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Abstract: Several phenomena from natural sciences can be described by partial differential equations
of Sobolev-type. On the other hand, it was shown that in many cases, the use of fractional derivatives
provides a more realistic model than the use of standard derivatives. The goal of this paper is to
study the nonexistence of weak solutions to a time-fractional differential inequality of Sobolev-type.
Namely, we give sufficient conditions for the nonexistence or equivalently necessary conditions for
the existence. Our method makes use of the nonlinear capacity method, which consists in making
an appropriate choice of test functions in the weak formulation of the problem. This technique
has been employed in previous papers for some classes of time-fractional differential inequalities
of Sobolev-type posed on the whole space RN . The originality of this work is that the considered
problem is posed on an annulus domain, which leads to some difficulties concerning the choice of
adequate test functions.

Keywords: differential inequalities of Sobolev-type; Caputo fractional derivative; weak solution;
nonexistence
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1. Introduction

The issue of nonexistence of solutions is one of the important branches of the theory
of partial differential equations. One of the important applications of this issue is the
study of the large time behavior of solutions to evolution equations. The objective of this
paper is to establish nonexistence theorems for a time-fractional differential inequality of
Sobolev-type posed on an annulus domain of RN . Sobolev-type equations are widely used
in the description of various phenomena from natural sciences such as plasma physics,
nonstationary processes in crystalline semiconductors, filtration theory, and thermodynam-
ics (see, e.g., [1–5]). In [6], the issue of nonexistence of solutions has been investigated for
some classes of Sobolev-type inequalities posed on the whole space RN . Let us briefly recall
some of the obtained results in [6]. Consider the differential inequality

−∆(∂tu) ≥ |u|q, t > 0, x ∈ RN , (1)

where u = u(t, x) and ∂t =
∂
∂t . It was proven that, if u(0, ·) ∈ L1(RN), then for all q > 1,

(1) possesses no nontrivial weak solution. Next, consider the problem

−∆(∂tu)− ∆u ≥ |u|q, t > 0, x ∈ RN . (2)

Always under the assumption u(0, ·) ∈ L1(RN), it was proven that:

(i) If N = 1 or N = 2, then for all q > 1, (2) possesses no nontrivial weak solution;
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(ii) If N ≥ 3, then for all 1 < q < N
N−2 , (2) possesses no nontrivial weak solution.

The third problem considered in [6] is the following:

−∂t(∆u + λ|u|pu)− ∆u ≥ |u|q, t > 0, x ∈ RN , (3)

where p ≥ 0, q > 1 p + 1 < q and λ 6= 0. Under the assumption

u(0, ·) ∈ L1(RN), |u(0, ·)|pu(0, ·) ∈ L1(RN), λ
∫
RN
|u(0, x)|pu(0, x) dx ≤ 0,

it was shown that, if

1 < q <
N + γ

N + γ− 2
,

where

γ =
2(q− 1− p)

q− 1
,

then the same conclusion as for the above problems holds. Other related results can be
found in [1,7–10] (see also the references therein).

On the other hand, it was observed that in many situations, fractional derivatives
provide more realistic models than standard derivatives. This observation motivated the
study of fractional partial differential equations in various directions. In particular, several
studies related to the nonexistence of solutions have been conducted (see, e.g., [11–17] and
the references therein). For instance, in [11], the authors extended some of the obtained
results in [6] to the fractional case. We recall below some of the obtained results in [11].
Consider the time-fractional differential inequality

−∆(∂t$ u) ≥ |u|q, t > 0, x ∈ RN , (4)

where u = u(t, x), 0 < $ < 1 and ∂t$ u is the partial derivative of order $ of u with respect
to the variable t in the Caputo sense. Observe that (4) is a fractional version of (1). It was
proven that for suitable initial data, no weak solution to (4) exists for all q > 1. The next
problem considered in [11] is a time–space fractional version of (2), namely

