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Abstract: This manuscript is related to undertaking a mathematical model (susceptible, vaccinated,
infected, and recovered) of rotavirus. Some qualitative results are established for the mentioned
challenging childhood disease epidemic model of rotavirus as it spreads across a population with a
heterogeneous rate. The proposed model is investigated using a novel approach of fractal calculus.
We compute the boundedness positivity of the solution of the proposed model. Additionally, the basic
reproduction ratio and its sensitivity analysis are also performed. The global stability of the endemic
equilibrium point is also confirmed graphically using some available values of initial conditions
and parameters. Sufficient conditions are deduced for the existence theory, the Ulam–Hyers (UH)
stability. Specifically, the numerical approximate solution of the rotavirus model is investigated using
efficient numerical methods. Graphical presentations are presented corresponding to a different
fractional order to understand the transmission dynamics of the mentioned disease. Furthermore,
researchers have examined the impact of lowering the risk of infection on populations that are
susceptible and have received vaccinations, producing some intriguing results. We also present a
numerical illustration taking the stochastic derivative of the proposed model graphically. Researchers
may find this research helpful as it offers insightful information about using numerical techniques to
model infectious diseases.

Keywords: epidemic model; childhood disease; numerical tools; qualitative results

MSC: 26A33; 34A08; 93A30

1. Introduction

Rotavirus is the most frequent cause of severe diarrhea in children worldwide and is
estimated to be responsible for 215,000 deaths in children under five each year according to
a WHO report in 2008 (see [1]). The virus, which is a member of the reoviridae family, is
classified into seven sero-types (G1–G7) according to the outer capsid protein ([2]). The
rotavirus infection is extremely contagious and can be transmitted orally through feces.
Symptoms include fever, vomiting, and diarrhea. Because the virus can persist in an en-
vironment for extended periods of time, it is challenging to contain using conventional
sanitation techniques (see [3]). The concerned virus also infected adults and it has some
history which has been demonstrated in (see [4,5]). One common cause of severe diarrhea
in young children is rotavirus, which is particularly dangerous for newborns and young
children under five years old. Frequent contact with feces, whether through respiratory
droplets, infected items, water, or food is the main method of transmission. Since there is
now no cure for rotavirus infection, immunization is still the most effective way to stop its
spread. The dynamics of rotavirus outbreaks have been better understood using mathemat-
ical modeling, especially in relation to immunization. In addition to the mentioned disease
of five common types, some research was conducted in 2020 (see [6]).

According to recent research, mathematical modeling can help in understanding the
dynamics of rotavirus transmission, forecasting its consequences in specific nations, and
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assessing the possible outcomes of interventions. Technology has advanced epidemiology
to the point where several infectious diseases are now examined for treatment, control, cur-
ing, and other outcomes. As a result, the mathematical modeling of infectious diseases has
greatly advanced over the past few decades (see [7,8]). In the last thirty years, mathematical
modeling has been used in research more and more. A number of diseases, including
those mentioned in citations [9,10], can be effectively controlled by the use of mathematical
models in secure public health systems. These mathematical models can be used to study
spatiotemporal patterns as well as the dynamic behavior of infections. Researchers have
studied rotavirus disease from a variety of angles during the past three years because of
the significance of mathematical models. Researchers in this field are employing a variety
of strategies to develop practical procedures for controlling this illness (a number of recent
studies are listed in citations [11–13]). Recently, the effects of immunization in elderly
homes were investigated using a mathematical model (see [14]). Scholars [15] investigated
intervention strategies for the rotavirus pandemic and mathematical modeling. In all the
mentioned studies, researchers have used classical or stochastic type models for their study.

To the best of our knowledge, the field of epidemiology has thoroughly examined the
idea of the classical derivative. It is well known that a variety of inherited, long-term, and
short-term memory processes can be explained by classical differential operators, which are
short because of their local character. Fractional calculus has gained much more attention in
recent years in an effort to better understand the previously outlined procedure. Due to its
dynamic features, which have demonstrated a range of applications in real-world scenarios,
including biological and physical processes, it has become more and more popular (see [16]).
Fractional calculus has a long history, just like conventional calculus (see [17]). Numerous
writers have examined the subject matter from different angles; some of them are included
as [18,19]. Numerous scientific and technological fields employ the previously stated
calculus (see [20,21]). Because it is non-local, the fractional order derivative has a greater
degree of freedom (see [22]). Consequently, the aforementioned derivative may be selected
above the standard order derivative in the mathematical modeling of infectious diseases.
The existence theory of solutions to fractional differential equations in [23] and qualitative
results in [24], respectively, are among the enlightening works that several writers have.
In order to investigate fractional order differential and integral equations (FODIEs) for
approximate or analytical results, a variety of tools and methods have been developed (see,
for example, the fractional visco-elasticity model in [25]).

