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Abstract: The need to find the global minimum in multivariable functions is a critical problem in
many fields of science and technology. Effectively solving this problem requires the creation of initial
solution estimates, which are subsequently used by the optimization algorithm to search for the
best solution in the solution space. In the context of this article, a novel approach to generating the
initial solution distribution is presented, which is applied to a genetic optimization algorithm. Using
the k-means clustering algorithm, a distribution based on data similarity is created. This helps in
generating initial estimates that may be more tailored to the problem. Additionally, the proposed
method employs a rejection sampling algorithm to discard samples that do not yield better solution
estimates in the optimization process. This allows the algorithm to focus on potentially optimal
solutions, thus improving its performance. Finally, the article presents experimental results from the
application of this approach to various optimization problems, providing the scientific community
with a new method for addressing this significant problem.

Keywords: optimization; genetic algorithm methods; initialization distribution; evolutionary techniques;
stochastic methods; termination rules
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1. Introduction

The task of locating the global minimum of a function f can be defined as:

x∗ = arg min
x∈S

f (x) (1)

with S:
S = [a1, b1]× [a2, b2]× . . . [an, bn]

This task finds application in a variety of real-world problems, such as problems
from physics [1–3], chemistry [4–6], economics [7,8], medicine [9,10], etc. The methods
aimed at finding the global minimum are divided into two major categories: deterministic
methods and stochastic methods. The most-frequently encountered techniques of the first
category are interval techniques [11,12], which partition the initial domain of the objective
function until a promising subset is found to find the global minimum. The second
category includes the vast majority of methods, and in its ranks, one can find methods
such as controlled random search methods [13–15], simulated annealing methods [16–18],
differential evolution methods [19,20], particle swarm optimization (PSO) methods [21–23],
ant colony optimization methods [24,25], etc. Furthermore, a variety of hybrid techniques have
been proposed, such as hybrid Multistart methods [26,27], hybrid PSO techniques [28–30], etc.
Also, many parallel optimization methods [31,32] have appeared during the past few years
or methods that take advantage of the modern graphics processing units (GPUs) [33,34].
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One of the basic techniques included in the area of stochastic techniques is genetic
algorithms, initially proposed by John Holland [35]. The operation of genetic algorithms is
inspired by biology, and for this reason, they utilize the idea of evolution through genetic
mutation, natural selection, and crossover [36–38].

Genetic algorithms can be combined with machine learning to solve complex problems
and optimize models. More specifically, the genetic algorithm has been applied in many
machine learning applications, such as in the article by Ansari et al., which deals with the
recognition of digital modulation signals. In this article, the genetic algorithm is used to
optimize machine learning models by adjusting their features and parameters to achieve
better signal recognition accuracy [39]. Additionally, in the study by Ji et al., a methodology
is proposed that uses machine learning models to predict amplitude deviation in hot
rolling, while genetic algorithms are employed to optimize the machine learning models
and select features to improve prediction accuracy [40]. Furthermore, in the article by
Santana, Alonso, and Nieto, which focuses on the design and optimization of 5G networks
in indoor environments, the use of genetic algorithms and machine learning models is
identified for estimating path loss, which is critical for determining signal strength and
coverage indoors [41].

Another interesting article is by Liu et al., which discuss the use of genetic algorithms
in robotics [42]. The authors propose a methodology that utilizes genetic algorithms to
optimize the trajectory and motion of digital twin robots. A similar study was presented
by Nonoyama et al. [43], where the research focused on optimizing energy consumption
during the motion planning of a dual-arm industrial robot. The goal of the research is to
minimize energy consumption during the process of object retrieval and placement. To
achieve this, both genetic algorithms and particle swarm optimization algorithms are used
to adjust the robot’s motion trajectory, thereby increasing its energy efficiency.

The use of genetic algorithms is still prevalent even in the business world. In the
article by Liu et al. [44], the application of genetic algorithms in an effort to optimize energy
conservation in a high-speed methanol spark ignition engine fueled with methanol and
gasoline blends is discussed. In this study, genetic algorithms are used as an optimization
technique to find the best operating conditions for the engine, such as the air–fuel ratio,
ignition timing, and other engine control variables, aiming to save energy and reduce
energy consumption and emissions. In another research, the optimization of the placement
of electric vehicle charging stations is carried out [45]. Furthermore, in the study by
Chen and Hu [46], the design of an intelligent system for agricultural greenhouses using
genetic algorithms is presented to provide multiple energy sources. Similarly, in the
research by Min, Song, Chen, Wang, and Zhang [47], an optimized energy-management
strategy for hybrid electric vehicles is introduced using a genetic algorithm based on fuel
cells in a neural network under startup conditions.

