢(g) has the form:

@(g) = 1+ Big + Bag* + Bsg® +--- (B; > 0). (5)

Let P be the class of regular functions of the type p(¢) = 1+ p16 + pag® + p3g> + - -,
R(p(c)) > 0. A x-FS function py € Pis of the form py () = 1+ pxc* + poxc® + p3g® + - - -
(see [29]).

Let b(¢) and p(5¢) be regular in D with max{[b(¢)|, [p(>)|} <1and h(0) =0 = p(0). We
suppose that h(g) = hyeg® + hoc® + haec® + -+ and p(3¢) = pisd® + pox 3™ + pags™ +
---. Also, we assume that

[l < 1 [hoe| < 1= el [pel < 1 lpacl < 1= |pul*. (6)
After simple computations, using (5), we have
9(0(c)) = 1+ Biltxg" + (Bihax + Balig)g™ + .. @)

and
@(p(5)) = 1+ Bipxs® + (Bipac + Bapy) s + ... ®)

Definition 1. A function s € oy of the form (3) is said to be in the class B _(1,v, @) if

;(V{(gzll((?)),}r +(1=v)(s'(5)" — 1) +1 < 9(¢)

d 1/ {8 (%)}"
Sy 8 — (¢ ()" — P
(A ey —1) 1< 00,

whereg=s"1,t>1,ne€C* and 0 <v <1,

Remark 1. (i) The subclass B3_(17,0, ¢) = (11, ), and was explored in [24].
(ii) BL (17,v, ¢) = S5, (n,v, @) is the subclass of functions s € oy satisfying

UW +(1=v)s(g) - 1) +1 < ¢(g)
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and its inverse g = s~ ! satisfies

L(, Ly

(A a-nge 1) 1< o),

wherenp € C*and 0 <v < 1.

Theorem 1. If the function s given by (3) belongs to the family BS (n,v, ¢) and 5 € R, then

|dK+l| <
|171B1v/2B1 9)
VHM+x)+[NT(t=1)+(1— (1+x)7)20] (1+x)2 }y B3 —2L2By | +2L2B; |

|dzg+1\ < i
}\I/Im ;0< B < 4\,7\1\%1“)
Bilnl <1+7K _ L ) 2B} (10)
M 2 [#]B1M \{M(1+K)+[NT(T71)+(17(1+1c)1')2v](1+K)2}778%72L21232|+2L231
. 2L
B2 it
and
Bilnl 14x—26) <
M ;
|does1 — 8d7 4| < [7|2B3|x—26+1| trx—20>] (11)
H{M(1+x)+[NT(t—1)+(1—(1+x)7)2v] (1+x)2 } B3 —2L2B, | / =V
where
{M(1+x)+ [Nt(t—1)+2v(1 — (1 +x)71)](1 4+ «)*}nB; — 2L?B,
= 5 . (12)
nMBj
L=(1+x)(t(l+vk)—v), (13)
M = (t(1+42vk) —v)(1 + 2k) (14)
and
N =14 vk(2+x). (15)

Proof. Let the function s of the form (3) belong to the family B7 (7, v, ¢). Then, we have
regular functions b,p : ® — D, h(0) = p(0) = 0 satisfying

1 Vw —v S/ T _
,7< 7(0) + (1 =v)(s'(5)) 1>+1 o(b(c)), (16)
" LA )Y

L ACECDY | om o

17(” ¢ (5) + (1 =v)(8'(5)) 1>+1 @(p(5)) (17)

Using (3) in (16) and (17) we obtain:

V) VRPN B
n(v o TG 1>+1_
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1
5{de+1€K + [Mday 1+

Nt(t—1)

P (MO v - ) e fn 09

and

1
ﬁ{—de" + [ MU+ 1), = dogi1)+

(1+ KV(NT(TZ_” v (1t K)T)>d,2;+1] . } Ly (19

where L, M, and N are as in (13), (14), and (15), respectively.
Comparing (7) and (18), we obtain