−∆(∂t$ u) + (−∆)σu ≥ |u|q, t > 0, x ∈ RN , (5)

where 0 < $ < 1, 0 < σ < 1 and (−∆)σ is the fractional Laplacian of order σ (with respect
to x). It was established that for suitable initial data, if

1 < q < 1 +
2σ

2 + $− 2σ
,

then (5) possesses no weak solution.
We point out that all the studied problems in [6,11] are posed on the whole space

RN . Furthermore, in both references, the used approach is based on the nonlinear capacity
method that consists in making an appropriate choice of test functions in the weak formu-
lation of the problem. For more details about this method, we refer to [18,19]. Notice that
in the case of RN , the considered test functions involve cut-off functions of the form

ξR(x) = ξ
(

R−2|x|2
)

, x ∈ RN , (6)

where R is sufficiently large, ξ ∈ C∞([0, ∞)), 0 ≤ ξ ≤ 1, ξ = 1 if |x| < 1
2 and ξ = 0 if

|x| > 1. One of the important properties of this function is that

lim
R→∞

ξR(x) = 1.
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It is natural to ask whether it is possible to establish nonexistence theorems for time-
fractional Sobolev-type inequalities posed on a bounded domain. Observe that in this
case, the application of the nonlinear capacity method presents some difficulties. Namely,
if the domain is bounded, functions of the form (6) cannot be used. Motivated by this
fact, a time-fractional Sobolev-type inequality on an annulus domain is considered and the
issue of nonexistence is investigated using the nonlinear capacity method with an adequate
choice of test functions.

The considered problem and its weak formulation are given in Section 2. In Section 3,
we state our main result and a special case is studied in detail. The proof of the main result
is presented in Section 4.

2. Problem Formulation

Let 0 < η1 < η2,D =
{

x ∈ RN : η1 < |x| < η2
}

, N ≥ 3 and Σk =
{

x ∈ RN : |x| = ηk
}

,
k = 1, 2. We investigate the time-fractional Sobolev-type inequality

−∆(∂t$ u)− ι∂tς(|u|mu)− ∆u ≥ (t)|u|r in R+ ×D,
u(0, ·) = f in D,
u = 0 on Σ2,

(7)

where R+ = (0, ∞), u = u(t, x), ι 6= 0, m ≥ 0, r > m + 1, 0 < $, ς < 1,  > 0 almost
everywhere and f = f (x). Here, for any 0 < κ < 1, ∂tκu is the partial derivative of order
κ of u with respect to the variable t in the Caputo sense, that is,

∂tκu(t, x) = [Γ(1−κ)]−1
∫ t

0
(t− z)−κ∂tu(z, x) dz.

Namely, our goal is to derive sufficient conditions ensuring that (7) has no weak solution
(or equivalently, necessary conditions for the existence of weak solutions).

Problem (7) is a fractional version of

−∆(∂tu)− ι∂t(|u|mu)− ∆u ≥ (t)|u|r. (8)

The above problem belongs to the class of differential inequalities of Sobolev-type, and in-
cludes various physics problems as special cases. For instance, if ι = −1, m = 0,  ≡ τ ∈ R,
r = 3 and u ≥ 0, (8) (with equality) reduces to the semiconductor equation that was derived
in [7].

In order to define weak solutions to (7), let us recall some basic definitions from
fractional calculus (see [20] for more details). Let wj = wj(t, x) : [0, S]×Ω → R, S > 0,
j = 1, 2, be two continuous functions, where Ω is a subset of RN . For κ > 0, let

Iκ0 wj(t, x) = Cκ

∫ t

0
(t− z)κ−1wj(z, x) dz

and

IκS wj(t, x) = Cκ

∫ S

t
(z− t)κ−1wj(z, x) dz,

where Cκ = [Γ(κ)]−1 and Γ is the Gamma function.
We have the following property:∫ S

0
Iκ0 w1(s, x)w2(s, x) ds =

∫ S

0
w1(s, x) IκS w2(s, x) ds (9)

for all x ∈ Ω.
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If 0 < κ < 1, the partial derivative of order κ of wj with respect to the variable t in
the Caputo sense is given by

∂tκwj(t, x) = I1−κ
0 ∂twj(t, x) = C1−κ

∫ t

0
(t− z)−κ∂twj(z, x) dz.

