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Abstract: This paper describes a problem of finding the contributions of multiple variables to a change
in their function. Such a problem is well known in economics, for example, in the decomposition
of a change in the mean price via the varying in time prices and volumes of multiple products.
Commonly, it is considered by the tools of index analysis, the formulae of which present rather
heuristic constructs. As shown in this work, the multivariate version of the Lagrange mean value
theorem can be seen as an equation of the function’s finite change and solved with respect to an
interior point whose value is used in the estimation of the contribution of the independent variables.
Consideration is performed on the example of the weighted mean value function, which is the main
characteristic of statistical estimation in various fields. The solution for this function can be obtained
in the closed form, which helps in the analysis of results. Numerical examples include the cases of
Simpson’s paradox, and practical applications are discussed.
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1. Introduction

This paper considers the finite change formula as an extension of the Lagrange mean
value theorem to the multivariate version [1–4]. This formula is employed for finding
a finite change in a function presented as the total of contributions from the increments
of the variables. Such problems appear in various applications where the influences of
the independent variables are investigated and their contributions to the increment of
the outcome variable are estimated. For example, characteristics of growth and rates in
economics can be described with the help of the decomposition of a change in the mean
price caused by the varying partial prices and structure of volumes of multiple products.
These problems are commonly considered in economics and social sciences via the so-called
index analysis [5–9], using rather heuristic formulae of Laspeyres, Paasche, Fisher and other
indices [10–15]. A detail review of various index forms is given in [16], and a description of
the R software packages for index analysis can be found in [17]. The line integral approach
for decomposition of a function’s change due to alternation of its different variables was
suggested by F. Divisia [18] and developed by many authors [19–23]. Variational analysis
for finding a geodesic curve with integration by this trajectory is considered in [24], the
ideal index formulae are presented in [25,26], and application to the incremental analysis
in nonlinear regression models is described in [27].

In contrast to the line integration by continuous trajectories, the Lagrange mean value
theorem in its multivariate version can be expressed as an equation of a finite change in
the outcome dependent variable. After solving this equation with respect to an interior
point, its value is employed for the estimation of the impact of the variables’ modification
onto a transformation of their function. Consideration is performed on the example of
weighted mean value function, which is one of the main characteristics in any statistical
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estimation. The solution for this function can be obtained in the closed form, useful in the
analysis of the outcome decomposition by changes in the partial values and in the structure
of the weighting, which can be particularly helpful in sensibility analysis. Numerical
examples also include special cases of the so-called Simpson’s paradox [28–32], in which
each particular value increases but their mean value decreases, or vice versa—the particular
values decline but their mean value grows. The suggested approach helps to interpret such
results via data restructuring.

The paper is organized as follows: Section 2 focuses on the Lagrange theorem for
decomposition of finite change in the function due to finite increments of its variables,
Section 3 describes the application to the decomposition of the weighted mean value
function (with Appendix A), Section 4 presents numerical illustrations, and Section 5
summarizes the results.

2. Lagrange Mean Value Theorem and Finite Change Equation

Consider a continuous function F(x, y, . . ., z) of many real variables x, y, . . ., z. Suppose
all the variables are known in the initial x0, y0, . . ., z0 and final x1, y1, . . ., z1 moments in
time (or it could be two compared states of a process, two compared objects, etc.), with the
two corresponding function values and their difference ∆F defined as follows:

∆F = F1 − F0 = F(x1, y1, . . . , z1)− F(x0, y0, . . . , z0). (1)

The aim of the problem consists of decomposition of the increment ∆F into a sum
of items representing contributions of a change in each particular variable into the total
change ∆F in the function:

∆F = ∆F(∆x) + ∆F(∆y) + . . . + ∆F(∆z). (2)

Such a decomposition (2) shows the relative impact of different variables in the
function’s alternation. The changes in variables can be parameterized as follows:

x(t) = x0 + t∆x, (3)

where ∆x = x1− x0. With the parameter t changing on the closed interval [0, 1], the variable
x transforms from the initial x0 to the final x1 state, and similarly with all other variables.