Moreover, genetic algorithms are extremely useful in the field of medicine, as they
are employed in therapy optimization, medical personnel training, genetic diagnosis, and
genomic research. More specifically, in the study by Doewes, Nair, and Sharma [48], data
from blood analyses and other biological samples are used to extract characteristics related
to the presence of the SARS-CoV-2 virus that causes COVID-19. In this article, genetic
algorithms are used for data analysis and processing to extract significant characteristics
that can aid in the effective diagnosis of COVID-19. Additionally, there are studies that
present the design of dental implants for patients using artificial neural networks and
genetic algorithms [49,50]. Lastly, the contribution of genetic algorithms is significant in
both implant techniques [51,52] and surgeries [53,54].

The current work aims to improve the efficiency of the genetic algorithm in global
optimization problems, by introducing a new way of initializing the population’s chromosomes.
In the new initialization technique, the k-means [55] method is used to find initial values of
the chromosomes that will lead to finding the global minimum faster and more efficient than
chromosomes generated by some random distribution. Also, the proposed technique discards
chromosomes, which, after applying the k-means technique, are close to each other.
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During the past few years, many researchers have proposed variations for the initialization
of genetic algorithms, such as the work of Maaranen et al. [56], where they discuss the
usage of quasi-random sequences in the initial population of a genetic algorithm. Similarly,
Paul et al. [57] propose initializing the population of genetic algorithms using a vari-begin
and vari-diversity (VV) population seeding technique. Also, in the same direction of
research, Li et al. propose [58] a knowledge-based technique to initialize genetic algorithms
used mainly in discrete problems. Recently, Hassanat et al. [59]suggested the incorporation
of regression techniques for the initialization of genetic algorithms.

The rest of this article is organized as follows: in Section 2, the proposed method is
discussed in detail; in Section 3, the test functions used as well the experimental results are
fully outlined, and finally, in Section 4, some conclusions and future guidelines are listed.

2. The Proposed Method

The fundamental operation of a genetic algorithm mimics the process of natural
evolution. The algorithm begins by creating an initial population of solutions, called
chromosomes, which represents a potential solution to the objective problem. The genetic
algorithm operates by reproducing and evolving populations of solutions through iterative
steps. Following the analogy to natural evolution, the genetic algorithm allows optimal
solutions to “evolve” through successive generations. The main steps of the used genetic
algorithm are described below:

1. Initialization step:

(a) Set Nc as the number of chromosomes.
(b) Set Ng as the maximum number of allowed generations.
(c) Initialize randomly the Nc chromosomes in S. In most implementations of

genetic algorithms, the chromosomes will be selected using some random
number distribution. In the present work, the chromosomes will be selected
using the sampling technique described in Section 2.3.

(d) Set ps as the selection rate of the algorithm, with ps ≤ 1.
(e) Set pm as the mutation rate, with pm ≤ 1.
(f) Set iter = 0.

2. For every chromosome gi, i = 1, . . . , Nc: Calculate the fitness fi = f (gi) of chromosome gi.
3. Genetic operations step:

(a) Selection procedure: The chromosomes are sorted according to their fitness
values. Denote Nb as the integer part of (1− ps) × Nc; chromosomes with
the lowest fitness values are transferred intact to the next generation. The
remaining chromosomes are substituted by offspring created in the crossover
procedure. During the selection process, for each offspring, two parents are
selected from the population using tournament selection.

(b) Crossover procedure: For every pair (z, w) of selected parents, two additional
chromosomes z̃ and w̃ are produced using the following equations:

z̃i = aizi + (1− ai)wi

w̃i = aiwi + (1− ai)zi (2)

where i = 1, . . . , n. The values ai are uniformly distributed random numbers,
with ai ∈ [−0.5, 1.5] [60].

(c) Replacement procedure:

i. For i = Nb + 1 to Nc, do:

A. Replace gi using the next offspring created in the crossover
procedure.

ii. EndFor:

(d) Mutation procedure:
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i. For every chromosome gi, i = 1, . . . , Nc, do:

A. For each element j = 1, . . . , n of gi, a uniformly distributed
random number r ∈ [0, 1] is drawn. The element is altered
randomly if r ≤ pm.

ii. EndFor

4. Termination check step:

(a) Set iter = iter + 1.
(b) If iter ≥ Ng or the proposed stopping rule of Tsoulos [61] holds, then goto the

local search step, else goto Step 2.