For all S > 0, let DS = [0, S]× D̃, where

D̃ =
{

x ∈ RN : η1 < |x| ≤ η2

}
and

ΨS =
{

ψ ∈ C3(DS) : ψ ≥ 0, supp(ψ) ⊂⊂ DS, ψ|Σ2 = 0
}

.

Definition 1. Let 0 < η1 < η2, ι 6= 0, m ≥ 0, r > m + 1, 0 < $, ς < 1,  = (t) > 0 almost
everywhere and f ∈ Lm+1

loc (D̃). A function u ∈ Lm+1
loc ([0, ∞)× D̃) ∩ Lr

loc([0, ∞)× D̃,  dt dx) is
a weak solution to (7) if, for every S > 0, it holds that∫

DS

|u|r  ψ dx dt−
∫
D

(
f I1−$

S ∆ψ(0, x) + ι| f |m f I1−ς
S ψ(0, x)

)
dx

≤ −
∫
DS

u∆ψ dx dt +
∫
DS

(
u∂t

(
I1−$
S ∆ψ

)
+ ι|u|mu∂t

(
I1−ς
S ψ

))
dx dt

(10)

for all ψ ∈ ΨS.

We denote u ∈ WS to say that u is a weak solution to (7). Making use of (9) and
integrating by parts, we can show that, if u is a regular solution to (7), then u ∈ WS .

3. Main Result

We now give our main result.

Theorem 1. Let N ≥ 3, 0 < η1 < η2, m ≥ 0, r > m + 1,  = (t) > 0 almost everywhere and

−1
r−1 , −

m+1
r−m−1 ∈ L1

loc([0, ∞)). Let f ∈ Lm+1(D) and

ι
∫
D

f (x)| f (x)|m
(

ηN−2
2 |x|2−N − 1

)
dx < 0. (11)

If 0 < ς < $ < 1 and

lim inf
k→∞

k
r+1
r−1+ζ(ς−1)

∫ kζ

0

−1
r−1 (t) dt + kζ

(
−r+(m+1)(1−ς)

r−m−1

) ∫ kζ

0
−

m+1
r−m−1 (t) dt = 0 (12)

for some ζ � 1, thenWS = ∅.

Assume now that
(s) = sd,

where
d(m + 1) < r−m− 1.

In this case, we obtain ∫ kζ

0

−1
r−1 (t) dt = Ck

ζ(r−1−d)
r−1

and ∫ kζ

0
−

m+1
r−m−1 (t) dt = Ck

ζ(r−(m+1)(d+1))
r−m−1 ,
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which yield

k
r+1
r−1+ζ(ς−1)

∫ kζ

0

−1
r−1 (t) dt + kζ

(
−r+(m+1)(1−ς)

r−m−1

) ∫ kζ

0
−

m+1
r−m−1 (t) dt ≤ C

(
kR1 + kR2

)
,

where

R1 =
ζ(ς(r− 1)− d) + r + 1

r− 1

and

R2 =
−ζ(m + 1)(σ + d)

r−m− 1
.

Observe that (12) holds if, for some ζ � 1, one has Ri < 0, i = 1, 2. On the other hand,
R1 < 0 if and only if

ζ(ς(r− 1)− d) < −(r + 1) < 0.