For solving the problem of decomposition (2), the Lagrange mean value theorem
can be applied. For one variable, this classic theorem can be formulated as follows: for
a continuous differentiable function F(x), there exists a point x∗ on the interval (x0, x1)
such that the tangent at this interior point x∗ equals the slope of the segment between the
endpoints, which can be written as

F′(x∗) = (F(x 1
)
− F(x0))/(x1 − x0). (4)

The relation (4) can be also rewritten as follows:

F(x 1)− F(x0) = F′(x∗)(x1 − x0), (5)

which states that the finite change in the function is defined by the derivative of the function
in the interior point F′(x∗) multiplied by the finite change in the variable x at its endpoints.

For multiple variables, the expression (5) can be generalized in the expression

∆F = F′x[x(t), . . . , z(t)]x′(t)∆t + . . . + F′z[x(t), . . . , z(t)]z′(t)∆t, (6)

in which F′x and F′z are the function’s derivatives by x or z, and similarly with the other
variables. The variables are defined in the parametric form (3) as x(t), . . ., z(t), and the
notations x′(t), . . ., z′(t) are used for the derivatives by the parameter t, so the relation
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(6) can be simplified to the so-called finite-change Formula (3) (Chapter 5), or the finite-
increment Formula (4):

∆F = F′x[x(t), . . . , z(t)]∆x + . . . + F′z[x(t), . . . , z(t)]∆z, (7)

in which ∆x is defined in (3), and similarly with other variables.
Likewise the Lagrange mean value theorem (5), the relation (7) states that for a given

finite change ∆F of the function, there exists at least one point t = t* such that the total
differential at the right-hand side (7) at this point equals this finite change in the left-hand
side (7).

Each item in (7) corresponds to a change in the function due to the change in each one
variable, which is directly related to the problem (2). For a given ∆F, the expression (7) can
be considered as an equation of a finite change and solved with respect to the unknown
interior point t*, whose value can then be used in the estimation of the contribution of each
variable’s change in the transformation of their function (2).

3. Decomposition of Weighted Mean Value

Let us apply the described approach to the problem of decomposition of the mean
value by the variables of influence. The arithmetic mean value m in a general form of the
weighted values of the variable x is presented by the well-known formula

m =
∑k

i=1 xini

∑k
i=1 ni

, (8)

in which xi are all i-th observations (i = 1, 2, . . ., k, where k is the total number of different
observations) and ni are the counts with which the values xi are observed. If all ni are equal,
the weighted mean reduces to the simple arithmetic mean value.

Depending on a specific problem, the variables x and n can have various meanings.
For example, in studies on consumer purchases, xi and ni could denote the prices and
amounts in a set of k products, and then the cost of each product is xini, and the total cost
divided by total amount in (8) defines the mean price of the product unit. For a clearer
exposition of the results, let us use these connotations, but of course, the terms can differ
for another problem. Keeping this in mind, let us consider a problem of change in the
mean price (8) for the current period of time compared with a basic period of time (denoted
by 1 and 0 subindices, respectively), when the mean price change can be presented as
the difference:

∆m = m1 −m0 =
∑k

i=1 x1in1i

∑k
i=1 n1i

− ∑k
i=1 x0in0i

∑k
i=1 n0i

. (9)

The problem is similar to that formulated in the expression (2)—how can we decom-
pose the total increment ∆m (9) of the mean price into a sum of contributions from a change
in each particular price xi and amount ni? For this aim, let us denote each variable change as

∆xi = x1i − x0i , ∆ni = n1i − n0i, (10)

and with them, the changes in variables can be parameterized similarly to (3) as follows:

xi(t) = x0i + t∆xi , ni(t) = n0i + t∆ni (11)

The parameter t varies within the interval [0, 1], and accordingly, all variables (11)
change the values from the initial to the final state. Depending on the problem, the variables
xi(t) and ni(t) can be continuous or discrete numbers, but it is possible for approximate
estimation to consider all of them as continuous variables. Then, the expression of finite
change (7) for the mean value function (8) can be written as:

∆m = ∑k
i=1

∂m
∂xi

∆xi + ∑k
i=1

∂m
∂ni

∆ni. (12)
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In (12), taking derivatives of m (8) by all 2k variables (11) yields:

∆m =
∑k

i=1 ni(t)∆xi

∑k
i=1 ni(t)

