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1. Introduction

The starting point of the fixed point theory is Banach’s seminal paper [1], where it
was established that a strict contraction has a fixed point. Since then, various interesting and
important results were obtained in this area of research [2–20], which includes the investigation
of common fixed points and variational inequalities and their applications [21–30].

In [6], a map acting on a space equipped with a complete metric was considered.
Under the assumptions that the map is uniformly continuous on bounded subsets of
the space and that all its exact iterates converge uniformly on bounded subsets of the
space, it was shown that this convergence is stable under the presence of sufficiently small
computational errors. In this work, we generalize this result for nonexpansive self-mapping
of a complete metric space with a graph. Note that this class of mappings have recently
been discussed in [12,31–39].

Suppose that (X, ρ) is a space equipped with a metric ρ. Denote by N the set of all
natural numbers, by R the set of all real numbers, and by R+ the set of all positive real
numbers. For each h ∈ X and each nonempty set C ⊂ X, put

ρ(h, C) := inf{ρ(h, ξ) : ξ ∈ C}.

For each h ∈ X and each ∆ ∈ R+, set

B(h, ∆) := {ξ ∈ X : ρ(h, ξ) ≤ ∆}.

For every map A:X → X, set A0(v) = v for all v ∈ X, A1 = A and Ai+1 = A ◦ Ai for every
nonnegative integer i.

We say that a map T : X → X is a strict contraction if there is λ ∈ (0, 1), for which

ρ(T(u), T(z)) ≤ λρ(u, z)

for each u, z ∈ X.
Banach’s theorem [1] implies that T possesses a unique point xT ∈ X, such that

T(xT) = xT
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and that for each u ∈ X,
lim
i→∞

Ti(u) = xT .

Moreover, it is known that this convergence is uniform on all bounded sets.
In [18], A. M. Ostrowski studied the influence of small errors on the convergence of

iterates of the strict contraction T, and showed that every sequence {ui}∞
i=0 ⊂ X satisfying

∞

∑
i=0

ρ(ui+1, T(ui)) < ∞

converges to the fixed point xT of the map T. In other words, every sequence of inexact
iterates of the strict contraction with summable errors converges to its fixed point.

The next step in this direction was performed in [5], where a different approach was
used. In that paper, we considered a map T : X → X, which is merely nonexpansive.
In other words,

ρ(T(u), T(v)) ≤ ρ(u, v)

for all u, v ∈ X. We assumed that for each u ∈ X, the sequence {Tn(u)}∞
n=1 converges in

(X, ρ), and showed that every sequence {ui}∞
i=0 ⊂ X satisfying

∞

∑
i=0

ρ(ui+1, T(ui)) < ∞

converges to a fixed point of the map T. In other words, if every sequence of exact iterates
of the nonexpansive map T converges, then every sequence of inexact iterates of T with
summable errors converges to its fixed point too.

This result is an important generalization of the result of [18], since for most of
nonexpansive mappings (in the sense of Baire category), all exact iterates converge [40].
The result of [5] mentioned above has numerous applications [22–24,28].

For example, if (X, ‖ · ‖) is a Banach space, ρ(u, v) = ‖u− v‖ for all u, v ∈ X, for each
v ∈ X, the sequence {Tn(v)}∞

n=1 converges in the norm topology, z0 ∈ X, {βk}∞
k=0 ⊂

(0, ∞) satisfies
∞

∑
k=0

βk < ∞,

{uk}∞
k=0 ⊂ X satisfies

sup{‖uk‖}∞
k=0 < ∞

and if for any k ∈ N ∪ {0},
zk+1 = T(zk + βkuk),

then the sequence {zk}∞
k=0 converges in the norm topology of X. We can choose the

bounded sequence {uk}∞
k=0 such that the sequence {g(zk)}∞

k=1 is decreasing where g is a
given objective function.