So, for d > ς(r− 1), taking

ζ >
r + 1

d− ς(r− 1)
,

we obtain R1 < 0. Furthermore, since ς(r− 1) > −ς, then d > ς(r− 1) implies that d > −ς,
and then R2 < 0. Consequently, if

ς(r− 1) < d <
r−m− 1

m + 1
,

then (12) holds. But in order to ensure that the set of d satisfying the above condition is
nonempty, we should impose that ς(r− 1) < r−m−1

m+1 , that is,

ς <
1

m + 1
, r >

(m + 1)(1− ς)

1− (m + 1)ς
(≥ m + 1).

Therefore, by Theorem 1, the following result holds.

Corollary 1. Let N ≥ 3, 0 < η1 < η2, m ≥ 0 and (t) = td. Let f ∈ Lm+1(D) satisfy (11).
If 0 < ς < min

{
$, 1

m+1

}
, $ < 1 and

r >
(m + 1)(1− ς)

1− (m + 1)ς
, ς(r− 1) < d <

r−m− 1
m + 1

,

thenWS = ∅.

An example illustrating the above result is given below.

Example 1. Consider the problem
−∆(∂t1/2 u)− ∂t1/8(|u|u)− ∆u ≥ t1/4|u|r, t > 0, η1 < |x| < η2,
u(0, x) = −|x|α, η1 < |x| < η2,
u = 0 on Σ2,

(13)

where α ∈ R and r > 2. Problem (13) is a special case of (7) with

m = 1, $ =
1
2

, ς =
1
8

, ι = 1, (t) = td, d =
1
4

, f (x) = −|x|α.

Clearly, the function f belongs to L2(D) and satisfies (11). Moreover, we have

0 < ς =
1
8
<

1
2
= min

{
$,

1
m + 1

}
, $ =

1
2
< 1.
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On the other hand,

r >
(m + 1)(1− ς)

1− (m + 1)ς

is equivalent to

r >
7
3

and
ς(r− 1) < d <

r−m− 1
m + 1

is equivalent to
5
2
< r < 3.

Hence, by Corollary 1, we deduce that, if 5
2 < r < 3, then (13) possesses no weak solution.

4. Proof of the Main Result

This section is devoted to the proof of Theorem 1. We first fix some notations:

• C, Ci: positive constants independent of S and k (their values are not necessarily the
same from one inequality to another);

• Cτ , τ > 0: positive constant that depends only on τ but not on S or k;
• `� 1, ` ∈ R: ` > 0 is sufficient large.

The following preliminary results will be useful in the proof.

4.1. Preliminaries

Let 0 < η1 < η2 and N ≥ 3.
Let

υ(x) = ηN−2
2 |x|2−N − 1, x ∈ D̃. (14)

The proof of the following lemma is immediate.

Lemma 1. We have
υ ≥ 0, ∆υ = 0, υ|Σ2 = 0.

For k� 1, let {γk} be a sequence of smooth functions defined in D̃ and satisfy

0 ≤ γk ≤ 1, supp(γk) ⊂⊂
{

x ∈ RN : η1 +
1
2k
≤ |x| ≤ η2

}
;

γk = 1 if η1 +
1
k
≤ |x| ≤ η2, |∇γk| ≤ Ck, |∆γk| ≤ Ck2.

(15)

For the existence of such functions, see, e.g., [21].
For q� 1, we also consider the sequence of functions {αk} defined in D̃ by

αk(x) = υ(x)γq
k(x).

Lemma 2. Let r > 1. We have

υ(x) ≤ C, η1 +
1
2k
≤ |x| ≤ η2, (16)

υ(x) ≥ C, η1 +
1
2k
≤ |x| ≤ η1 +

1
k

(17)

and ∫
η1+

1
2k≤|x|≤η1+

1
k

α
−1
r−1
k (x)|∆αk(x)|

r
r−1 dx ≤ Ck

r+1
r−1 . (18)
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Proof. The estimates (16) and (17) are obvious. Let η1 +
1
2k ≤ |x| ≤ η1 +

1
k . By Lemma 1,

we have
∆αk(x) = υ(x)∆(γq

k)(x) + γ
q
k(x)∆υ(x) + 2∇υ(x) · ∇(γq

k)(x)

= υ(x)∆(γq
k)(x) + 2∇υ(x) · ∇(γq

k)(x),
(19)

which implies by (15) and (16) that

|∆αk(x)| ≤ C
(

γ
q−2
k (x)|∇γk(x)|2 + γ

q−1
k (x)|∆γk(x)|+ |∇υ(x)|γq−1

k (x)|∇γk(x)|
)

≤ C
(

k2 + k2 + k
)

γ
q−2
k (x)

≤ Ck2γ
q−2
k (x).