+
∑k

i=1 xi(t)∆ni

∑k
i=1 ni(t)

− ∑k
i=1 xi(t)ni(t)(
∑k

i=1 ni(t)
)2 ∑k

i=1 ∆ni. (13)

To simplify notations, let us denote the total of amounts as follows:

N0 = ∑k
i=1 n0i, N1 = ∑k

i=1 n1i , ∆N = N1 − N0 = ∑k
i=1 ∆ni. (14)

Using (11) and (14), the relation (13) can be represented in explicit dependence on the
parameter t:

∆m =
∑k

i=1 (n 0i∆xi + ∆ni∆xit)
N0 + t∆N

+
∑k

i=1 (x 0i∆ni + ∆ni∆xit)
N0 + t∆N

− ∑k
i=1 (x0in0i + (x 0i∆ni + n0i∆xi)t + ∆ni∆xit2)

(N0 + t∆N)2 ∆N. (15)

This expression presents the equation of finite change (7) for the function of mean
value (8), and it is a rational quadratic form by the parameter t. For a given value of the
function change (9), the Equation (15) can be solved for finding the internal point t*, with
which the contributions from each variable change ∆xi and ∆ni in the total change (12) can
be identified. The following result can be proved.

Theorem. The equation of finite change for the mean value function (15) has only one feasible root:

t∗ =
1

1 +
√

N1/N0
. (16)

Proof of Theorem. The proof of this theorem is given in Appendix A.

With only one solution for the internal point t* (16), the decomposition (2) for the
mean value function (8) by the variables of impact is also unique. This point identifies the
values in trajectories (11):

xi(t∗) =
x1i
√

N0 + x0i
√

N1√
N0 +

√
N1

, ni(t∗) =
n1i
√

N0 + n0i
√

N1√
N0 +

√
N1

. (17)

Let us consider the first quotient in (13), which defines the change ∆m occurring due to
the changes in the x-variables. Using the second relation (17) in the first quotient (13) yields:

∆m(∆x) =
∑k

i=1 ni(t∗)∆xi

∑k
i=1 ni(t∗)

=
∑k

i=1
(
n1i
√

N0 + n0i
√

N1
)
∆xi

∑k
i=1
(
n1i
√

N0 + n0i
√

N1
) = ∑k

i=1 wi∆xi, (18)

in which the weights wi are defined as:

wi =
n1i
√

N0 + n0i
√

N1

∑k
i=1
(
n1i
√

N0 + n0i
√

N1
) =

n1i/
√

N1 + n0i/
√

N0

∑k
i=1
(
n1i/
√

N1 + n0i
√

N0
) =

n1i/
√

N1 + n0i/
√

N0√
N1 +

√
N0

, (19)

with their total equal to one:

∑k
i=1 wi = 1. (20)

It is useful to mention that both of the relations (A11) could be equal to zero only
when n1i = n0i by all i, which corresponds to the trivial case when only x-s vary, so the
total change in the mean value is defined by the same Formula (18) with weights (19)
reduced to the values wi = n0i/N0. Thus, such a special case is also covered by the general
solution (18)–(19).
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The last two quotients (13) are related to the change in the mean value ∆m because of
the variations in the n-variables, which can be presented as follows:

∆m(∆n) = ∑k
i=1

xi(t∗)∆ni

∑k
j=1 nj(t∗)

− ∆N

∑k
i=1 ni(t∗)

·
∑k

j=1 xj(t∗)nj(t∗)

∑k
j=1 nj(t∗)

. (21)

The last quotient in (21) is the mean value (8) taken in the internal point (16):

m(t∗) =
∑k

j=1 xj(t∗)nj(t∗)

∑k
j=1 nj(t∗)

. (22)

With (22), the total change ∆m due to changes ∆n (21) is defined as the weighted sum
of the deviations of xi(t∗)∆ni from the mean m(t∗)∆N:

∆m(∆n) = ∑k
i=1

1

∑k
j=1 nj(t∗)

{xi(t∗)∆ni −m(t∗)∆N} . (23)

Using both relations (17), and also the equality

∑k
j=1

( n1j√
N1

+
n0j√

N0

)
=
√

N1 +
√

N0, (24)

we can transform (23) to the expression:

∆m(∆n) =
1√

N1 +
√

N0
∑k

i=1

(
x1i√
N1

+
x0i√
N0

)
(∆ni − wi∆N). (25)

It is the explicit form for the formulae (21) and (23), and it contains deviations of the
changes in ni from the total change in N weighted by values wj (19). In a special case of the
constant quantities by both periods of time, when ∆ni = 0 by all i, the change ∆m(∆n) in
(25) equals zero, so a change in m can occur only due to a change in the x-variables (18).
If for some quantities ∆ni 6= 0 but the total quantity is constant, ∆N = 0 , then the last
item in (25) disappears, and this expression becomes similar to the form (18). The compact
expression (23) and the explicit Formula (25) are convenient for the interpretation and
calculations as well.

Formulas (18) and (25) for an i-th item from their totals identify an impact of the
change in each particular xi and ni variables, which can be presented as

m(∆xi) =
∆xi√

N1 +
√

N0

(
n1i√
N1

+
n0i√
N0

)
, (26)

and the second one is

∆m(∆ni) =
1√

N1 +
√

N0

(
x1i√
N1

+
x0i√
N0

){
∆ni −

∆N√
N1 +

√
N0

( n1j√
N1

+
n0j√

N0

)}
, (27)

in which the weights wj are defined in (19). The sum of the contributions (26) and (27) is:

∆m(∆xi) + ∆m(∆ni) =
1√

N1+
√

N0

(
∆xi

(
n1i√
N1

+ n0i√
N0

)
+ ∆ni

(
x1i√
N1

+ x0i√
N0

))
−
√

N1−
√

N0√
N1+
√

N0

(
x1i√
N1

+ x0i√
N0

)(
n1i√
N1

+ n0i√
N0

)
= x1in1i√

N1+
√

N0

(
1√
N1

+
√

N0
N1

)
− x0in0i√

N1+
√

N0

(
1√
N0

+
√

N1
N0

)
= x1in1i

N1
− x0in0i

N0
= m1i −m0i.

(28)



Axioms 2023, 12, 962 6 of 12

Thus, the total of the i-th contributions from the variables’ change equals the change in
the i-th component of the mean value (8). Summing the relation (28) by all i-th contributions,
yields the change in the mean value (9):

∑k
i=1 ∆m(∆xi) + ∑k

i=1 ∆m(∆ni) = ∑k
i=1 m1i −∑k

i=1 m0i = ∆m, (29)

which proves that the obtained formulae for all inputs are correct. It is also useful to
note that if one of contributions is already calculated, then to facilitate the calculations,
the complementary one can be found as its difference from the mean’s change by the
relation (28). For example, when we know ∆m(∆xi), then it is possible to estimate another
contribution by the i-th product as:

∆m(∆ni) = m1i −m0i − ∆m(∆xi). (30)

Summing (30) with respect to i yields a similar relation for the total values, which can
be easily obtained from (30) by omitting the i-subindex.

In interpretation of the results, we should take into account the following features of
the obtained formulae. Each i-th contribution into the total change ∆m(∆x) (18) depends
on the signs of ∆x, so a positive change ∆xi > 0 increases the outcome ∆m, while a negative
change ∆xi < 0 diminishes the outcome. In contrast to it, an i-th contribution into the total
change ∆m(∆n) (25) because of the change ∆ni, is more complicated: a positive contribution
to the change in the mean value is given when ∆ni − wi∆N > 0, if the change ∆ni is above
the weighted total change wi∆N. Similarly, for the opposite case ∆ni − wi∆N < 0, the
contribution of the change ∆ni to the change in the mean value is negative. This complicated
impact of the quantities ni onto the mean value and its change (8)–(9) leads to the possibility
of encountering the so-called Simpson’s paradox when the increased value in each item
produces a decrease in their mean outcome, and vice versa, when a decrease in each item
yields an unexpected increase in the mean value.