Ld,1 = yBhy (20)
and
Nt(t-1
Misein + (MG vt (1 0)0) ) (0 = B+ BaB (2D
Comparing (8) and (19), we obtain
—Ldy1 = yBipx (22)
and
M((k+ )2,y = dasa) + (MG 4 v(1 = (140)7) ) (148022, 23)
= 1[B1pa« + Bopzl,
From (20) and (22), we obtain
he = —px (24)
and
223y = BR (g + ) (25)
We add (21) and (23) and then use (25) to obtain
{M(1+x)+ [Nt(t—1) + (1 = (1 4+x)7)2v](1 + x)*}yB} — 2L?By]d2
_ 2p3 (26)
=7 B1 (hZK + PZK)
By using (6) and (20) in (26) for the coefficients hy, and py,, we obtain
[{M(1+x) + [NT(t = 1) + (1 — (1 +x)7)20](1 4 &)?}Bf — 2L?Ba| 4 2L? By ] |dyc 11| @)

< 2y?B},

which implies (9).
We subtract (23) from (21) to find the bound on |da,.1]:

By (hoy — 1+x
dosr = 1 1l = pa) ( )diﬂ- (28)

2M 2
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In view of (20), (24), (28) and applying (6), we obtain

17| By 1+« 12
d < - 2
21°B}

M+ %) + [NT(r — 1) + (1 — (1 + ©)7)2v] (1 + x)2} B2 — 2L2B, | + 2L2B;

which obtains (10), the desired assessment.
From (26) and (28), for 4 € R, we obtain

i =0y = T3 (900 + 3 e+ (900) = 3 ),

nB2(xk —25+1)
{M@1+x)+ [Nt(t—1)+ (1 — (1 4+ x)7)2v](x + 1)2}yB? — 2L2B,’

() =

In view of (6), we conclude that

|77|Bl 0 < 5 < L
|d2x+1_5d;{+1|§{ 7 0 < D) <
71B1[D©)] 5 1D6)] > 3,
form which we obtain (11) with | as in (12). So the proof is completed. [
Remark 2. We obtain Corollary 1 of [24] if v = O in Theorem 1.

Choosing T = 1in ‘BJ (7, v, ¢), we have the corollary given below:

Corollary 1. Let 6 € R and let the function s given by (3) be in the family .7, (n,v, ¢). Then,

dyi| < |7|B1v/2B,
L= {0 +%) My —2vk(1+x)2} B2 —212B, |+ 212B;
|doxt1| < i
|%7B1 . 2L
", 70 < B1 < Gy

B | (1 13 27 B} By > 2t
M; 2 BiMyly[ ) [{(1+x)M;—2vk(1+x)2}yBZ—2L2By[+2L2B, * =1 = (1K) My

and .

Tt k—20+1] <]

Ml 4 1

|d2K+1 - 5d%+]‘ S B3‘K_2(5+1H’7‘2

(DM —2ue(x 12} —2lEy] ¢ K~ 20+ 2 T,

where
I = {(1+x)M; —2vk(1 +x)?}yyB2 — 2L2B,
M; B2y ’
Li=0+x)((xk—1)v+1) (30)

and

My = (1+2x)((2x — 1)v +1), (31)

Remark 3. If v = 0and y = 1 in Corollary 1 are allowed, then the first and second theorems of
Tang et al. [19] are obtained.

Choosing ¥ = 1 in Theorem 1, we have
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Corollary 2. If s € Bg, (17, v, ¢) is given by (1) and 6 € R, then

|dy| < VIR
= VHM+2(Not(t—1)+2v(1-27) ) }y B3 —L3Bo |+ L3B; .
[n1By
|d3| S L2 233 L2
B, {My+2(Nyt(t—1)+2v(1— 21))}1732 3B, 1138, 1 = TG
and |3
L ;11— ‘5| <)
ds —od3| < { M2 283115
{My+2(Npt(T— 1)+21/(1 —21))}yB2— LZB2\’ = J2
where
_ {Mz+2(Not(t —1) +2v(1 — 27)) }yB — LZB,
N ﬂMzB% !
Ly=2((1+v)T~v), (32)
My =3((1+2v)T —v) (33)
and
N, =3v+1. (34)

Setting 7 = T = 1 in Corollary 2, we obtain the following.

