Higher-Order Benjamin–Ono Model for Ocean Internal Solitary Waves and Its Related Properties
Abstract
:1. Introduction
2. Derivation of BO Equation
3. Derivation of Higher-Order BO Equation
4. Bilinear Form and Multi-Soliton Solutions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Feng, B.; Chen, Y. Bilinear Bäcklund transformation, Lax pair, and multi-soliton solution for a vector Ramani equation. Mod. Phys. Lett. B 2017, 12, 1750133. [Google Scholar] [CrossRef]
- Magalhaes, J.M.; da Silva, J.C.; Nolasco, R.; Dubert, J.; Oliveira, P.B. Short timescale variability in large-amplitude internal waves on the western Portuguese shelf. Cont. Shelf Res. 2022, 246, 104812. [Google Scholar] [CrossRef]
- Endoh, T.; Tsutsumi, E.; Hong, C.-S.; Baek, G.-N.; Chang, M.-H.; Yang, Y.J.; Matsuno, T.; Lee, J.H. Estimating propagation speed and direction, and vertical displacement of second-mode nonlinear internal waves from ADCP measurements. Cont. Shelf Res. 2022, 233, 104644. [Google Scholar] [CrossRef]
- Zou, P.X.; Bricker, J.D.; Uijttewaal, W.S. The impacts of internal solitary waves on a submerged floating tunnel. Ocean Eng. 2021, 238, 109762. [Google Scholar] [CrossRef]
- Song, Z.J.; Teng, B.; Gou, Y.; Lu, L.; Shi, Z.M.; Xiao, Y.; Qu, Y. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses. Appl. Ocean Res. 2011, 33, 120–129. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, Z.G.; Dong, H.; Yang, H. A novel dynamic model and the oblique interaction for ocean internal solitary waves. Nonlinear Dyn. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105622. [Google Scholar] [CrossRef]
- He, M.; Khayyer, A.; Gao, X.; Xu, W.; Liu, B. Theoretical method for generating solitary waves using plungertype wavemakers and its Smoothed Particle Hydrodynamics validation. Appl. Ocean Res. 2021, 106, 102414. [Google Scholar] [CrossRef]
- Cai, S.Q.; Long, X.M.; Dong, D.P.; Wang, S.G. Background current affects the internal wave structure of the northern South China Sea. Prog. Nat. Sci. 2008, 18, 585–589. [Google Scholar] [CrossRef]
- He, Y.; Gao, Z.; Luo, J.; Luo, S.; Liu, X. Characteristics of internal-wave and internal-tide deposits and their hydrocarbon potential. Pet. Sci. 2008, 5, 37–44. [Google Scholar] [CrossRef]
- Farmer, D.; Li, Q.; Park, J.H. Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmos. Ocean 2009, 47, 267–280. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, B.; Zhang, M. Analysis of the relation between ocean internal wave parameters and ocean surface fluctuation. Front. Earth Sci. 2019, 13, 336–350. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N. Interaction between the surface and internal waves: The modulation and maser mechanisms. Phys. Oceanogr. 1993, 4, 357–375. [Google Scholar] [CrossRef]
- Bourgault, D.; Galbraith, P.; Chavanne, C. Generation of internal solitary waves by frontally forced intrusions in geophysical flows. Nat. Commun. 2016, 7, 13606. [Google Scholar] [CrossRef]
- Guo, C.; Chen, X. A review of internal solitary wave dynamics in the northern South China Sea. Prog. Oceanogr. 2014, 121, 7–23. [Google Scholar] [CrossRef]