Most problems in the actual world are partially unpredictable, which is something
that conventional mathematical models cannot explain. In recent decades, the concept
of stochastic mathematical differential equations has been proposed and applied with
impressive results. Some problems, on the other hand, show non-locality tendencies
rather than randomness. These include crossover behaviors, fractal processes, power law
processes, and long-range dependencies, which imply that physical phenomena display a
range of behaviors. To solve these issues, a class of fractional derivatives was suggested.
Still, these operators are not very good at characterizing crossover behavior. For the first
time, the concept of short memory with real or complex order derivatives was created to
describe the previously indicated behavior. To explain the above behavior, the concept of
short memory fractional order derivatives was introduced for the first time (see [26]). To
examine the crossover properties, we provide several notions: fractal–fractional derivative,
fractional order derivative with singular and non-singular kernels, and several other
derivative operator types. Though studies of stochastic equations lead to more realistic
conclusions, the crossover dynamical behavior has not been addressed. Numerous real-
world process models, such as those involving heat flow, fluid flow, and numerous intricate
advection issues, exhibit this behavior. The exponential or Mittag–Leffler mappings cannot
be used in fractional calculus to predict the timing of crossings because the typical fractional
order derivative is unable to adequately capture the crossover behavior that is prevalent in
real-world applications. Due to rapid changes in their state of rest or uniform motion, as
well as natural occurrences like earthquakes, pendulum motion, the unstable status of the
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economy in less developed countries today, etc. Fractional order derivatives of piecewise
equations provide an example of this crossover phenomenon. Recent work has identified
certain critical components in this regard through the study of multiple models (see [27,28]).
The authors developed classical and global piecewise derivatives in addition to a number
of applications. We refer to [29] for the mentioned details.

Overall, rotavirus research conducted recently has brought to light the significance
of mathematical modeling for understanding the dynamics of rotavirus transmission and
for forecasting the possible outcomes of interventions. Furthermore, risk factors for severe
rotavirus infection have been found in recent studies, which have also looked into new
possibilities for diagnosis and therapy. Continued research in these areas is crucial in
the fight against rotavirus and the reduction in deaths caused by this virus. For instance,
authors [28] studied a compartmental model for the said disease under vaccination class as

Ṡ(t) = (1− ϑ)µ− κS(t)I(t) + ςV(t)− (ρ + λ)S(t)

V̇(t) = ϑµ + ρS(t)− ζκV(t)I(t)− (ς + λ)V(t)

İ(t) = κS(t)I(t) + ζκV(t)I(t)− (τ + ω + λ)I(t)

Ṙ(t) = ωI(t)− λR(t)

S0 > 0, V0 ≥ 0, I0 ≥ 0, R0 ≥ 0,

(1)

where (1 − ϑ)µ and ϑµ represent birth rates in the S and V classes, respectively. κ is
the infection rate of S, and an individual is vaccinated from S at the rate denoted by ρ.
Further, the vaccine is imperfect and is assumed to wane at the rate ς. Furthermore, the
parameter ζ ∈ (0, 1) represents the expected decrease in the risk of infection as a result of
vaccination. Moreover, the induced rate of disease is given by τ, and natural death rate is λ.
Furthermore, the rate of recovery is represented by ω.

Keeping in mind the usefulness of piecewise derivatives, we extended the Model (1)
to the following form

PCC
0 Dt

p
(S)(t) = (1− ϑ)µ− κS(t)I(t) + ςV(t)− (ρ + λ)S(t)

PCC
0 Dt

p
(V)(t) = ϑµ + ρS(t)− ζκV(t)I(t)− (ς + λ)V(t)

PCC
0 Dt

p
(I)(t) = κS(t)I(t) + ζκV(t)I(t)− (τ + ω + λ)I(t)

PCC
0 Dt

p
(R)(t) = ωI(t)− λR(t),

(2)

where PCC
0 Dt

p stands for the piecewise Caputo derivative which can be described by
dividing the interval [0, T] into two subintervals at point t1 as [0, t1], and (t1, T], respectively,
for a differentiable function; say S as

PCC
0 Dt

p
(S(t)) =


C
0Dt(S(t)) = Ṡ(t), 0 < t ≤ t1,

C
0D

p
t (S(t)) =

1
Γ(1− p)

∫ t

t1

(t− η)−pS′(η)dη, t1 < t ≤ T.