Corollary 3. Ifs € ‘13},1 (1,v,¢) is given by (1) and 6 € R, then

By\/By
< 1 1
2] < VI 3;/ )B2—4B, | +4B;
P
ds| < { 30D . 0k o)
3 B i (1 _ 4 ) By B, > 4
3v+1) 3(v+1)By ) [(3—v)B2— 4BZ|+4Bl’ L= 30u+1)’
and
By 11— M
\d Y | 3(v+1) S0l < 3(v+1)B?
3 B3|1-9] 1-4 > (3—v)B2—4B,
[EE=TAE > |

Remark 4. When v = 0 is selected in Corollary 3, we obtain Corollaries 1 and 4 of Tang
et al. [19] (also see [30]).

3. The Class Q;K (n,v,0)

Let p(g) = 1+20¢+ 2Q2g2 4= ( %) ‘ in Definition 1. Then, we have the subclass
of all s € oy satisfying

org |+ (A ey -1) +1) | < G

and

arg[; (VW +(1-v)(g () - 1) +1} ’ <%
whereg =s71,0 <0< 1,7

1 € C,7t > 1,and 0 < v < 1. We denote this class by
2, (1,v,0) = P, On,v, (75



Axioms 2023, 12,953 80of 13

Remark 5. (i) The family Qf (1,0,0) = %;._(1,0), and was explored in [24], where n € C*,
T>1land 0 <o <1
i) QL (11,v,0) = Do (1, v, 0) is the subfamily of all s € o satisfying

arg B <1/ (gs’l((g)))/ +(1-v)s'(g) — 1> + 1] ‘ < %

and its inverse g = s~ ! satisfies

arg[; (V(%gg/,(if)))/ +(1—v)g () — 1) + 1] ‘ <%

where0 < 0 <1, €C and 0 <v <1

Taking ¢(g) = (%) ® in Theorem 1, we obtain

Corollary 4. If the function s given by (3) belongs to the family € QF (17,v,0) and 6 € R, then

20|

<
(i ] < Vol IM(+50)+[Nt(t—1)+(1— (1+x)7)2v] (14++) 2}y —L2[+L2”
|d2x-71‘| < 2
2oyl : 2
ol L %y : L
™ T (1 K QMM\) M N =+ (= (R (o =2 € = MO+l
and
20l k=26 +1] < J
M ’ >
|does1 — 6dy 4| < 20|x—26+1|[? Se—26+1] >
(RS Ve Co V) e G oy e T 2 =
where

= {M(1+x)+[Nt(t—1)+ (1 — (1 +x)7)2v](1 + %)%}y — L?
3 = 77M 7
L, M, and N are as in (13), (14), and (15), respectively.

Remark 6. For v = 0 in Corollary 4, we obtain Corollary 4 in [24].
Choosing T = 1in Qf (7, v, ¢), we obtain the corollary given below:

Corollary 5. If the function s given by (3) belongs to the family Dy, (17,v,0) and 6 € R, then

|dei1] < 20|
" - \/Q‘{Ml(1+K)—2W<(1+K)2}17_L%|+L%’
ldogs1]| < 2
e : Ly
" 0 <@ < mrn
20l7| +(14+x— L% 202,12 . L%
. oMy ) oMy (1) —2u (12l + 127 € = THFRM ]
and
20ly| . 0511
2 M S k=241 <4
[d2e1 = 0| < 20| —20-+1|y|* lk—204+1| >
[{M; (1) —2vk(x+1)23y—L2] 7 > Ja,
where