- Geng, M.H.; Song, H.B.; Guan, Y.X.; Bai, Y. Analyzing amplitudes of internal solitary waves in the northern South China Sea by use of seismic oceanography data. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 146, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.D.; Li, X.F.; Zhang, T. Characteristics and generations of internal wave in the Sulu Sea inferred from optical satellite images. J. Oceanol. Limnol. 2020, 38, 1435–1444. [Google Scholar] [CrossRef]
- Tensubam, C.M.; Raju, N.J.; Dash, M.K.; Barskar, H. Estimation of internal solitary wave propagation speed in the Andaman Sea using multi-satellite images. Remote Sens. Environ. 2021, 252, 112123. [Google Scholar] [CrossRef]
- Zhi, C.H.; Chen, K.; You, Y.X. Internal solitary wave transformation over the slope: Asymptotic theory and numerical simulation. J. Ocean Eng. Sci. 2018, 3, 83–90. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, L.; Liu, Q.; Yin, X. Dynamics of nonlinear Rossby waves in zonally varying ow with spatial-temporal varying topography. Appl. Math. Comput. 2019, 346, 666–679. [Google Scholar]
- Huang, X.D.; Huang, S.W.; Zhao, W.; Zhang, Z.W.; Zhou, C.; Tian, J.W. Temporal variability of internal solitary waves in the northern South China Sea revealed by long-term mooring observations. Prog. Oceanogr. 2022, 201, 102716. [Google Scholar] [CrossRef]
- Helfrich, K.R.; Ostrovsky, L. Effects of rotation and topography on internal solitary waves governed by the rotating Gardner equation. Nonlinear Process. Geophys. Discuss. 2022, 29, 207–218. [Google Scholar] [CrossRef]
- Weinstein, M.I. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 1986, 39, 51–67. [Google Scholar] [CrossRef]
- Chen, L.G.; Yang, L.G.; Zhang, R.G.; Cui, J.F. Generalized (2 + 1)-dimensional mKdV-Burgers equation and its solution by modified hyperbolic function expansion method. Results Phys. 2019, 13, 102280. [Google Scholar] [CrossRef]
- Mirie, R.M.; Su, C.H. Internal solitary waves and their head-on collision. Part 1. J. Fluid Mech. 1984, 147, 213–231. [Google Scholar] [CrossRef]
- Keulegan, G.H. Characteristics of internal solitary waves. J. Res. Natl. Bur. Stand. 1953, 51, 133–140. [Google Scholar] [CrossRef]
- Long, R.R. Solitary waves in the one- and two-fluid systems. Tellus 1956, 8, 460–471. [Google Scholar] [CrossRef]
- Benjamin, T. Internal waves of finite amplitude and permanent form. J. Fluid Mech. 1966, 25, 241–270. [Google Scholar] [CrossRef]
- Benjamin, T. Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 1967, 29, 559–592. [Google Scholar] [CrossRef]
- Benney, D.J. Long non-linear waves in fluid flows. J. Math. Phys. 1966, 45, 52–63. [Google Scholar] [CrossRef]
- Ono, H. Algebraic Solitary Waves in Stratified Fluids. J. Phys. Soc. Jpn. 1975, 39, 1082–1091. [Google Scholar] [CrossRef]
- Chen, Y.N.; Wang, K.J. On the Wave Structures to the (3 + 1)-Dimensional Boiti-Leon-Manna-Pempinelli Equation in Incompressible Fluid. Axioms 2023, 12, 519. [Google Scholar] [CrossRef]
- Boyd, J.P.; Xu, Z.J. Numerical and perturbative computations of solitary waves of the Benjamin-Ono equation with higher order nonlinearity using Christovrational basis functions. J. Comput. Phys. 2012, 231, 1216–1229. [Google Scholar] [CrossRef]
- Adem, A.; Khalique, C. Exact Solutions and Conservation Laws of a Two-Dimensional Integrable Generalization of the Kaup-Kupershmidt Equation. J. Appl. Math. 2013, 2013, 647313. [Google Scholar] [CrossRef]