5. Local search step: Apply a local search procedure to the chromosome of the population
with the lowest fitness value, and report the obtained minimum. In the current work,
the BFGS variant of Powell [62] was used as a local search procedure.

The current work proposes a novel method to initiate the chromosomes that utilizes the
well-known technique of k-means. The significance of the initial distribution in the solution
finding within optimization is essential across various domains and techniques. Apart from
genetic algorithms, the initial distribution impacts other optimization methods like particle
swarm optimization (PSO) [21], evolution strategies [63], and neural networks [64]. The
initial distribution defines the starting solutions that will evolve and improve throughout
the algorithm. If the initial population contains solutions close to the optimum, it increases
the likelihood of evolved solutions being in proximity to the optimal solution. Conversely,
if the initial population is distant from the optimum, the algorithm might need more
iterations to reach the optimal solution or even get stuck in a suboptimal solution. In
conclusion, the initial distribution influences the stability, convergence speed, and quality
of optimization algorithm outcomes. Thus, selecting a suitable initial distribution is crucial
for the algorithm’s efficiency and the discovery of the optimal solution in a reasonable
time [65,66].

2.1. Proposed Initialization Distribution

The present work replaces the randomness of the initialization of the chromosomes by
using the k-means technique. More specifically, the method takes a series of samples from
the objective function, and then, the k-means method is used to locate the centers of these
points. These centers can then be used as chromosomes in the genetic algorithm.

The k-means algorithm emerged in 1957 by Stuart Lloyd in the form of Lloyd’s
algorithm [67], although the concept of clustering based on distance had been introduced
earlier. The name “k-means” was introduced around 1967 by James MacQueen [68]. The
k-means algorithm is a clustering algorithm widely used in data analysis and machine
learning. Its primary objective is to partition a dataset into k clusters, where data points
within the same cluster are similar to each other and differ from data points in other
clusters. Specifically, k-means seeks cluster centers and assigns samples to each cluster,
aiming to minimize the distance within clusters and maximize the distance between cluster
centers [69]. The algorithm steps are presented in Algorithm 1.

The algorithm terminates when there is no change in cluster centers between consecutive
iterations, implying that the clusters have stabilized in their final form [70,71].

2.2. Chromosome Rejection Rule

An additional technique for discarding chromosomes where they are similar or close
to each other is listed and applied below. Specifically, each chromosome is extensively
compared to all the other chromosomes, and those that have a very small or negligible
Euclidean distance between them are sought, implying their similarity. Subsequently, the
algorithm incorporates these chromosomes into the final initial distribution table, while
chromosomes that are not similar are discarded.
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2.3. The Proposed Sampling Procedure

The proposed sampling procedure has the following major steps:

1. Take Nm random samples from the objective function using a uniform distribution.
2. Calculate the k centers of the Nm points using the k-means algorithm provided in

Algorithm 1.
3. Remove from the set of centers C points that are close to each other.
4. Return the set of centers C as the set of chromosomes.

Algorithm 1 The k-means algorithm.

1. Set the number of clusters k.
2. The input of the algorithm is the Nm initial points xi, i = 1, . . . , Nm. For the current

algorithm, the points xi are randomly selected samples in S.
3. For every point xi, i = 1, . . . , Nm, do assign randomly the point xi in a cluster Sj.
4. For every center cj, j = 1, . . . , k, do:

(a) Set Mj as the number of points in Sj.
(b) Compute cj as

cj =
1

Mj
∑

xi∈Sj

xi.

5. EndFor.
6. Repeat.

(a) Set Sj = {}, j = 1, . . . , k.
(b) For every point xi, i = 1, . . . , Nm, do:

i. Set j∗ = argmink
m=1{D(xi, cm)}, where D(x, y) is the Euclidean

distance of (x, y).
ii. Set Sj∗ = Sj∗ ∪ {xi}.

(c) EndFor:
(d) For every center cj, j = 1, . . . , k, do:

i. Set Mj as the number of points in Sj
ii. Compute cj as

cj =
1

Mj
∑

xi∈Sj

xi.

(e) EndFor:
7. Stop the algorithm, if there is no change in centers cj.

3. Experiments

In the following, the benchmark functions used in the experiments, as well as the
experimental results are presented. The test functions used here were proposed in a variety
of research papers [72,73].