Here, it should be kept in mind that to capture crossover behavior, we can divide the
interval [0, T], T < ∞ into several intervals. In addition, t1 is a fixed value. Here, the
schematic diagram of our model is given in Figure 1.

The feasible zone is ascertained once the boundednessfor the presence of the solution
is confirmed. Then, using the Banach and Schauder fixed-point theorems, the existence and
uniqueness of approximation solutions for the previously described model are examined.
Notably, existence theory with piecewise derivatives of fractional orders offers some novel
insights into such dynamical issues. According to the hypothesis, it is possible to solve these
kinds of physical issues. Numerous numerical methods have been shown to be especially
effective for classical fractional order systems in recent years. One of the most effective
numerical techniques is the Runge–Kutta method with reliable step size information.The
Range-Kutta approach, for example, was used for several fractional order problems in [30].
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Furthermore, the results devoted to UH stability are also derived. The concerned stability
is investigated for the best approximate or exact solution [31]. The existence theory is
established using fixed-point approaches as mentioned in [32,33].

Figure 1. Schematic diagram of our model proposed (3).

It is amazing how random events affect everything in the real world, even the move-
ments of people and animals. Some interesting work on different biological models can be
studied in [34–40]. This impact is mathematically interpreted in terms of stochastic models.
These previously mentioned notions have been used to examine mathematical models. It
is important to note that stochastic calculus has important applications in simulating real-
world processes. Because of this, academics have recently looked into a few mathematical
models using the previously described field (see [41,42]) . A growing number of additional
infectious diseases have also been modeled using the aforementioned differential equations
(see [43,44]). Driven by the aforementioned significance of stochastic calculus, we also
endeavor to replicate the suggested Model (3) under the stochastic white noise as

dS(t) =
[
(1− ϑ)µ− κS(t)I(t) + ςV(t)− (ρ + λ)S(t)

]
dt + σ1S(t)dβ1(t)

dE(t) =
[

ϑµ + ρS(t)− ζκV(t)I(t)− (ς + λ)V(t)
]

dt + σ2V(t)dβ2(t)

dI(t) =
[

κS(t)I(t) + ζκV(t)I(t)− (τ + ω + λ)I(t)
]

dt + σ3 I(t)dβ3(t)

dR(t) =
[

ωI(t)− λR(t)
]

dt + σ4R(t)dβ4(t),

(3)

where βi denote Brownian motion with βi(0) = 0, and σi > 0, for i = 1, 2, 3, 4 denote the
intensity of white noise. Here, it should be kept in mind that we will simulate our Model (3)
using the numerical scheme developed in [45,46]. Researchers have worked on collecting
some real data cases for both infected and vaccinated people [47] in Saudi Arabia, and
we present the graphical presentation of the aforesaid cases in Figure 2. In Saudi Arabia,
rotavirus infection is a substantial contributor to childhood morbidity.

This text is organized as follows: Part 1 contains a thorough introduction to our work.
In Section 2, there are a few essential outcomes that we require for this work. Some of
the basic results of the proposed model are also presented here. In Section 3, we use a
fixed-point theory to build an existence theory for a rough solution to the suggested model.
The numerical method for an approximate solution to the proposed model is covered in
Section 4. We provide examples to support our conclusions in Section 5. In conclusion,
Section 6 provides a succinct overview and clarification of the numerical results.
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Figure 2. Graphical presentations of reported cases for infected and vaccinated classes of rotavirus in
Saudi Arabia.

2. Elementary Results

Recollecting some basic results as follow:

Definition 1 ([29]). If $ be a differentiable function with p > 0, then a piecewise integral is
described by considering J = [0, T], J1 = [0, t1], J2 = (t1, T] as

PC
0 I

p
t $(t) =


∫ t1

0
$(ν)dν, t ∈J1,

1
Γ(p)

∫ t

t1

(t− ν)p−1$(ν)d(ν), t ∈J2,

where PC
0 It stands for classical integration in J1 and represents Riemann–Liouville integration

in J2.

Definition 2 ([29]). Let 0 < p ≤ 1 and if $ ∈ C(J ) be differentiable, then the classical and
fractional order piecewise derivative is defined as

PCC
0 D

p
t $(t) =

{
$̇(t), t ∈J1,
C
0 D

p
t $(t), t ∈J2.

Lemma 1 ([29]). Let $ ∈ L(J )∩ C(J ) and ψ ∈ L(J ), then the solution of the given problem

PCC
0 D

p
t $(t) = ψ(t), 0 < p ≤ 1

is derived as

$(t) =


$0 +

∫ t

0
ψ(ν)dν, t ∈J1,

$(t1) +
1

Γ(p)

∫ t

t1

(t− ν)p−1ψ(ν)d(ν), t ∈J2.