The described approach based on the Lagrange mean value theorem was demonstrated
for decomposition of the mean value function. Actually, many functions can be transformed
to the structure similar to the mean value. It especially concerns the statistical functions with
summing by the data observations. For example, in the pair regression model y = a + bz,
the slope coefficient equals the quotient of the sample covariance to the variance of the
predictor, which can be transformed to the following form:

b =
∑k

i=1 (zi −mz)
(
yi −my

)
∑k

j=1
(
zj −mz

)2 = ∑k
i=1

(zi −mz)
2

∑k
j=1
(
zj −mz

)2 ·
yi −my

zi −mz
= ∑k

i=1 vibi , (31)

in which vi denotes the weights of squared deviations (zi −mz)
2 in their total, and bi

denotes the partial slope coefficients in each i-th observation. The obtained function (31)
has a structure of the weighted mean value, and its change can be studied in the described
approach. Another example of the functions of mean value structure can be found in the
readability indices, in average number of elements per word or words per sentence [33].
Changes in values of those functions can be investigated via decomposition by the factors
of influence as well.

4. Numerical Examples

To illustrate the described approach in numerical estimations, let us consider a set of
ten products sold at a market in two consecutive time periods. For example, it can be a car
dealership with ten models of trucks. The prices and quantities of the basic period x0 and
n0, and of the current period x1 and n1, are shown in the first columns of Table 1, together
with their total values given there in the last row. The total quantity diminishes from
N0 = 48 to N1 = 37, so by ∆N = −11, and the internal point (16) value equals t* = 0.532.
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Table 1. Change in the mean price (dataset-1).

Item Basic Period Current Period Mean Price Change in Variables Change in Mean Value

i x0 n0 x1 n1 m0 m1 ∆x ∆n wi ∆m(∆x) ∆m(∆n) ∆m

1 30 2 40 2 1.250 2.162 10 0 0.047 0.475 0.438 0.912
2 50 4 40 3 4.167 3.243 −10 −1 0.082 −0.823 −0.101 −0.923
3 40 3 60 5 2.500 8.108 20 2 0.096 1.929 3.679 5.608
4 70 5 80 1 7.292 2.162 10 −4 0.068 0.681 −5.811 −5.130
5 15 1 70 4 0.313 7.568 55 3 0.062 3.390 3.865 7.255
6 50 7 45 6 7.292 7.297 −5 −1 0.153 −0.767 0.773 0.006
7 60 6 30 5 7.500 4.054 −30 −1 0.130 −3.892 0.446 −3.446
8 40 4 50 4 3.333 5.405 10 0 0.095 0.949 1.123 2.072
9 80 3 40 3 5.000 3.243 −40 0 0.071 −2.847 1.091 −1.757

10 20 13 100 4 5.417 10.811 80 −9 0.195 15.581 −10.186 5.394
total 455 48 555 37 44.063 54.054 100 −11 1 14.675 −4.683 9.992

The next columns in Table 1 contain the corresponding total costs divided by the total
quantities, x0in0i/N0 and x1in1i/N1, which define the i-th items and their total m0 and m1 in
the mean prices (8)–(9) of each period. The changes in the i-th prices and quantities (10)
are given in the next two columns, and then the column wi presents the weights (19)–(20).
After this, the next two columns show the change in the mean price due to the changes (18)
in the partial prices and due to the changes (25) in the quantities. The sum of these two
columns in Table 1 yields the last column of the total change in the mean price for each i-th
product (28) and by all of them in total (29), which equals:

∆m = ∆m(∆x) + ∆m(∆n) = 14.675− 4.683 = 9.992. (32)

Thus, the changes in the particular prices led to the increment ∆m(∆x) in the mean
price, but restructuring according to the changes in the amounts ∆m(∆n) decreased the
total mean price ∆m. The change (32) in the mean price equals the difference (9) of the
mean prices m1 and m0 in Table 1.

Table 1 also demonstrates that the signs of difference in all i-th contributions ∆m(∆xi)
coincide with the direction of changes in the partial prices ∆xi, as follows from the Formula
(18). However, the signs of the contributions ∆m(∆ni) and the signs of changes in the
amounts ∆ni themselves, due to (25), can vary in different directions. For example, for the
products with i = 3, 5, the quantities grow, ∆ni > 0, and the contribution to the mean price
is positive, ∆m(∆ni) > 0; for the products with i = 1, 8, 9, there is no change in quantities,
∆ni = 0, but their impact onto the mean price is positive, ∆m(∆ni) > 0; for the rest of
products with i = 2, 4, 6, 7, 10, there is a reduction in quantities, ∆ni < 0, and the input
into the mean price is negative, ∆m(∆ni) < 0 for the products i = 2, 4, 10, but the input
is positive, ∆m(∆ni) > 0, for the products i = 6 and 7. Therefore, a redistribution of the
amounts n can yield various results depending on the structure of the weights and total
amounts, as expressed in the Formula (25).