3.1. Test Functions

The definitions of the test functions used are given below:

• Bohachevsky 1 (Bf1) function:

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1)−

4
10

cos(4πx2) +
7

10

with x ∈ [−100, 100]2.

• Bohachevsky 2 (Bf2) function:

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1) cos(4πx2) +

3
10



Axioms 2023, 12, 980 6 of 16

with x ∈ [−50, 50]2.

• Branin function: f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos(x1) + 10 with

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.
• CM function:

f (x) =
n

∑
i=1

x2
i −

1
10

n

∑
i=1

cos(5πxi)

where x ∈ [−1, 1]n. In the experiments conducted, the value n = 4 was used.
• Camel function:

f (x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2, x ∈ [−5, 5]2

• Easom function:

f (x) = − cos(x1) cos(x2) exp
(
(x2 − π)2 − (x1 − π)2

)
with x ∈ [−100, 100]2.

• Exponential function, defined as:

f (x) = − exp

(
−0.5

n

∑
i=1

x2
i

)
, −1 ≤ xi ≤ 1

The values n = 4, 8, 16, 32 were used in the executed experiments.
• Griewank2 function:

f (x) = 1 +
1

200

2

∑
i=1

x2
i −

2

∏
i=1

cos(xi)√
(i)

, x ∈ [−100, 100]2

• Griewank10 function: The function is given by the equation:

f (x) =
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos
(

xi√
i

)
+ 1

with n = 10.
• Gkls function: f (x) = Gkls(x, n, w) is a function with w local minima, described

in [74] with x ∈ [−1, 1]n, and n is a positive integer between 2 and 100. The values
n = 2, 3 and w = 50 were used in the experiments conducted.

• Goldstein and Price function:

f (x) =
[
1 + (x1 + x2 + 1)2(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)
]×

[30 + (2x1 − 3x2)
2(

18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)
]

with x ∈ [−2, 2]2.
• Hansen function: f (x) = ∑5

i=1 i cos[(i− 1)x1 + i]∑5
j=1 j cos[(j + 1)x2 + j], x ∈ [−10, 10]2.

• Hartman 3 function:

f (x) = −
4

∑
i=1

ci exp

(
−

3

∑
j=1

aij
(
xj − pij

)2
)
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with x ∈ [0, 1]3 and a =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

, c =


1

1.2
3

3.2

 and

p =


0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828


• Hartman 6 function:

f (x) = −
4

∑
i=1

ci exp

(
−

6

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]6 and a =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

, c =


1

1.2
3

3.2

 and

p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


• Potential function: The molecular conformation corresponding to the global minimum

of the energy of N atoms interacting via the Lennard–Jones potential [75] was used as
a test function here, and it is defined by:

VLJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

The values N = 3, 5 were used in the experiments conducted. Also, for the experiments
conducted, the values ε = 1, σ =1 were used.

• Rastrigin function:

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1, 1]2

• Rosenbrock function:

f (x) =
n−1

∑
i=1

(
100
(

xi+1 − x2
i

)2
+ (xi − 1)2

)
, −30 ≤ xi ≤ 30.

The values n = 4, 8, 16 were used in the experiments conducted.
• Shekel 5 function:

f (x) = −
5

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =


4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

, c =


0.1
0.2
0.2
0.4
0.4


• Shekel 7 function:
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f (x) = −
7

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3


.

• Shekel 10 function:

f (x) = −
10

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6


.

• Sinusoidal function:

f (x) = −
(

2.5
n

∏
i=1

sin(xi − z) +
n

∏
i=1

sin(5(xi − z))

)
, 0 ≤ xi ≤ π.

The values of n = 4, 8, 16 and z = π
6 were used in the experiments conducted.

• Test2N function:

f (x) =
1
2

n

∑
i=1

x4
i − 16x2

i + 5xi, xi ∈ [−5, 5].

The function has 2n in the specified range, and in our experiments, we used n = 4, 5, 6, 7.
• Test30N function:

f (x) =
1
10

sin2(3πx1)
n−1

∑
i=2

(
(xi − 1)2

(
1 + sin2(3πxi+1)

))
+ (xn − 1)2

(
1 + sin2(2πxn)

)

with x ∈ [−10, 10], with 30n the local minima in the search space. For our experiments,
we used n = 3, 4.