It should be mentioned that if the map T is a strict contraction, then its exact iterates
converge to its unique fixed point uniformly on bounded sets in a complete metric space X.
Moreover, this uniform convergence holds for most of nonexpansive mappings (in the sense
of Baire category) [40]. It turns out that the uniform convergence of iterates of nonexpansive
mappings on bounded sets is stable under small errors that are not necessarily summable.
The first result in this direction was obtained in [6]. Note that the results of this kind were
obtained for operators acting on metric space without graphs. In this paper, we show that
if iterates of a nonexpansive self-mapping of a complete metric with a graph converge
uniformly on a subset of the space to some set, then this convergence is stable under the
presence of small computational errors.

Recall (X, ρ) is a metric space. Let G be a graph for which V(G) ⊂ X is the set of all
its vertices and the set E(G) ⊂ X × X is the set of all its edges. We identify the graph G
with (V(G), E(G)).
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Fix θ ∈ X.
Let T : X → X be a mapping and that the following assumption holds:
(A) For each ξ, η ∈ X satisfying (ξ, η) ∈ E(G) the relations

(T(ξ), T(η)) ∈ E(G) and ρ(T(ξ), T(η)) ≤ ρ(ξ, η)

are valid.

2. The First Main Result

Theorem 1. Assume that F, X0 ⊂ X are nonempty subsets of X, r0 > 0,

∪{B(x, r0) : x ∈ F} ⊂ X0 (1)

and that
lim

n→∞
ρ(Tn(x), F) = 0

uniformly on X0. Let ε ∈ (0, r0). Then, there exists n0 ∈ N, such that for each sequence
{xi}∞

i=0 ⊂ X satisfying
x0 ∈ X0

and
ρ(T(xi), xi+1) ≤ (8n0)

−1ε, (2)

(T(xi), xi+1) ∈ E(G) (3)

for each integer i ∈ N ∪ {0} the inequality ρ(xi, F) ≤ ε holds for each integer i ≥ n0.

Proof. By our assumptions, there is n0 ∈ N, such that the following property holds:
(a) For each x ∈ X0, the relation ρ(Ti(x), F) < ε/8 is valid for all i ∈ N ∩ [n0, ∞).
Assume that {xi}∞

i=0 ⊂ X satisfies

x0 ∈ X0

and that for each i ∈ N ∪ {0}, Equations (2) and (3) hold. Set

δ = (8n0)
−1ε. (4)

Let p ∈ N ∪ {0} and q ∈ N. By (2), (3) and assumption (A), for each i, j ∈ N ∪ {0},

(T(xp+i), xp+i+1) ∈ E(G), (5)

ρ(xp+i+1, T(xp+i)) ≤ δ, (6)

(T j+1(xp+i), T j(xp+i+1)) ∈ E(G). (7)

It follows from (5), (6) and assumption (A) that

ρ(T j+1(xp+i), T j(xp+i+1)) ≤ ρ(T(xp+i), xp+i+1)) ≤ δ. (8)

In view of (8),

ρ(xp+q, Tq(xp)) ≤
q−1

∑
i=0

ρ(Tq−i−1(xp+i+1), Tq−i(xp+i)) ≤ qδ.

Thus, for each p ∈ N ∪ {0} and each q ∈ N,

ρ(xp+q, Tq(xp)) ≤ qδ. (9)
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In view of property (a),

ρ(Ti(x0), F) < ε/8 for each integer i ≥ n0. (10)

By (4), (9) and (10), for each integer k ∈ [n0, . . . , 4n0],

ρ(xk, F) = ρ(xk, Tk(x0)) + ρ(Tk(x0), F)

< kδ + ε/8 ≤ 4n0ε(8n0)
−1 + 8−1ε < ε < r0. (11)

Assume that s ∈ N ∪ (n0, ∞) is an integer and that

ρ(xs, F) > ε. (12)

In view of (11) and (12),
s > 4n0. (13)

By (11)–(13), we may assume, without loss of generality, that

ρ(xi, F) ≤ ε, i = n0, . . . , s− 1. (14)

By (13) and (14),
ρ(xs−n0 , F) ≤ ε. (15)

Equations (1) and (15), and ε < r0 imply that

xs−n0 ∈ X0. (16)

Property (a) and (16) imply that

ρ(Tn0(xs−n0), F) < ε/8. (17)

By (4), (9) and (13),
ρ(xs, Tn0(xs−n0)) ≤ n0δ < ε/8.