In Table 1, all ten prices go up and the mean price also grows, which seems natural and
is not surprising. However, the complex structure of the amounts ni and their evolution
∆ni can influence the mean price so that it would change in the opposite direction, which
produces the famous Simpson’s paradox. Let us consider it in the next example presented
in Table 2 organized similarly to the previous table.
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Table 2. Change in the mean price and Simpson’s paradox (dataset-2).

Item Basic Period Current Period Mean Price Change in Variables Change in Mean Value

i x0 n0 x1 n1 m0 m1 ∆x ∆n wi ∆m(∆x) ∆m(∆n) ∆m

1 30 5 36 8 2.419 7.200 6 3 0.134 0.803 3.978 4.781
2 50 8 54 3 6.452 4.050 4 −5 0.105 0.420 −2.821 −2.402
3 40 10 45 1 6.452 1.125 5 −9 0.101 0.503 −5.830 −5.327
4 70 9 73 1 10.161 1.825 3 −8 0.092 0.275 −8.611 −8.336
5 15 3 18 4 0.726 1.800 3 1 0.071 0.214 0.860 1.074
6 40 7 45 8 4.516 9.000 5 1 0.152 0.758 3.725 4.484
7 20 6 21 8 1.935 4.200 1 2 0.143 0.143 2.122 2.265
8 40 5 43 2 3.226 2.150 3 −3 0.067 0.201 −1.277 −1.076
9 30 3 33 4 1.452 3.300 3 1 0.071 0.214 1.634 1.848

10 20 6 22 1 1.935 0.550 2 −5 0.065 0.130 −1.515 −1.385
total 355 62 390 40 39.274 35.200 35 −22 1 3.661 −7.735 −4.074

The prices and quantities of the basic and current periods in Table 2 seem to be very
similar to those in Table 1. The total quantity become N0 = 62 in the basic and N1 = 40 in
the current periods, so the change is also negative, ∆N = −22, and the internal point (16)
is t* = 0.555. The price of each product increases, so all ∆xi > 0, and all contributions to the
change in the mean price are positive ∆m(∆xi) > 0 as well. However, the total change in
the mean price is negative, so it diminishes:

∆m = ∆m(∆x) + ∆m(∆n) = 3.661− 7.735 = −4.074. (33)

Similarly to the previous data results (32), the change in the mean price has the positive
impact of changes in the prices and negative impact of changes in the amounts. However,
with respect to the absolute value, there is a relation |∆m(∆x)| >|∆m(∆n)| in (32), while
there is the opposite inequality |∆m(∆x)| <|∆m(∆n)| in (33). Thus, in spite of the increases
in all the prices, the mean price decreases, which occurs because the negative changes
in the amounts ∆m(∆n) overcome the positive impact ∆m(∆x). By referring to Table 2,
we can identify which products give a negative impact: those with i = 2, 3, 4, 8, 10, with
contributions ∆m(∆ni) < 0. If to change places for the data of the basic and the current
periods, the results in Table 2 receive the opposite signs. It would correspond to another
situation when a decrease in all prices produces the mean price growth. Such an ambiguity
could distort an adequate understanding of the results presented in some statistical reports,
which should be considered with attention and caution.

Let us also compare the newly developed technique based on the Lagrange mean
theorem and one of the common techniques of the logarithmic decomposition of the total
increment, described in [24,25] and also [26] (Formula (11)) and [32] (Formula (10)). Table 3
at first presents results for dataset-1: Lagrange-based decomposition for the share ∆m(∆x),
repeated from Table 1 for the sake of comparison with its logarithmic estimation, and their
ratio. The last three columns in Table 3 show similar results for dataset-2 from Table 2. We
can see that within each dataset, the results via both methods are very close with respect to
any i-th product, mostly within several precent, and the mean difference shown in the last
row is about 4–8%. Thus, these methods support the results of each other, and are open for
further investigation.