3.2. Experimental Results

The freely available software OPTIMUS was utilized for the experiments, available at the
following address: https://github.com/itsoulos/OPTIMUS (accessed on 9 September 2023).
The genetic algorithm variant of the OPTIMUS package used in the experiments conducted
was the pDoubleGenetic algorithm, which can utilize different methods for the initialization
of the chromosomes. The machine used in the experiments was an AMD Ryzen 5950X with
128 GB of RAM, running the Debian Linux operating system. To ensure research reliability,
the experiments were executed 30 times for each objective function, employing different
seeds for the random generator and reporting the mean values. The values used for the
parameters in the experiments are listed in Table 1. The values in the experimental tables

https://github.com/itsoulos/OPTIMUS


Axioms 2023, 12, 980 9 of 16

denote the average number of function calls. For the experimental tables, the following
notation is used:

1. The column UNIFORM indicates the incorporation of uniform sampling in the genetic
algorithm. In this case, Nc randomly selected chromosomes using uniform sampling
were used in the genetic algorithm.

2. The column TRIANGULAR defines the usage of the triangular distribution [76] for
the initial samples of the genetic algorithm. For this case, Nc randomly selected
chromosomes with a triangular distribution were used in the genetic algorithm.

3. The column KMEANS denotes the application of k-means sampling as proposed here
in the genetic algorithm. In this case, Nm randomly selected points were sampled from
the objective function and k centers were produced using the k-means algorithm. In
order to have a fair comparison between the results produced between the proposed
technique and the rest, the number of centers produced by the k-means method
was set to be equal to the number of chromosomes Nc of the rest of the techniques.
Ten-times the number of initial points were used to produce the centers. In addition,
through the discard process of Algorithm 2, some centers were eliminated.

4. The numbers in the cells represent the average number of function calls required to
obtain the global minimum. The fraction in parentheses denotes the percentage where
the global minimum was successfully discovered. If this fraction is absent, then the
global minimum was successfully discovered in all runs.

5. In every table, an additional line was added under the name TOTAL, representing the
total number of function calls and, in parentheses, the average success rate in finding
the global minimum.

Algorithm 2 Chromosome rejection rule.

1. Set C the set of centers, C = {ci, i = 1, . . . , k}.
2. Set ε > 0 a small positive number.
3. For every center ci, do:

(a) For every center cj, j = 1, . . . , i− 1, do:

i. If
∥∥ci − cj

∥∥ ≤ ε, then remove ci from C.

(b) EndFor:
4. EndFor:
5. Return the final set of centers C.

Table 1. The values for the parameters used in the experiments.

Parameter Meaning Value

Nc Number of chromosomes 200

Nm Initial samples for k-means 2000

k Number of centers in k-means 200

Ng Maximum number of allowed generations 200

ps Selection rate 0.9

pm Mutation rate 0.05

ε Small value used in comparisons 10−6

Table 2 presents the three different distributions for the initialization of the chromosomes,
along with the objective function evaluations. It is evident that, with the proposed initialization,
the evaluations are fewer compared to the other two initialization methods. Specifically,
compared to the uniform initialization, there was a reduction of 47.88%, while in comparison
to the triangular initialization, the reduction was 50.25%. As for the success rates, no
significant differences were observed, and this is graphically outlined in Figure 1.
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Table 2. Comparison of function calls and success rates with different distributions. The fractions
in parentheses indicate percentage of runs where the global optimum was successfully discovered.
When this fraction is absent, it is an indication that the global minimum was discovered in every
execution (100% success).

Problem Uniform Triangular Kmeans

BF1 5731 5934 4478

BF2 5648 (0.97) 5893 4512

BRANIN 4680 4835 4627

CM4 5801 5985 4431

CAMEL 4965 5099 4824

EASOM 5657 7089 4303

EXP4 4934 4958 4539

EXP8 5021 5187 4689

EXP16 5063 5246 4874

EXP32 5044 5244 5016

GKLS250 4518 4710 4525

GKLS350 4650 4833 4637

GOLDSTEIN 8099 8537 7906

GRIEWANK2 5500 (0.97) 5699 (0.97) 4324

GRIEWANK10 6388 (0.70) 7482 (0.63) 4559

HANSEN 5681 (0.93) 6329 6357

HARTMAN3 4950 5157 4998

HARTMAN6 5288 5486 5258

POTENTIAL3 5587 5806 5604

POTENTIAL5 7335 7824 7450

RASTRIGIN 5703 5848 4481

ROSENBROCK4 4241 4441 4241

ROSENBROCK8 41,802 41,965 4523

ROSENBROCK16 42,196 42,431 4962

SHEKEL5 5488 (0.97) 5193 (0.97) 5232 (0.97)

