Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring
Abstract
:1. Introduction
2. Preliminaries
3. Properties of
- •(i)
- ∼ , where and ,
- •(ii)
- ∼ , where and ,
- •(iii)
- ∼ , where , , and ,
- •(iv)
- ∼ , where and ,
- •(v)
- ∼ , where and ,
- •(vi)
- ∼ , where and ,
- •(vii)
- ∼ , where and ,
- •(viii)
- ∼ , where , , and ,
- •(ix)
- ∼ , where and ,
- •(x)
- ∼ , where and ,
- •(xi)
- ∼ , where and ,
- •(xii)
- ∼ , where , , and ,
- •(xiii)
- ∼ , where and ,
- •(xiv)
- ∼ , where and ,
- •(xv)
- ∼ , where and ,
- •(xvi)
- ∼ , where , , and ,
- •(xvii)
- ∼ , where , , and ,
- •(xviii)
- ∼ , where , , and ,
- •(xix)
- ≁, where or , with and ,
- •(xx)
- ≁, where or , with and ,
- •(xxi)
- ≁, where or , with and , .
- (1)
- , where ,
- (2)
- , where ,
- (3)
- , where ,
- (4)
- , where and ,
- (5)
- , where and ,
- (6)
- , where and .
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- .
4. Some Topological Indices of
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, I. Coloring of commutative rings. J. Algebra 1988, 116, 208–226. [Google Scholar] [CrossRef]
- Anderson, D.F.; Livingston, P.S. The zero-divisor graph of a commutative ring. J. Algebra 1999, 217, 434–447. [Google Scholar] [CrossRef]
- Akgüneş, N. Analyzing special parameters over zero-divisor graphs. AIP Conf. Proc. 2012, 1479, 390–392. [Google Scholar]
- Anderson, D.D.; Naseer, M. Beck’s coloring of a commutative ring. J. Algebra 1993, 159, 500–514. [Google Scholar] [CrossRef]
- Aykaç, S.; Akgüneş, N. Analysis of graph parameters associated with zero-divisor graphs of commutative rings. New Trends Math. Sci. 2018, 6, 144–149. [Google Scholar] [CrossRef]
- Gross, J.L.; Yellen, J. Handbook of Graph Theory; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kuzmina, A.S.; Maltsev, Y.N. On finite rings in which zero-divisor graphs satisfy the Dirac’s condition. Lobachevskii J. Math 2015, 36, 375–383. [Google Scholar] [CrossRef]
- Kuzmina, A.S.; Maltsev, Y.N. Finite rings with some restrictions on zero-divisor graphs. Russian Math. 2014, 58, 41–50. [Google Scholar] [CrossRef]
- Kuzmina, A.S. Finite rings with Eulerian zero-divisor graphs. J. Algebra Appli. 2012, 11, 1250055. [Google Scholar] [CrossRef]
- Mukwembi, S. A note on diameter and the degree sequence of a graph. Appl. Math. Lett. 2012, 25, 175–178. [Google Scholar] [CrossRef]
- Das, K.C.; Akgüneş, N.; Togan, M.; Yurttas, A.; Cangul, I.N.; Çevik, A.S. On the first Zagreb index and multiplicative Zagreb coindices of graphs. Analele Stiint. Univ. Ovidius Constanta Ser. Mat. 2016, 24, 153–176. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, A.; Vats, R.K. Analysis of adjacency matrix and neighborhood associated with zero divisor graph of finite commutative rings. Int. J. Comput. Appl. 2011, 14, 38–42. [Google Scholar] [CrossRef]
- Akgüneş, N.; Togan, M. Some graph theoretical properties over zero-divisor graphs of special finite commutative rings. Adv. Stud. Contemp. Math. 2012, 22, 309–315. [Google Scholar]
- Nikmehr, M.J.; Azadi, A.; Nikandish, R. The weakly zero-divisor graph of a commutative ring. Rev. Union Math. Argent. 2021, 62, 105–116. [Google Scholar] [CrossRef]
- Gutman, I.; Milovanović, E.; Milovanović, I. Beyond the Zagreb indices. AKCE Int. J. Graphs Comb. 2018, 17, 74–85. [Google Scholar] [CrossRef]
- Jude, T.P.; Panchadcharam, E.; Masilamani, K. Topological Indices of Dendrimers used in Drug Delivery. J. Sci. Res. 2020, 12, 645–655. [Google Scholar] [CrossRef]
- Pirzada, S. An Introduction to Graph Theory; Orient Blakswan: Hyderabad, India, 2012. [Google Scholar]
- Gutman, I.; Das, K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50, 83–92. [Google Scholar]
- Doślić, T. Vertex weighted Wiener polynomials for composite graphs. Ars. Math. Contemp. 2008, 1, 66–80. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem. 2010, 64, 359–372. [Google Scholar]
- Xu, K.; Das, K.C.; Tang, K. On the multiplicative Zagreb coindex of graphs. Opuscula Math. 2013, 33, 191–204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, N.u.; Alali, A.S.; Mir, S.A.; Nazim, M.
Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring
Rehman Nu, Alali AS, Mir SA, Nazim M.
Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring
Rehman, Nadeem ur, Amal S. Alali, Shabir Ahmad Mir, and Mohd Nazim.
2023. "Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring
Rehman, N. u., Alali, A. S., Mir, S. A., & Nazim, M.
(2023). Analysis of the Zagreb Indices over the Weakly Zero-Divisor Graph of the Ring