It is important to note that the decomposition of a function change due to the changes in
its independent variables presents a special kind of descriptive analysis which can indicate
in which directions researchers and managers can find how to improve the outcome values.
With some products of positive and others of negative contributions into the change in the
mean price, the best and worst players can be identified. Of course, it is difficult to predict
an actual rate of the mean price change with improvement in the product characteristics
because many factors play their role in the market. For example, some products can
be complementary, others substitutional, the market context has its effects, and other
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conditions can influence the consumers decisions [34,35]. It can also be useful to build
a spreadsheet calculator for performing the described decompositions and considering
various “what-if” scenarios according to the obtained results.

Table 3. Comparison of the newly developed and standard techniques.

Dataset-1 Dataset-2

i
Lagrange Based,

from Table 1
a=∆m(∆x)

Logarithmic
Method

b=∆m(∆x)

Their Ratio
b/a

Lagrange Based,
from Table 2

c=∆m(∆x)

Logarithmic
Method

d=∆m(∆x)

Their Ratio
d/c

1 0.475 0.479 1.009 0.803 0.799 0.995
2 −0.823 −0.822 1.000 0.420 0.397 0.945
3 1.929 1.933 1.002 0.503 0.359 0.714
4 0.681 0.563 0.827 0.275 0.204 0.741
5 3.390 3.507 1.034 0.214 0.216 1.007
6 −0.767 −0.769 1.002 0.758 0.766 1.010
7 −3.892 −3.883 0.998 0.143 0.143 0.999
8 0.949 0.956 1.008 0.201 0.192 0.954
9 −2.847 −2.813 0.988 0.214 0.215 1.002

10 15.581 12.563 0.806 0.130 0.105 0.810
mean 0.967 0.918

5. Summary

This paper described the generalized Lagrange mean value theorem for multiple
variables in application to the decomposition of a function’s change and presented it as
the sum of contributions from the change in each independent variable. The multivariate
version of the Lagrange mean value theorem is considered as a finite change equation that
can be solved with respect to an interior point, whose value is used for the estimation of the
contribution of the independent variables. The derivation and analysis are performed on
the example of the weighted mean value function, which is one of the main characteristics
of statistical description practically in all areas of research. The solution for this function is
obtained in the closed form, which is helpful in the analysis of results. Numerical examples
include also the cases of the Simpson’s paradox. The described possibilities of the finite
change equation can be useful in practical applications when a researcher or manager needs
to identify which components of the characteristic of mean value give the main positive or
negative impact, because these items can be considered as the main drivers for reaching an
increase or decrease in the mean price value. The suggested approach can be implemented
for finding a structure of change for other functions as well. It can enrich the possibilities of
data analysis and serve various practical applications.
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Appendix A

The Proof of Theorem is as follows. Multiplying the equation of finite change (15) by
the common denominator yields:

(N0 + t∆N)2∆m = (N0 + t∆N)∑k
i=1 ((n 0i∆xi + x0i∆ni)+2∆ni∆xit)− ∆N ∑k

i=1 (x0in0i + (x 0i∆ni + n0i∆xi)t
+∆ni∆xit2) (A1)
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Opening parentheses and gathering items by the power of parameter t produces the
following quadratic equation:

t2∆N
(

∆m∆N −∑k
i=1 ∆xi∆ni) + 2tN0

(
∆m∆N −∑k

i=1 ∆xi∆ni) +
(

∆mN0
2 − N0∑k

i=1(x0i∆ni + n0i∆xi)

+∆N∑k
i=1 x0in0i

)
= 0.