In view of (17) and the relation above,

ρ(xs, F) ≤ ρ(xs, Tn0(xs−n0)) + ρ(Tn0(xs−n0), F) < ε.

This contradicts (12) and completes the proof of Theorem 1.

3. The Second Result

Theorem 2. Assume that F ⊂ X0 ⊂ X are nonempty subsets of X, r0 > 0,

∪{B(x, r0) : x ∈ F} ⊂ X0, (18)

lim
n→∞

ρ(Tn(x), F) = 0 (19)

uniformly on X0 and that the following assumption holds:
(a) For each x ∈ ∪∞

i=0Ti(X0) and each z ∈ B(x, r0) there exists ξ ∈ X, such that

(x, ξ), (z, ξ) ∈ E(G)

and
ρ(x, ξ) ≤ c0ρ(z, x).

Let ε ∈ (0, r0). Then, there exists n0 ∈ N, such that for each sequence {xi}∞
i=0 ⊂ X satisfying

x0 ∈ X0
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and
ρ(T(xi), xi+1) ≤ (32n0)

−1(4c0 + 2)−4n0 ε (20)

for each integer i ≥ 0 the inequality ρ(xi, F) ≤ ε holds for each integer i ≥ n0.

Proof. By (19), there exists n0 ∈ N, such that the following property holds:
(b) For each x ∈ X0, the relation ρ(Ti(x), F) < ε/8 is true for all integers i ≥ n0.
Set

δ = (32n0)
−1(4c0 + 2)−4n0 ε. (21)

Assume that {xi}∞
i=0 ⊂ X satisfies

x0 ∈ X0

and that for each integer i ≥ 0, Equation (20) holds. Assume that p ∈ N ∪ {0}, i ∈ N,

xp ∈ X0, i ≤ 4n0 (22)

and that
ρ(xp+i, Ti(xp)) ≤ δ(4c0 + 2)i−1. (23)

(In view of (20), Equation (23) holds for i = 1.) By (21)–(23),

ρ(xi+p, Ti(xp)) ≤ r0/4. (24)

Property (a) and Equations (22) and (24) imply that there exists

ξi ∈ X

such that
(xi+p, ξi), (Ti(xp), ξi) ∈ E(G) (25)

and
ρ(Ti(xp), ξi) ≤ c0ρ(xi+p, Ti(xp)). (26)

By (25) and (26),
ρ(ξi, xi+p) ≤ ρ(xi+p, Ti(xp)) + ρ(Ti(xp), ξi)

≤ (c0 + 1)ρ(xi+p, Ti(xp)). (27)

Assumption (A) and Equations (25) and (26) imply that

(T(xi+p), T(ξi)), (Ti+1(xp), T(ξi)) ∈ E(G), (28)

ρ(T(xi+p), T(ξi)) ≤ ρ(xi+p, ξi), (29)

ρ(Ti+1(xp), T(ξi)) ≤ ρ(Ti(xp), ξi). (30)

By (26), (27), (29) and (30),

ρ(Ti+1xp, T(xi+p)) ≤ ρ(Ti+1xp, T(ξi)) + ρ(T(ξi), T(xi+p))

≤ ρ(Ti(xp), ξi) + ρ(xi+p, ξi)

≤ c0ρ(xi+p, Ti(xp)) + (c0 + 1)ρ(xi+p, Ti(xp))

≤ (2c0 + 1)ρ(xi+p, Ti(xp)). (31)

By (20), (23) and (31),

ρ(xi+1+p, Ti+1(xp)) ≤ ρ(xi+1+p, T(xi+p)) + ρ(T(xi+p), Ti+1(xp))

≤ δ + (2c0 + 1)ρ(xi+p, Ti(xp))
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≤ δ + δ(4c0 + 2)i−1(2c0 + 1) ≤ δ(4c0 + 2)i.