- Yang, D.N. N-soliton, breather, M-lump and interaction dynamics for a (2 + 1)-dimensional KdV equation with variable coefficients. Results Phys. 2023, 46, 106324. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.H.; Fang, Y. Rational and Semi-Rational Solutions to the (2 + 1)-Dimensional Maccari System. Axioms 2022, 11, 472. [Google Scholar] [CrossRef]
- Grimshaw, R.; Pelinovsky, E.; Poloukhina, O. Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Process. Geophys. 2002, 9, 221–235. [Google Scholar] [CrossRef]
- Kaya, D.; El-Sayed, S.M. On a generalized fifth order KdV equations. Phys. Lett. A 2003, 310, 44–51. [Google Scholar] [CrossRef]
- Duffy, B.R.; Parkes, E.J. Travelling solitary wave solutions to a seventh-order generalized KdV equation. Phys. Lett. A 1996, 214, 271–272. [Google Scholar] [CrossRef]
- Craig, W.; Guyenne, P.; Kalisch, H. Hamiltonian long wave expansions for free surfaces and interfaces. Commun. Pure Appl. Math. 2005, 58, 1587–1641. [Google Scholar] [CrossRef]
- Germán, F.; Felipe, L. Benjamin Ono Equation with Unbounded Data. J. Math. Anal. Appl. 2000, 247, 426–447. [Google Scholar]
- Tsuji, H.; Oikawa, M. Oblique interaction of internal solitary waves in a two-layer fluid of infinite depth. Fluid Dyn. Res. 2001, 29, 251–267. [Google Scholar] [CrossRef]
- Russell, J.S. Report on Waves: Made to the Meetings of the British Association in 1842–43; Creative Media Partners, LLC: London, UK, 1845. [Google Scholar]
- Mach, E.; Wosyka, J. Über einige mechanische Wirkungen des electrischen Funkens. Sitzungsber. Akad. Wiss. Wien 1875, 72, 44–52. [Google Scholar]
- Krehl, P.; van der Geest, M. The discovery of the Mach reflexion effect and its demonstration in an auditorium. Shock Waves 1991, 1, 3–15. [Google Scholar] [CrossRef]
- Ghanbari, B. Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics. Results Phys. 2021, 29, 104689. [Google Scholar] [CrossRef]
- Ye, F.; Tian, J.; Zhang, X.; Jiang, C.; Ouyang, T.; Gu, Y. All Traveling Wave Exact Solutions of the Kawahara Equation Using the Complex Method. Axioms 2022, 11, 330. [Google Scholar] [CrossRef]
- Matsuno, Y. Exact multi-soliton solution of the Benjamin-Ono equation. J. Phys. A Math. Gen. 1979, 12, 619. [Google Scholar] [CrossRef]
- Tsuji, H.; Oikawa, M. Two-dimensional interaction of solitary waves in a modiied Kadomtsev-Petviashvili equation. J. Phys. Soc. Jpn. 2004, 73, 3034–3043. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, Z.G.; Yang, H.W. A new nonlinear integral-differential equation describing Rossby waves and its related properties. Phys. Lett. A 2022, 443, 128205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Dong, H.; Zhao, B.; Fu, L. Higher-Order Benjamin–Ono Model for Ocean Internal Solitary Waves and Its Related Properties. Axioms 2023, 12, 969. https://doi.org/10.3390/axioms12100969
Ren Y, Dong H, Zhao B, Fu L. Higher-Order Benjamin–Ono Model for Ocean Internal Solitary Waves and Its Related Properties. Axioms. 2023; 12(10):969. https://doi.org/10.3390/axioms12100969
Chicago/Turabian StyleRen, Yanwei, Huanhe Dong, Baojun Zhao, and Lei Fu. 2023. "Higher-Order Benjamin–Ono Model for Ocean Internal Solitary Waves and Its Related Properties" Axioms 12, no. 10: 969. https://doi.org/10.3390/axioms12100969
APA StyleRen, Y., Dong, H., Zhao, B., & Fu, L. (2023). Higher-Order Benjamin–Ono Model for Ocean Internal Solitary Waves and Its Related Properties. Axioms, 12(10), 969. https://doi.org/10.3390/axioms12100969