(20)

Here, · is the inner product in RN . Then, by (17), we obtain (since 0 ≤ γk ≤ 1)

α
−1
r−1
k (x)|∆αk(x)|

r
r−1 ≤ Ck

2r
r−1 γ

q− 2r
r−1

k (x) ≤ Ck
2r

r−1 .

We finally integrate the above inequality over η1 +
1
2k ≤ |x| ≤ η1 +

1
k to obtain (18).

For all S > 0, let
θ(s) = S−q(S− s)q, 0 ≤ s ≤ S.

The following result can be found in [22].

Lemma 3. Let 0 < τ < 1 < j. For all 0 ≤ s ≤ S, we have

I1−τ
S θ(s) = CτS−q(S− s)q+1−τ (21)

and

θ
−1
j−1 (s)

∣∣∣∣(I1−τ
S θ

)′
(s)
∣∣∣∣

j
j−1
≤ CS−q(S− s)q− τ j

j−1 . (22)

4.2. Proof of Theorem 1

Suppose that u ∈ WS . For q, S, k� 1, let

ψ(t, x) = θ(t)αk(x), (t, x) ∈ DS,

where θ and αk are the functions defined in the previous section. By the properties of αk
and θ, we can show that ψ ∈ ΨS. Hence, by (10), it holds that∫
DS

|u|r  ψ dx dt−
∫
D

(
f I1−$

S ∆ψ(0, x) + ι| f |m f I1−ς
S ψ(0, x)

)
dx

≤
∫
DS

|u||∆ψ| dx dt +
∫
DS

|u|
∣∣∣∂t

(
I1−$
S ∆ψ

)∣∣∣ dx dt + |ι|
∫
DS

|u|m+1
∣∣∣∂t

(
I1−ς
S ψ

)∣∣∣ dx dt.
(23)

Young’s inequality gives us that∫
DS

|u||∆ψ| dx dt =
∫
DS

(
|u|

1
r ψ

1
r

)(

−1
r ψ

−1
r |∆ψ|

)
dx dt

≤ 1
3

∫
DS

|u|r  ψ dx dt + C
∫

supp(∆ψ)
ψ
−1
r−1 

−1
r−1 |∆ψ|

r
r−1 dx dt.

(24)

Similarly, we obtain∫
DS

|u|
∣∣∣∂t

(
I1−$
S ∆ψ

)∣∣∣ dx dt

≤ 1
3

∫
DS

|u|r  ψ dx dt + C
∫

supp
(

∂t

(
I1−$
S ∆ψ

)) ψ
−1
r−1 

−1
r−1

∣∣∣∂t

(
I1−$
S ∆ψ

)∣∣∣ r
r−1 dx dt

(25)
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and∫
DS

|u|m+1
∣∣∣∂t

(
I1−ς
S ψ

)∣∣∣ dx dt

≤ 1
3

∫
DS

|u|r  ψ dx dt + C
∫

supp
(

∂t

(
I1−ς
S ψ

)) ψ−
m+1

r−m−1 −
m+1

r−m−1

∣∣∣∂t

(
I1−ς
S ψ

)∣∣∣ r
r−m−1 dx dt.