Ja=

{My(14x) —2vk(1+x)?}yy — L2
My ’
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L1 and M are as in (30) and (31), respectively.
Corollary 4 yields the following if x = 1:

Corollary 6. If s € QF, (17,v, 0) is given by (1) and § € R, then

\dy| < 2J17]e
- \/g\{2M2+4(N2T(T—1)+2v(1—27))}17—L%\+L%'
2Jnlo L5
M, 0 <e<ahin
4] < 2nle | (o L3 270 L3
My loh; ol{2My+4(Npt(t—1)+2v(1—27)) J— BHB’Q—ZMMQ
and -
e -6 < Js
|d3 — dd5] < 205ol1-5
l171°el | .|1_5|>]
[{2My+4(Nyt(t—1)+2v(1-27)) }y—L3] ’ = J5
where

{2Ms +4(Not(T — 1) +2v(1 — 27)) }5y — L3
217M2 !

Js =

Ly, My, and N, are as in (32), (33), and (34), respectively.
Corollary 6 would yield the following if 7 = 7 = 1.

Corollary 7. If the function s of the form (1) € D}Tl (1,v, @) and § € R, then

<2
‘d2| - Q(l—v)+2’
2@
$0<0< 555

2 o 2
3(v+1) + (1 - 3Q(v+1)) o072 ¢ Z 31y

and

=l 5] >

20 .
|d3 _ (Sd | 3(V+1) 4 | 5| < 3(V+1)
3 v+l)

Remark 7. Letting v = 0 in Corollary 7, we obtain Corollary 2 of Tang et al. [19]. The estimate
obtained here for |d3| is more accurate when compared to that in Theorem 2 of Srivastava et al. [9].

4. The Class X7 (#,v,¢)

o) =1+21—-¢)g+2(1—¢)g?+ -+ = % in Definition 1, then we have
the subset of all s € 0y satisfying
{(e'(0)'} e 1
[ (A 1oy -1) 1 +1] ¢
" (g () 1
xg (3 B ioowe 1)1
%[(v 70 +(1-v)(g' (%) 1)17 +1} > ¢,

where ¢ = st ,7 € CL0<¢<1t>1and 0 < v < 1. We denote this set by
X5, (1,v,8) = g On,v, (G2,
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Remark 8. (i). The family X7 _(1,0,8) = &5 (n,¢), T > 1,0 < ¢ < 1, and was studied in [24].
(ii). Xt (n,v,&) = Fo,(n,v,8) is a set of all s € o satisfying

i)%[(v(gssll((gg)))/ —l—(l—v)s’(g)—l)é—l—l} > ¢
and its inverse g = s~ ! satisfies
N ) NENY |
3 (vEEE g 1) 41| ¢

wherenn € C*,0< ¢ < 1,and0 <v <1,

Allowing ¢(g) = %, 0 < & < 1, in Theorem 1, we obtain
Corollary 8. Let the function s of the form (3) belong to the class X5 _(1,v,&)and 6 € R. Then,

(1-2)2[y]

|d;<+l| S 7
VIO + )M+ 1 +x)2[Nt(t—1)+ (1 - (1+x)1)2v]}(1 - &)y — L2| + L2

|d2K+1 ‘ <

(1-8)2|n| . 12
5 i 1= ey <6 <1
(-2l 2 20127y

st (1 = i) O MANT (e D)+ (1= (L0 2] (T H =8~ 12

. _ L
0= 6= 1= mgmy

and

(1-5)2[n| ; |K—2(5—|—1‘ < ]6

|dax1 = 0dy | < " 2(1-8)|[*[x—26+1] Sk —20+1] >
MmN D a-(rooalrra—gr—r <~ 20+ 1 2 e

where

{A+x)M+ (1+x)2[Nt(t—1)+ (1 — (1 +x)71)2v]}(1 — &)y — L2
M(1-¢)y '

L, M, and N are as in (13), (14), and (15), respectively.