Hence, we showed by induction that for all i = 1, . . . , 4n0, (23) is true.
Therefore, the following property holds:
(c) If p ∈ N ∪ {0} and

xp ∈ X0,

then (23) holds for every i ∈ {1, . . . , 4n0}.
In view of (21) and property (c) with p = 0, for every i ∈ {1, . . . , 4n0},

ρ(xi, Ti(x0)) ≤ δ(4c0 + 2)i−1 ≤ δ(4c0 + 2)4n0−1 < ε/8 ≤ r0/8. (32)

Property (b) implies that

ρ(Ti(x0), F) < ε/8, i ∈ N ∪ [n0, ∞). (33)

It follows from (32) and (33) that for each integer k ∈ {n0, . . . , 4n0},

ρ(xk, F) ≤ ρ(xk, Tk(x0)) + ρ(Tk(x0), F) ≤ ε/8 + ε/8 < ε < r0. (34)

Assume that s ∈ N ∩ (n0, ∞) and that

ρ(xs, F) > ε. (35)

By (34) and (35),
s > 4n0. (36)

By (34)–(36), we may assume, without loss of generality, that

ρ(xi, F) ≤ ε, i = n0, . . . , s− 1. (37)

By (37),
ρ(xs−n0 , F) ≤ ε. (38)

Property (b) and Equations (18) and (38) imply that

xs−n0 ∈ X0 (39)

and
ρ(Tn0(xs−n0), F) < ε/8. (40)

In view of (21) and (39) and property (c) with p = s− n0,

ρ(xs, Tn0(xs−n0)) ≤ δ(4c0 + 2)n0−1 < ε/8. (41)

By (40) and (41),

ρ(xs, F) ≤ ρ(xs, Tn0(xs−n0)) + ρ(Tn0(xs−n0), F) < ε.

This contradicts (35). The contradiction we have reached completes the proof of Theorem 2.

Note that Theorems 1 and 2 were obtained for a large class of maps. They cover the
case when E(G) = X× X and the case of monotone nonexpansive mappings [41,42] and
they can also be applied for uniformly locally nonexpansive mappings [43].
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Example 1. Theorem 2 was proved under assumption (a). Now, we show that it holds for monotone
operators. Assume that (Y, ‖ · ‖) is a Banach space ordered by a closed convex cone Y+ (u ≤ v for
u, v ∈ Y if and only if u− v ∈ Y+) such that

Y+ −Y+ = Y.

Then by the Krein-Shmulyan theorem [44], there exists c0 > 0 such that for each y ∈ Y, there exist
y1, y2 ∈ Y+, such that

y = y1 − y2, ‖yk‖ ≤ c0‖y‖, k = 1, 2.

Let (u, v) ∈ E(G) if and only if v ≥ u and ρ(u, v) = ‖u− v‖, u, v ∈ Y.
Assume that r0 ∈ (0, 1], c0 ≥ 1, x ∈ Y and that z ∈ Y satisfies

‖z− x‖ ≤ r0.

Then, there exists u1, u2 ∈ Y+, such that

z− x = u2 − u1, ‖uk‖ ≤ c0‖z− x‖, k = 1, 2.

We have
z = x + u2 − u1 ≤ x + u2,

x ≤ x + u2.

Set
ξ = x + u2.

Evidently,
ρ(x, ξ) = ‖u2‖ ≤ c0‖z− x‖ = ρ(z, x)c0.

Thus, property (a) of Theorem 2 holds.

4. Extensions

In the sequel, we denote by Card(E) the cardinality of a set E.

Proposition 1. Assume that F, X0 ⊂ X are nonempty subsets of X, r0 > 0,

∪{B(x, r0) : x ∈ F} ⊂ X0

and that
lim

n→∞
ρ(Tn(x), F) = 0

uniformly on X0. Let a sequence {xi}∞
i=0 ⊂ X satisfy

x0 ∈ X0

(T(xi), xi+1) ∈ E(G)

for each integer i ≥ 0 and
lim
i→∞

ρ(T(xi), xi+1) = 0. (42)

Then, limi→∞ ρ(xi, F) = 0.