2.1. Some Fundamental Results about the Model (3)

About the Model (3), we derive some axillary results. The feasible region is given in
Remark 1.

Remark 1. Let N be the total population at any time t, then

N = S + V + I + R. (4)
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Applying a piecewise derivative of (4) w.r.t ’t’ from Model (3), we obtain

PCC
0 Dp

t N(t) = λ− µN, (5)

which in taking the Laplace transform and using t→ ∞ yields

N(t) ≤ λ

µ
.

Thus, the feasible region is given by

Ω =

{
(S, V, I, R) ∈ R4

+ : N ≤ λ

µ

}
.

2.2. Equilibrium Points and Basic Reproduction Number

Putting the left-hand sides of Model (3) equal to zero and solving the equations, the
disease-free equilibrium is obtained . From Model (3), one has

(1− ϑ)µ− κS(t)I(t) + ςV(t)− (ρ + λ)S(t) = 0

ϑµ + ρS(t)− ζκV(t)I(t)− (ς + λ)V(t) = 0

κS(t)I(t) + ζκV(t)I(t)− (τ + ω + λ)I(t) = 0

ωI(t)− λR(t) = 0,

on solving in a disease-free equilibrium state when I0 = 0 is given by S0 = (1−ϑ)µ
ρ+λ ,

V0 = ϑµ(ρ+λ)+(1−ϑ)µ
ρ+λ , I0 = 0, R0 = 0. Hence, local equilibrium is given by

E0 = (S0, 0, 0, 0) =
(
(1− ϑ)µ

ρ + λ
,

ϑµ(ρ + λ) + (1− ϑ)µ

ρ + λ
, 0, 0

)
.

Furthermore, the endemic equilibrium E∗ = (S∗, V∗, I∗, R∗) is computed as

S∗ =
ζκ(aϑµ− (τ + ω + λ)I∗ − (τ + ω + λ)(ζϑµ− (τ + ω + λ)I∗)

κ(ζκ2 I∗ + κ(ς + λ)− ζκ)
,

V∗(t) =
κϑµ− (τ + ω + λ)I∗

ζκ2 I∗ + κ(ς + λ)− ζκ)
,

I∗ =
κ(1− ϑ)µ(ς + λ− ρζ) + ζ(κϑµ− ρ(τ + ω + λ))− ζ(ρ + λ)(κϑµ− ρ(ρ + λ))− (ρ + λ)(τ + ω + λ)(ς + λ− ρζ)

κ2(1− ϑ)µζ − ζκ(κϑµ− ρ(τ + ω + λ))− (ρ + λ)(τ + ω + λ)ζκ
,

R∗ =
ωI∗

λ
.

In addition, the fundamental reproductive number can be computed asR0 = µκ
λ(τ+ω+λ)

.
Clearly, if R0 < 1, the trivial equilibrium point is called locally asymptotically stable. Now,
the 3D profile of R0 is given in Figure 3.

Calculations are made to determine the reproductive numberR0 and sensitivity indices
to the model parameters. These indices show the significance of each aspect in the spread
and incidence of disease. Sensitivity analysis is used to evaluate the model predictions’
resistance to parameter values. In this regard, we use the following formula for the
computation of sensitivity indices

SR0
q =

q
R0

[
∂R0

∂q

]
. (6)
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Using Formula (6), we have

SR0
µ =

µ

R0

[
∂R0

∂µ

]
= 1 > 0,

SR0
κ =

κ

R0

[
∂R0

∂κ

]
= 1 > 0,

SR0
λ =

λ

R0

[
∂R0

∂λ

]
=
−(2λ + τ + ω)

τ + ω + λ
< 0,

SR0
τ =

τ

R0

[
∂R0

∂τ

]
=

−τ

τ + ω + λ
< 0,

SR0
ω =

ω

R0

[
∂R0

∂ω

]
=

−ω

λ + ω + λ
< 0. (7)
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Figure 3. A 3D profile of R0 for the proposed Model (3).

In Figure 4, we present the sensitivity index against the given parameters of the
proposed Model (3).

In addition, using the parameter values given in Table 1, we have R0 = 1.6213 > 1,
which implies that the endemic equilibrium E∗ = (S∗, V∗, I∗, R∗) of Model (3) is globally
asymptotically stable. The concerned stability has been shown in Figure 5.

Table 1. Sensitivity of the R0 versus proposed parameters.