]6_’

Remark 9. We obtain Corollary 7 of Aldawish et al. [24] if v = 0 in Corollary 8. In addition, we
obtain Corollary 11 of Swamy et al. [22] whenn = T = 1.

Corollary 9. Let the function s of the form (3) belong to the class 7 (1,v,¢) and 6 € R. Then,

(=9)2[y|

<
‘dK+1| - \/\{(1+K)M172vx(1+x)2}(17§)177L%\+L%,
|dag 1] < .
(1-¢)2[n] . L
, 1= g <6 <1
(1-¢)2[n] _ L 2(1-¢)%[y
M, + (1 tx (1—§)M1|17) ‘{(1+K)M1—2VK(1+K)2}17(1—§)—L%|+L%
LZ
0= &< 1= gy
and
2[7|(1-¢) ; |K—25+1| < ]7

Sk —204+1] > ]y,

M
| a1 — O] < ' 21— k—26+1]
{(1+x) My —2vk (14x)2} (1-8)y— L3
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where

Jr = {(1+K)M1—2vK(1+K)2}(1_§),7_L%
' M;(1—-8)n ’

Ly and My are as in (30) and (31), respectively.

If we let x = 1 in Corollary 8, then we have

Corollary 10. Let the function s of the form (1) belong to the class X, (n,v,) and 6 € R. Then,

2(1=5) ]
42| < VIH{2My 4 (N T (1= 1) +20(1-27)) } (18— L3+ L3

2(1;/?2”7“ 21— 2]\/[1‘2|,7| < g <1
ds] < § 200 (2 £ ) 21-2)%)y?
- 2

(A=0)Malyl ) [{2Ma+4(NT(t—1)+2v(1-21)) }(1-&)y—L3|-+L3
2
L0<E<1-— ZNZW

and

2(1-8)*|n|*[1-4| .
[{(2Ma+4(Nyt(t—1)+2v(1—27)) J(1-&)n—L13] ’ 13| >Js,

2(1-8)[n| 11— 6| <
|d3 — 6d3| < { 3(v+1) 212 | |<Js

where
{2M; +4(Nt(t — 1) +2v(1 —27))}(1 — &)y — L3
2Ma(1—-¢)n '

Ly, My, and N are as in (32), (33), and (34), respectively.

Js =

If 7 = T = 1 in Corollary 10, then we obtain

Corollary 11. Ifs € X (1,v, @) is of the form (1) and 6 € R, then

V2(1-¢
d
2| < \/| vé§l§ —2|+2
- . Butl
|d3| < (1+1/) ) 4 3(11/11/ < g < 1
1-¢ 2 2(1-¢ 3v+1
3§1+V§ + (1 - 3(1—@)(1+u)) \(1—6)%3—1/%—2\4—2’0 S S 3 11/-—::1/)’
i 2(1-¢) (1-0)@-1)-2
1%
ds — 62| < | 30 ;1= < 1 Sagamm
3 2[1-6|(1-¢)* S1—5| > 3 v)(1-8)—2
|(1-8)(3—v)-2|” - 3(176)(1+V) !

Remark 10. Putting v = 0in Corollary 11, we obtain Corollary 3 of Tang et al. [19]. The estimates
obtained here for |dy| and |d3| are more accurate when compared to those estimates of Theorem 2
in [9].

5. Conclusions

In this paper, a new class B;. (77, v, @) is explored and the upper bounds of |dy;1],
|dox11], and |doga1 — 5d2 1| 0 € R, are estimated for elements in B (77, v, ¢). Two special

cases QgK(n,v,T) B, (1, v, (Hg) ),0 < 0 <1land 3€UK(17,1/ T) = Pg (v ,% ),
0 < ¢ < 1, have been considered. In addition, we have uncovered pertinent links to
previous results and given a few observations. This paper could inspire researchers to-
wards further investigations using the (i) integro-differential operator [31], (ii) q-differential

operator [32], (iii) g-integral operator [33], and (iv) Hohlov operator [34].
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