(26)

Then, (23)–(26) yield

χ f := −
∫
D

(
f I1−$

S ∆ψ(0, x) + ι| f |m f I1−ς
S ψ(0, x)

)
dx ≤ C

3

∑
j=1

Ξj, (27)

where

Ξ1 =
∫

supp(∆ψ)
ψ
−1
r−1 

−1
r−1 |∆ψ|

r
r−1 dx dt,

Ξ2 =
∫

supp
(

∂t

(
I1−$
S ∆ψ

)) ψ
−1
r−1 

−1
r−1

∣∣∣∂t

(
I1−$
S ∆ψ

)∣∣∣ r
r−1 dx dt,

Ξ3 =
∫

supp
(

∂t

(
I1−ς
S ψ

)) ψ−
m+1

r−m−1 −
m+1

r−m−1

∣∣∣∂t

(
I1−ς
S ψ

)∣∣∣ r
r−m−1 dx dt.

On the other hand, in view of (15), (18) and (19), we have

Ξ1 =
∫ S

0

∫
η1+

1
2k <|x|<η1+

1
k

θ(t)α
−1
r−1
k (x)|∆αk(x)|

r
r−1 

−1
r−1 (t) dx dt

=

(∫
η1+

1
2k <|x|<η1+

1
k

α
−1
r−1
k (x)|∆αk(x)|

r
r−1 dx

)(∫ S

0
θ(t)

−1
r−1 (t) dt

)
≤ Ck

r+1
r−1

∫ S

0

−1
r−1 (t) dt.

(28)

We also have, by (18) and (22),

Ξ2 =
∫ S

0

∫
η1+

1
2k <|x|<η1+

1
k

θ
−1
r−1 (t)

∣∣∣∣(I1−$
S θ

)′
(t)
∣∣∣∣ r

r−1
α
−1
r−1
k (x)|∆αk(x)|

r
r−1 

−1
r−1 (t) dx dt

=

(∫
η1+

1
2k <|x|<η1+

1
k

α
−1
r−1
k (x)|∆αk(x)|

r
r−1 dx

)(∫ S

0
θ
−1
r−1 (t)

∣∣∣∣(I1−$
S θ

)′
(t)
∣∣∣∣ r

r−1

−1
r−1 (t) dt

)

≤ Ck
r+1
r−1 S

−$r
r−1

∫ S

0

−1
r−1 (t) dt.

(29)

By (15), (16) and (22), we have

Ξ3 =
∫ S

0

∫
η1+

1
2k <|x|<η2

θ−
m+1

r−m−1 (t)
∣∣∣∣(I1−ς

S θ
)′
(t)
∣∣∣∣ r

r−m−1
αk(x)−

m+1
r−m−1 (t) dx dt

=

(∫
η1+

1
2k <|x|<η2

αk(x) dx

)(∫ S

0
θ−

m+1
r−m−1 (t)

∣∣∣∣(I1−ς
S θ

)′
(t)
∣∣∣∣ r

r−m−1
−

m+1
r−m−1 (t) dt

)

≤ CS
−ςr

r−m−1

∫ S

0
−

m+1
r−m−1 (t) dt.

(30)
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Furthermore, by (15) and (21), we obtain

χ f = −C$S1−$
∫

η1+
1
2k <|x|<η1+

1
k

f (x)∆αk(x) dx

− CςιS1−ς
∫

η1+
1
2k <|x|<η2

f (x)| f (x)|mαk(x) dx.
(31)

Next, in view of (27)–(31), it holds that

− CςιS1−ς
∫

η1+
1
2k <|x|<η2

f (x)| f (x)|mαk(x) dx

≤ C
(

k
r+1
r−1

∫ S

0

−1
r−1 (t) dt + k

r+1
r−1 S

−$r
r−1

∫ S

0

−1
r−1 (t) dt + S

−ςr
r−m−1

∫ S

0
−

m+1
r−m−1 (t) dt

)
+ C$S1−$

∫
η1+

1
2k <|x|<η1+

1
k

f (x)∆αk(x) dx,

that is,

− Cςι
∫

η1+
1
2k <|x|<η2

f (x)| f (x)|mαk(x) dx

≤ C
(

k
r+1
r−1 Sς−1

∫ S

0

−1
r−1 (t) dt + k

r+1
r−1 S

−$r
r−1 +ς−1

∫ S

0

−1
r−1 (t) dt + S

−ςr
r−m−1+ς−1

∫ S

0
−

m+1
r−m−1 (t) dt

)
+ C$Sς−$

∫
η1+

1
2k <|x|<η1+

1
k

f (x)∆αk(x) dx.