Parameter Sensitivity Index Value Parameter Sensitivity Index Value

µ SR0
µ 1 τ SR0

τ −0.0004507

κ SR0
κ 1 ω SR0

ω −0.00025608

λ SR0
λ

−1.0002560
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Figure 5. Solution curves of Model (3) at the endemic equilibrium using S0 = 500, V0 = 300,
I0 = 100, R0 = 50.

3. Existence Theory

Here, we develop sufficient results for the qualitative theory of existence and unique-
ness using a fixed-point approach. Here, we write the right sides of our proposed Model (3)
using $ = (S, V, I, R) as

PCC
0 Dt

p
(S)(t) =W1(t, $(t))

PCC
0 Dt

p
(V)(t) =W2(t, $(t))

PCC
0 Dt

p
(I)(t) =W3(t, $(t))

PCC
0 Dt

p
(R)(t) =W4(t, $(t)),

and $0 = (S0, V0, I0, R0).
One alternative format for the equation including the piecewise Caputo derivative is

considered as

PCC
0 Dp

t $(t) = W(t, $(t)), 0 < p ≤ 1, (8)

$(0) = $0,
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where W : J ×R→ R is a nonlinear continuous function. The solution using Lemma 1 is
computed as

$(t) =


$0 +

∫ t

0
W(ν, $(ν))dν, t ∈J1,

$(t1) +
1

Γ(p)

∫ t

t1

(t− ν)p−1W(ν, $(ν))d(ν), t ∈J2,
(9)

Let T < ∞, the Banach space is defined as X = C(J ) × C(J ) × C(J ) × C(J )
under the norm

‖$‖ = max
t∈J
|$(t)|.

These hypotheses hold for further results.

(C1) If ∆W > 0 is constant, such that $, $̄ ∈ X, then

|W(t, $)−W(t, $̄)| ≤ ∆W|$− $̄|.

(C2) For constants ΛW > 0 and ΥW > 0, we have

|W(t, $(t))| ≤ ΛW|$|+ ΥW.

Theorem 1. For the assumed function W defined in (17), which is a piecewise continuous on J1
and J2 which are subintervals of J , and the assumptions (C1), (C2) hold, then the problem (17)
has at least one solution. Consequently, Model (3) has at least one solution.

Proof. Let Θ = {$ ∈ X : ‖$‖ ≤ 1,2, 1,2 > 0} be a closed and bounded subset of X, where

1,2 ≥ max


|$0|+ t1ΥW
1− t1ΛW

, t ∈J1,

|$(t1)|Γ(p + 1) + TpΥW
(Γ(p + 1)− TpΛW

, t ∈J2.

If N : Θ→ Θ be the operator defined as

N ($) =


$0 +

∫ t

0
W(ν, $(ν))dν, t ∈J1,

$(t1) +
1

Γp

∫ t

t1

(t− ν)σ−1W(ν, $(ν))d(ν), t ∈J2.
(10)

For $ ∈ Θ, we have

|N ($)(t)| ≤


|$0|+

∫ t1

0
|W(ν, $(ν))|dν,

|$(t1)|+
1

Γ(p)

∫ t

t1

(t− ν)p−1|W(ν$(ν))|d(ν),

≤


|$0|+

∫ t1

0
[ΛW|$|+ ΥW]dν,

|$(t1)|+
1

Γ(p)

∫ t

t1

(t− ν)p−1[ΛW|$|+ ΥW]d(ν),

≤


|$0|+ t1[ΛW1,2 + ΥW] ≤ 1,2, t ∈J1,

|$(t1)|+
Tp

Γ(p + 1)
[ΛW1,2 + ΥW] ≤ 1,2, t ∈J2,

where for t ∈J2, we put |(t1 − ν)p − (t2 − ν)p| ≤ Tp. Hence, we have that ‖N ($)‖ ≤ 1,2
which yields N (Θ) ⊂ Θ. Thus, N maps are set to bounded.Thus, N is a bounded
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operator. SinceW is a continuous function, therefore N is also a continuous operator. Next,
for complete continuity, consider tm < tn ∈J1, then

|N ($)(tn)−N ($)(tm)| =

∣∣∣∣ ∫ tn

0
W(ν, $(ν))dν−

∫ tm

0
W(ν, $(ν))dν

∣∣∣∣
≤

∫ tn

tm
|W(ν, $(ν))|dν

≤
∫ tn

tm
[ΛW|$|+ ΥW]dν

≤ (ΛW1,2 + ΥW)[tn − tm]. (11)

From (11), we see that tm → tn, then

|N ($)(tn)−N ($)(tm)| → 0, as tm → tn.

Furthermore, N is a bounded operator. So

‖N ($)(tn)−N ($)(tm)‖ → 0, as tm → tn.