SHEKEL7 5384 5711 (0.97) 5695 (0.97)

SHEKEL10 6360 5989 6396

TEST2N4 5000 5179 5047

TEST2N5 5306 5309 5039

TEST2N6 5245 5492 5107

TEST2N7 5282 (0.93) 5583 5216

SINU4 4844 5046 4899

SINU8 5368 5503 5509

SINU16 6919 5583 5977

TEST30N3 7215 8115 5270

TEST30N4 7073 7455 6712

Total 273,966 (0.98) 282,176 (0.985) 186,217 (0.998)
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An additional set of experiments was performed to verify the reliability of the proposed
technique with high-dimensional objective functions. The following functions were used:

1. High conditioned elliptic function, defined as

f (x) =
n

∑
i=1

(
106
) i−1

n−1 x2
i

2. CM function, defined as

f (x) =
n

∑
i=1

x2
i −

1
10

n

∑
i=1

cos(5πxi)

These were used as test cases in this series of experiments. For the first function, the
dimension values n = 1, . . . , 20 were used, and the comparative results are outlined in
Table 3 and graphically in Figure 2. It is evident that, with the proposed initialization, the
results improved compared to those of the uniform distribution. Additionally, as expected,
the required function evaluations increased in parallel with the dimension of the problem.

Likewise, a series of experiments was conducted for the CM function with the
dimension n increased from 2 to 30, and the results are shown in Table 4 and graphically
in Figure 3. The proposed initialization method requires fewer function calls to obtain
the global minimum of the function, and also, the average success rate with the proposed
initialization method reached 100%, whereas with the uniform distribution, it was smaller
by 15%.

Table 3. Objective function ELP. Comparison of function calls with different distributions
and dimensions.

Dimension Calls (200 Uniform Samples) Calls (200 k-Means Centers)

5 15,637 4332

10 24,690 4486

15 39,791 4743

20 42,976 5194

25 43,617 7152

30 44,502 6914

35 45,252 15,065

40 46,567 13,952

45 47,640 15,193

50 49,393 22,535

55 50,062 23,692

60 52,293 25,570

65 52,546 25,678

70 53,346 28,153

75 54,110 28,328

80 57,209 29,320

85 60,970 29,371

90 65,319 32,121

95 68,097 35,721

100 66,803 35,396

Total 980,820 392,916
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Figure 1. Statistical comparison of function calls with different distributions.

Table 4. Objective function CM. Comparison of function calls and success rates using different
distributions.The fractions in parentheses indicate percentage of runs where the global optimum was
successfully discovered. When this fraction is absent, it is an indication that the global minimum was
discovered in every execution (100% success).

Dimension Calls (200 Uniform Samples) Calls (200 k-Means Centers)

2 5665 4718

4 6212 4431

6 7980 4390

8 9917 4449

10 12,076 (0.97) 4481

12 14,672 4565

14 18,708 (0.87) 4685

16 23,251 (0.77) 4687

18 24,624 (0.77) 4766

20 30,153 (0.80) 4848

22 35,851 (0.77) 15,246 (0.97)

24 43,677 (0.93) 7865 (0.93)

26 41,492 (0.77) 5627

28 38,017 (0.73) 10,566 (0.97)

30 47,538 (0.83) 24,803 (0.90)

Total 359,833 (0.84) 110,127 (0.98)

Figure 2. Comparison of function calls of ELP function with different distributions and dimensions.
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Figure 3. Comparison of function calls of CM function with different distributions and dimensions.

4. Conclusions

In this work, an innovative chromosome initialization method for genetic algorithms
was proposed that utilizes the well-known k-means technique. These genetic algorithms
are used to find the global minimum of multidimensional functions. This method replaces
the initialization of chromosomes in genetic algorithms, which is traditionally performed by
some random distribution, with centers produced by the k-means technique. In addition,
in this technique, centers that are close enough are rejected from being genetic algorithm
chromosomes. The above procedure significantly reduced the required number of function
calls compared to random distributions, and furthermore, in difficult high-dimensional
functions, it appears to be a more-efficient technique at finding the global minimum
than random distributions. Future research may include the incorporation of parallel
techniques such as MPI [77] or OpenMP [78] to speed up the method or application of the
initialization process to other stochastic techniques such as particle swarm optimization or
differential evolution.
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