Since
ς− 1 >

−$r
r− 1

+ ς− 1,

the above estimate yields

− Cςι
∫

η1+
1
2k <|x|<η2

f (x)| f (x)|mαk(x) dx

≤ C
(

k
r+1
r−1 Sς−1

∫ S

0

−1
r−1 (t) dt ++S

−ςr
r−m−1+ς−1

∫ S

0
−

m+1
r−m−1 (t) dt

)
+ C$Sς−$

∫
η1+

1
2k <|x|<η1+

1
k

f (x)∆αk(x) dx.

On the other hand, using (20) and the fact that f ∈ L1(D), we obtain∫
η1+

1
2k <|x|<η1+

1
k

f (x)∆αk(x) dx ≤
∫

η1+
1
2k <|x|<η1+

1
k

| f (x)||∆αk(x)| dx

≤ Ck2
∫

η1+
1
2k <|x|<η1+

1
k

| f (x)| dx

≤ Ck2
∫
D
| f (x)| dx.

Consequently, it holds that

− Cςι
∫

η1+
1
2k <|x|<η2

f (x)| f (x)|mαk(x) dx

≤ C
(

k
r+1
r−1 Sς−1

∫ S

0

−1
r−1 (t) dt + S

−r+(m+1)(1−ς)
r−m−1

∫ S

0
−

m+1
r−m−1 (t) dt + k2Sς−$

∫
D
| f (x)| dx

)
.

Taking S = kζ , where

ζ >
2

$− ς
,
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(notice that $ > ς), we obtain

− Cςι
∫

η1+
1
2k <|x|<η2

f (x)| f (x)|mαk(x) dx

≤ C

(
k

r+1
r−1+ζ(ς−1)

∫ kζ

0

−1
r−1 (t) dt + kζ

(
−r+(m+1)(1−ς)

r−m−1

) ∫ kζ

0
−

m+1
r−m−1 (t) dt + k2+(ς−$)ζ

∫
D
| f (x)| dx

)
.

Taking the infimum limit as k → ∞ in the above inequality, using (15) and using the fact
that f ∈ Lm+1(D), we obtain

− Cςι
∫
D

f (x)| f (x)|mυ(x) dx

≤ lim inf
k→∞

k
r+1
r−1+ζ(ς−1)

∫ kζ

0

−1
r−1 (t) dt + kζ

(
−r+(m+1)(1−ς)

r−m−1

) ∫ kζ

0
−

m+1
r−m−1 (t) dt.

In particular, for ζ � 1 satisfying (12), we obtain

ι
∫
D

f (x)| f (x)|mυ(x) dx ≥ 0,

which is a contradiction with (11). Consequently,WS = ∅. �

5. Conclusions

We studied problem (7) that belongs to the class of time-fractional differential inequal-
ities of Sobolev-type. By means of the nonlinear capacity methods, a sufficient condition
under whichWS = ∅ is obtained (see Theorem 1). We next studied in detail the particular
case (s) = sd (see Corollary 1).

In this study, we considered the N-dimensional case, where N ≥ 3. The cases N = 1
or N = 2 are not investigated. A careful study of such cases would be interesting. Notice
that the dimension N is involved in the choice of the function ψ ∈ ΨS, and more precisely
in the definition of the function υ given by (14).

The weight function  involved in (7) depends only on the time-variable t. It would also
be interesting to consider the general case, when j depends on t and x, that is,  = (t, x).
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