Hence, N is equi-continuous in this case. In addition, take tm < tn ∈J2 and consider

|N ($)(tn)−N ($)(tm)| =

∣∣∣∣ 1
Γ(p)

∫ tn

0
(tn − ν)p−1W(ν, $(ν))dν− 1

Γ(p)

∫ tm

0
(tm − ν)p−1W(ν, $(ν))dν

∣∣∣∣
≤ 1

Γ(p)

∫ tm

0
[(tm − ν)p−1 − (tn − ν)p−1]|W(ν, $(ν))|dν

+
1

Γ(p)

∫ tn

tm
(tn − ν)p−1|W(ν, $(ν))|dν

≤ 1
Γ(p)

[ ∫ tm

0
[(tm − ν)p−1 − (tn − ν)p−1]dν

+
∫ tn

tm
(tn − ν)p−1dν

]
(ΛW|$|+ ΥW)

≤ (ΛW1,2 + ΥW)

Γ(p + 1)
[tp

n − tp
m + 2(tn − tm)

p]. (12)

Further, from (12), we see that

|N ($)(tn)−N ($)(tm)| → 0, as tm → tn.

Furthermore, N is bounded over J2 so it is uniformly continuous. Hence,

‖N ($)(tn)−N ($)(tm)‖ → 0, as tm → tn.

Therefore, N is equi-continuous in a J2 interval. Hence, N is an equi-continuous map-
ping over J1 ∪J2. Thus, N is a relatively compact operator. By using the Arzelá–Ascoli
theorem stated in [32], operator N is completely continuous. Therefore, Schauder’s fixed-
point theorem is given in [33], and the concerned problem (17) has at least one solution.
Hence, in view of the above results, we conclude that the proposed Model (3) has at least
one solution.

Theorem 2. If assumption (C1) and the condition max
{

t1∆W, Tp

Γ(p+1)∆W

}
< 1, hold, then the

problem (17) has a unique solution in both subintervals J1 and J2.



Axioms 2023, 12, 970 11 of 18

Proof. Let N : X→ X be the mapping defined as

N ($) =


$0 +

∫ t

0
W(ν, $(ν))dν, t ∈J1,

$(t1) +
1

Γp

∫ t

t1

(t− ν)σ−1W(ν, $(ν))d(ν), t ∈J2.

Let $, $̄ ∈ X, then over J1, one has

‖N ($)−N ($̄)‖ = max
t∈J1

∣∣∣∣ ∫ t

0
W(ν, $(ν))dν−

∫ t1

0
W(ν, $̄(ν))dν

∣∣∣∣
≤ t1∆W‖$− $̄‖. (13)

From (13), we have

‖N ($)−N ($̄)‖ ≤ t1∆W‖$− $̄‖. (14)

By the same fashion for t ∈J2, we have

‖N ($)−N ($̄)‖ = max
t∈J2

∣∣∣∣ 1
Γ(p)

∫ t

t1

(t− ν)p−1W(ν, $(ν))dν− 1
Γ(p)

∫ t

t1

(t− ν)p−1W(ν, $̄(ν))dν

∣∣∣∣
≤ Tp

Γ(p + 1)
∆W‖$− $̄‖. (15)

From (15), we have

‖N ($)−N ($̄)‖ ≤ Tp

Γ(p + 1)
∆W‖$− $̄‖. (16)

Hence, from (14) and (16), we see that N is a contraction operator. Hence, (17) has a unique
solution in both subintervals J1 and J2. From the aforesaid results, we follow that the
proposed Model (3) has a unique solution.

Remark 2. Let there exist a non-decreasing function π ∈ C(J ), such that

(i) |π(t)| ≤ ε, t ∈J .

In addition, the solution of the problem

PCC
0 Dp

t $(t) = W(t, $) + π(t), 0 < p ≤ 1, (17)

$(0) = $0

is given as

$(t) =


$0 +

∫ t

0
W(ν, $(ν))dν +

∫ t

0
π(ν)dν, t ∈J1,

$(t1) +
1

Γ(p)

∫ t

t1

(t− ν)p−1W(ν, $(ν))d(ν) +
1

Γ(p)

∫ t

t1

(t− ν)p−1π(ν)d(ν), t ∈J2,
(18)

In view of (i), we have from (18) that

∣∣$(t)−($0 +
∫ t

0
W(ν, $(ν))dν

)∣∣∣∣ ≤ εt1, if t ∈J1, (19)

and∣∣$(t)−($(t1) +
1

Γ(p)

∫ t

t1

(t− ν)p−1W(ν, $(ν))d(ν)
)∣∣∣∣ ≤ +

εt1

Γ(p + 1)
, if t ∈J2. (20)
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Theorem 3. If the assumption (C1) and the condition max
{

∆Wt1, εt1∆W
Γ(p+1)

}
< 1 hold, then the

solution of problem (17) is UH stable over both subintervals J1 and J2.