Proof. Let ε ∈ (0, r0). By Theorem 1, there exists n0 ∈ N, such that the following
property holds:

(i) For each sequence {yi}∞
i=0 ⊂ X satisfying

y0 ∈ X0,

ρ(T(yi), yi+1) ≤ (8n0)
−1ε, (43)
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(T(yi), yi+1) ∈ E(G) (44)

for each integer i ≥ 0, the inequality ρ(yi, F) ≤ ε holds for each integer i ≥ n0.
In view of (42), there exists n1 ∈ N, such that for each integer i ∈ N ∩ [n1, ∞),

ρ(T(xi), xi+1) ≤ (8n0)
−1ε.

Set
yi = xi+n1 , i = 0, 1, . . . , .

It is easy to see that (42) and (43) hold for each integer i ≥ 0. Property (i) implies that for
every i ∈ N ∩ [n0, ∞),

d(xi+n1 , F) = d(yi, F) ≤ ε.

Since ε is any element of the interval (0, r0), this completes the proof of Proposition 1.

Proposition 2. Assume that F, X0 ⊂ X are nonempty subsets of X, r0 > 0,

∪{B(x, r0) : x ∈ F} ⊂ X0,

T(X0) ⊂ X0 (45)

and that
lim

n→∞
ρ(Tn(x), F) = 0

uniformly on X0. Let a sequence {xi}∞
i=0 ⊂ X satisfy

x0 ∈ X0

(T(xi), xi+1) ∈ E(G), (Tk(xi), Tk(xi)) ∈ E(G) (46)

for each i, k ∈ N ∪ {0}, and that for each ε > 0,

lim
n→∞

n−1Card({i ∈ {0, . . . , n− 1} : ρ(T(xi), xi+1) ≥ ε}) = 0. (47)

Then,
lim inf

i→∞
ρ(xi, F) = 0. (48)

Proof. Assume that (48) does not hold. Then, there exists ε ∈ (0, r0) and n1 ∈ N such that
for each n ∈ N ∩ [n1, ∞),

ρ(xi, F) ≥ 2ε. (49)

By Theorem 1, there exists n0 ∈ N, such that the following property holds:
(i) For each sequence {yi}∞

i=0 ⊂ X satisfying

y0 ∈ X0,

ρ(T(yi), yi+1) ≤ (8n0)
−1ε,

(T(yi), yi+1) ∈ E(G)

for every i ∈ N ∪ {0} the inequality ρ(yi, F) ≤ ε holds for each integer i ≥ n0.
Let n ∈ N ∩ [n0 + n1, ∞). In view of (49),

ρ(xn, F) ≥ 2ε. (50)

We show that there exists i ∈ {n− n0, . . . , n}, such that

ρ(T(xi), xi+1) > (8n0)
−1ε. (51)
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Assume the contrary. Then, (51) does not hold and

ρ(T(xi), xi+1) ≤ (8n0)
−1ε, i ∈ {n− n0, . . . , n}. (52)

Set
yi = xi+n−n0 , i = 0, . . . , n0, (53)

yi+1 = T(yi), i ∈ N ∩ [n0, ∞). (54)

Property (i) and Equations (45), (46) and (52)–(54) imply that for each i ∈ N ∩ [n0, ∞),

ρ(yi, F) ≤ ε.

Together with (53), this implies that

ρ(xn, F) = ρ(yn0 , F) ≤ ε.

This contradicts (50). The contradiction we have reached proves (51). Thus, we showed
that for each i ∈ N ∩ [n0 + n1, ∞),

max{ρ(T(xi), xi+1) : i = n0, . . . , n} > (8n0)
−1ε.

This contradicts (47). The contradiction we have reached proves (48) and Proposition 2
itself.