(A2)

To simplify the last expression of the intercept, we notice the equality

x1n1 = (x 0 + ∆x)(n0 + ∆n) = x0n0 + ∆x∆n + x0∆n + n0∆x . (A3)

Then, the last two items in (A3) can be represented via the other items, and summing
such relation by all i yields:

∑k
i=1 (x 0i∆ni + n0i∆xi) = ∑k

i=1 x1in1i −∑k
i=1 x0in0i −∑k

i=1 ∆xi∆ni (A4)

Taking into account the definitions (9) and (14), the relation (A4) can be simplified to
the expression:

∑k
i=1 (x 0i∆ni + n0i∆xi) = N1m1 − N0m0 −∑k

i=1 ∆xi∆ni. (A5)

Substituting (A5) in place of the intercept in (A2) leads to such an expression for it:

∆mN0
2 − N0∑k

i=1(x0i∆ni + n0i∆xi) + ∆N∑k
i=1 x0in0i = N0

(
∆mN0 − N1m1 + N0m0 + ∆Nm0 + ∑k

i=1 ∆xi∆ni =

(−N0)
(

∆m∆N −∑k
i=1 ∆xi∆ni).

(A6)

Using the obtained result (A6) for the intercept in the Formula (A2) yields the quadratic
equation of the following form:

t2∆N
(

∆m∆N −∑k
i=1 ∆xi∆ni) + 2tN0

(
∆m∆N −∑k

i=1 ∆xi∆ni)− N0

(
∆m∆N −∑k

i=1 ∆xi∆ni) = 0 . (A7)

This equation contains the same term in parentheses with each of its items by power t.
If this multiplier does not equal zero, then it can be cancelled from the Equation (A7).

In a general case of changed quantities, when ∆ni 6= 0 at least for some i, this
multiplier differs from zero—indeed, using definitions (9), (10) and (14) lets us transform it
as follows:

∆m∆N −∑k
i=1 ∆xi∆ni =

(
∑k

i=1 x1in1i

∑k
i=1 n1i

− ∑k
i=1 x0in0i

∑k
i=1 n0i

)(
∑k

i=1 n1i −∑k
i=1 n0i

)
−
(

∑k
i=1 x1in1i −∑k

i=1 x1in0i −∑k
i=1 x0in1i+∑k

i=1 x0in0i

)
.

(A8)

Opening parentheses in (A8) simplifies this expression further to the following one:

∆m∆N −∑k
i=1 ∆xi∆ni = ∑k

i=1 n0i

{
x1i −

∑k
j=1 x1jn1j

∑k
j=1 n1j

}
+ ∑k

i=1 n1i

{
x0i −

∑k
j=1 x0jn0j

∑k
j=1 n0j

}
= ∑k

i=1 n0i{x1i −m1}+

∑k
i=1 n1i{x0i −m0}.

(A9)

A sum of the weighted deviations of xi from their weighted mean value equals zero
only if the weights are the same as used in the definition of the mean value, for example:

∑k
i=1 n1i

{
x1i −

∑k
j=1 x1jn1j

∑k
j=1 n1j

}
= 0 , ∑k

i=1 n0i

{
x0i −

∑k
j=1 x0jn0j

∑k
j=1 n0j

}
= 0 . (A10)
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However, the result in (A9) differ from the equalities (A10)—the deviations from the
mean values in (A9) are taken with the counts ni of the other set, so these totals differ
from zero:

∑k
i=1 n0i{x1i −m1} 6= 0 , ∑k

i=1 n1i{x0i −m0} 6= 0 . (A11)

Therefore, the same term in three parentheses in (A7) is not of zero value and can be
canceled, yielding the following simple quadratic equation:

t2∆N + 2tN0 − N0 = 0 . (A12)

For the same total amounts ∆N = 0 (although with some ∆ni 6= 0), (A12) becomes the
linear equation with the solution t* = 1/2. For the general case of different N0 and N1, the
quadratic Equation (A12) has the following solutions:

t1,2 =
−2N0 ±

√
4N0

2 + 4N0∆N

2∆N
=
−N0 ±

√
N0N1

∆N
. (A13)

Taking the positive solution from (A13), feasible for the definitions in (11), yields the
result:

t∗ =
√

N0
(√

N1 −
√

N0
)

∆N
=

√
N0
(√

N1 −
√

N0
)

N1 − N0
=

√
N0√

N0 +
√

N1
=

1
1 +
√

N1/N0
(A14)

It is the meaningful and unique solution (16) for the Equation (15) of finite change. It
holds for the equal total amounts N0 = N1 as well, reducing to t* = 1/2.
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