Proof. Let $ be any solution of (17), for which we have a unique solution $̂, then for t ∈J1,
one has by using Remark 2,

|$(t)− $̂(t)| =

∣∣∣∣$(t)−($0 +
∫ t

0
W(ν, $̂(ν))dν

)∣∣∣∣
≤

∣∣∣∣$(t)−($0 +
∫ t

0
W(ν, $(ν))dν

)∣∣∣∣+ ∣∣∣∣ ∫ t

0
W(ν, $(ν))dν−

∫ t

0
W(ν, $̂(ν))dν

∣∣∣∣
≤ εt1 + ∆Wt1‖$− $̂‖,

which further yields that

‖$− $̂‖ ≤ εt1

1− ∆Wt1
. (21)

In the same way, if t ∈J2, repeating the same process, one has

‖$− $̂‖ ≤
εt1

Γ(p+1)

1− εt1∆W
Γ(p+1)

. (22)

Hence, from (21) and (22), we have that the solution is UH stable over both subintervals
J1 and J2. In view of the above results, the solution of the proposed Model (3) is also
UH stable.

4. Numerical Scheme

For the numerical presentation of Model (3), we construct a numerical method for the
two subintervals of J . The numerical scheme for the piecewise problem well is like an
integer order numerical scheme as established in [46] by using $ = (S, V, I, R), as

S(tn+1) =


Sn−1(tn−1) +

h
2
W1

[
tn−1 +

h
2

, $n−1(tn−1) +
M1

2

]
, t ∈ I1,

Sn(tn) +
hp

Γ(p + 1)
W1(tn, $n(tn)) +

hp

2Γ(p + 1)

[
M2 +M3

]
, t ∈ I2,

(23)

where h = tn+1 − tn, and

M1 = W1(tn−1, $n−1(tn−1)), M2 =W1(tn, $n(tn)),

M3 = W1

(
tn +

2hpΓ(p + 1)
Γ(2p + 1)

, $(tn) +
2hpΓ(p + 1)

Γ(2p + 1)
W1(tn, $n(tn))

)
. (24)

In the same way, we can establish for other compartments as given by

V(tn+1) =


Sn−1(tn−1) +

h
2
W2

[
tn−1 +

h
2

, $n−1(tn−1) +
M1

2

]
, t ∈ I1,

Vn(tn) +
hp

γ(p + 1)
W2(tn, $n(tn)) +

hp

2Γ(p + 1)

[
M2 +M3

]
, t ∈ I2,

(25)

I(tn+1) =


Sn−1(tn−1) +

h
2
W3

[
tn−1 +

h
2

, $n−1(tn−1) +
M1

2

]
, t ∈ I1,

In(tn) +
hp

γ(p + 1)
W3(tn, $n(tn)) +

hp

2Γ(p + 1)

[
M2 +M3

]
, t ∈ I2,

(26)
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and for the last class as

R(tn+1) =


Sn−1(tn−1) +

h
2
W4

[
tn−1 +

h
2

, $n−1(tn−1) +
M1

2

]
, t ∈ I1,

Rn(tn) +
hp

γ(p + 1)
W4(tn, $n(tn)) +

hp

2Γ(p + 1)

[
M2 +M3

]
, t ∈ I2.

(27)

5. Simulations and Discussion

This part presents the numerical simulation employing the resulting method under
the ideas of classical and piecewise derivatives, as shown in Figures 6–10. The interval is
divided into two subintervals. The first interval is checked for an integer order derivative,
and the second interval is examined using data from Table 2 on various fractional orders in
terms of the Caputo derivative.

Table 2. Description and specification of real values for the variables used in the system (3).

Parameters Numerical Value

S 500 [28]
V 300 [28]
I 100 [28]
R 50 [28]
µ 0.4109 [28]
ϑ 0.001884 [28]
λ 0.00002537 [28]
τ 0.00004466 [28]
κ 0.0001 [28]
ω 0.099 [28]
ζ 0.001 [28]
ς 0.001884 [28]
ρ 0.002778 [28]

In Figure 6, we present the approximate solution to our proposed Model (3) by splitting
the domain [0, 200] as J1 = [0, 20], J2 = (20, 200] using the fractional order values in
(0, 0.4]. Here, T = 200, t1 = 20. We see that as the vaccination process continues increasing,
and the infected class shows a decline in its population dynamics. Furthermore, the
recovered class increases. The decline is clear from the susceptible class. Due to various
fractional order values, the increase and decrease behaviors in various compartments are
different. Usually, when a fractional order is smaller, the decay process will be faster and
the growth process will be slower. On the other hand, the larger the fractional order, the
faster the growth process and the slower the decay process.