Proposition 3. Assume that F, X0 ⊂ X are nonempty subsets of X, r0 > 0,

∪{B(x, r0) : x ∈ F} ⊂ X0,

lim
n→∞

ρ(Tn(x), F) = 0

uniformly on X0, and that the following assumption holds:
(a) For each x ∈ ∪∞

i=0Ti(X0) and each z ∈ B(x, r0), there exists ξ ∈ X, such that

(x, ξ), (z, ξ) ∈ E(G)

and
ρ(x, ξ) ≤ c0ρ(z, x).

Let a sequence {xi}∞
i=0 ⊂ X satisfy

x0 ∈ X0

lim
i→∞

ρ(T(xi), xi+1) = 0. (55)

Then, limi→∞ ρ(xi, F) = 0.

Proof. Let ε ∈ (0, r0). By Theorem 2, there exists n0 ∈ N and δ > 0, such that the following
property holds:

(b) For each sequence {yi}∞
i=0 ⊂ X satisfying

y0 ∈ X0,

ρ(T(yi), yi+1) ≤ δ

for each integer i ≥ 0, the inequality ρ(yi, F) ≤ ε holds for each integer i ≥ n0.
In view of (55), there exists a natural number n1, such that for each integer i ≥ n1,

ρ(T(xi), xi+1) ≤ δ. (56)
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Set
x0 ∈ X0

yi = xi+n1 , i = 0, 1, . . . (57)

By (56), (57) and property (b), for each i ∈ N ∩ [n0, ∞),

d(xi+n1 , F) = d(yi, F) ≤ ε.

Since ε is an arbitrary number of the interval (0, r0), this completes the proof of Proposition 3.

Proposition 4. Assume that F, X0 ⊂ X are nonempty subsets of X, r0 > 0,

∪{B(x, r0) : x ∈ F} ⊂ X0,

T(X0) ⊂ X0,

lim
n→∞

ρ(Tn(x), F) = 0

uniformly on X0 and that assumption (a) of Proposition 3 holds.
Let a sequence {xi}∞

i=0 ⊂ X satisfy for each ε > 0,

lim
n→∞

n−1Card({i ∈ {0, . . . , n− 1} : ρ(T(xi), xi+1) ≥ ε) = 0. (58)

Then,
lim inf

i→∞
ρ(xi, F) = 0. (59)

Proof. Assume that (58) does not hold. Then, there exists ε ∈ (0, r0) and n1 ∈ N, such that
for each i ∈ N ∩ [n1, ∞),

ρ(xi, F) ≥ 2ε. (60)

By Theorem 2, there exists n0 ∈ N and δ > 0, such that the following property holds:
(c) For each sequence {yi}∞

i=0 ⊂ X satisfying

y0 ∈ X0,

ρ(T(yi), yi+1) ≤ δ

for each i ∈ N ∪ {0}, the inequality ρ(yi, F) ≤ ε holds for each i ∈ N ∩ [n0, ∞).
Assume that n ∈ N ∩ [n0 + n1, ∞) is an integer. We show that

max{ρ(T(xi), xi+1) : i ∈ {n− n0, . . . , n}} > δ. (61)

Assume the contrary. Then,

ρ(T(xi), xi+1) ≤ δ, i ∈ {n− n0, . . . , n}.

Set
yi = xi+n−n0 , i = 0, . . . , n0,

yi+1 = T(yi) for each integer i ≥ n0.

Property (c) and the equations above imply that for each i ∈ N ∩ [n0, ∞),

ε ≥ ρ(yi, F) = ρ(xi+n−n0 , F).

This contradicts (59). The contradiction we have reached proves (60). Thus, we showed
that for each i ∈ N ∩ [n0 + n1), (60) holds. This contradicts (57). The contradiction we have
reached proves (58) and Proposition 7 itself.
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5. Conclusions

In this paper, we show that if iterates of a nonexpansive self-mapping of a complete
metric with a graph converge uniformly on a subset of the space, then this convergence
is stable under the presence of small computational errors. Our results generalize and
extend many results known in the literature. As particular cases, they can be applied to a
self-mapping of a complete metric space without graphs and for monotone nonexpansive
mapping in ordered Banach spaces. They are important because of the computational
errors that are always present in calculations.
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