In Figure 7, we present the approximate solution to our proposed Model (3) by splitting
the domain [0, 200] as J1 = [0, 20], J2 = (20, 200] using the fractional order values in
[0.45, 0.60]. We see that as the vaccination process goes on increasing, the infected class
shows a decline in its population dynamics. Furthermore, the recovered class increases.
The decline is clear from the susceptible class.

In Figure 8, we present the approximate solution to our proposed Model (3) by splitting
the domain [0, 200] as J1 = [0, 20], J2 = (20, 200] using the fractional order values in
[0.45, 0.60]. We see that as the vaccination process increases, the infected class shows a
decline in its population dynamics. Furthermore, the recovered class increases. The decline
is clear in the susceptible class.
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Figure 6. Fractional order dynamics of the proposed Model (3) using fractional orders in (0, 0.4].
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Figure 7. Fractional order dynamics of the proposed Model (3) using fractional orders in [0.45, 0.60].

With the same process, in Figure 9, we present the approximate solution to our
proposed Model (3) using the fractional order values in [0.85, 0.99]. We see that as the
vaccination process goes on increasing, the infected class shows a decline in its popula-
tion dynamics. Furthermore, the recovered class increases. The decline is clear in the
susceptible class.

Here, in Figure 10, we present the numerical illustration of Model (3) corresponding
to different values of white noise σi(i = 1, 2, 3, 4). The concerned variation in the dynamics
of a different compartment can be seen in Figure 10.
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Figure 8. Fractional order dynamics of the proposed Model (3) using fractional orders in [0.65, 0.80].
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Figure 9. Fractional order dynamics of the proposed Model (3) using fractional orders in [0.65, 0.80].

Due to the exacting mathematical formulation of these connections, a thorough anal-
ysis of all dynamic processes involved in disease transmission is required. As a result,
creating a mathematical model aids in concentrating thought on the crucial processes that
shape the epidemiology of an infectious disease and identifies the parameters that have
the most influence and are most amenable to control. Therefore, mathematical modeling is
integrative in that it brings together knowledge from widely disparate fields like microbi-
ology, the social sciences, and clinical sciences. Even though rotavirus causes substantial
morbidity in both affluent and developing nations, it is also associated with extremely high
mortality in the latter. More than 85% of rotavirus-related fatalities are thought to occur
in Asia, Latin America, and Africa. Here, we present the said disease model with some
new perspectives of fractional calculus. Theoretical results are presented graphically using
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different fractional orders in Figures 6–9. For more sophisticated results, the stochastic
version is also presented graphically in Figure 10.
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Figure 10. Presentation of stochastic form of the proposed Model (3) using different values of white
noise σi(i = 1, 2, 3, 4).

6. Conclusions

Here, a fractional order model in the sense of a piecewise derivative has been in-
vestigated in order to examine the complex behavior of the rotavirus infectious disease.
Additional analysis is provided, including information on the suggested model’s equi-
librium points, fundamental reproduction number, existence, and non-negativity of the
solution.The stability effects for local and global scenarios are thoroughly examined. This
study has introduced the idea of the piecewise differential and integral operators in a
piecewise format. The existence theory of the solution to the suggested model has been
demonstrated by the use of Schauder and Banach’s fixed-point theorems. Additionally, a
numerical methodology based on the modified Euler technique has been devised. After
that, the findings were graphically displayed for a range of fractional orders using some
actual data. Furthermore, concerning outcomes have been illustrated and contrasted with
actual facts in the instance of persons who have been reported to be infected. Abrupt
shifts in their condition of rest or uniform motion, also known as crossover behavior, occur
in many real-world scenarios. Conventional derivatives, whether fractional or classical,
are unable to adequately illustrate this phenomenon. The phenomenon in question is
well-explained using piecewise derivatives of a fractional order. Based on the numerical
findings, it can be said that the fractional-order derivative provides more information about
the suggested model than the traditional integer-order epidemic models. This kind of
research can be applied in the future to more intricate dynamical issues including deriva-
tives of the fractal-fractional and Mittag–Leffler types. Furthermore, employing optimal
control procedures and non-singular differential operators, the aforementioned model will
be examined under stochastic fractional order differential equations in the future.
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