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Abstract: This article is focused on the investigation of Mond–Weir-type robust duality for a class of
semi-infinite multi-objective fractional optimization with uncertainty in the constraint functions. We
first establish a Mond–Weir-type robust dual problem for this fractional optimization problem. Then,
by combining a new robust-type subdifferential constraint qualification condition and a generalized
convex-inclusion assumption, we present robust ε-quasi-weak and strong duality properties be-
tween this uncertain fractional optimization and its uncertain Mond–Weir-type robust dual problem.
Moreover, we also investigate robust ε-quasi converse-like duality properties between them.
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1. Introduction

Let T be a nonempty infinite index set. Suppose that fi : Rn → R, i = 1, . . . , p, and
ht : Rn → R, t ∈ T. Let us consider the semi-infinite optimization problem:

(MP)


MinRp

+

(
f1(x), . . . , fp(x)

)
s.t. ht(x) ≤ 0, ∀t ∈ T,

x ∈ Rn.

The study of optimization problem (MP) is a very interesting topic and has been
considered extensively by many scholars from different points of view, see [1–13]. How-
ever, most semi-infinite optimization models of real-world problems are contaminated
by prediction errors or asymmetry knowledge. Thus, it is necessary to consider semi-
infinite optimization problems under uncertain data. This optimization problem (MP) with
uncertainty can be captured by

(UMP)


MinRp

+

(
f1(x), . . . , fp(x)

)
s.t. ht(x, vt) ≤ 0, ∀t ∈ T,

x ∈ Rn.

Here, ht : Rn ×Rq → R, t ∈ T, are given functions, vt, t ∈ T, are uncertain parameters
which belongs to compact sets Vt ⊆ Rq.

As we know, robust optimization [14–16] is an useful approach to solve optimiza-
tion problems with uncertainty. Following robust optimization methodology, we usually
associate UMP with its robust counterpart
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(RMP)


MinRp

+

(
f1(x), . . . , fp(x)

)
s.t. ht(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T,

x ∈ Rn.

Recently, following robust optimization methodology, many interesting results de-
voted to (UMP) and its generalizations have been obtained from several different perspec-
tives. By using scalarizing methods and robust optimization, Lee and Lee [17] establish
necessary optimality theorems for robust weakly and properly efficient solutions of a multi-
objective optimization problem with uncertainty. By virtue of a new concept of generalized
convexity and robust type constraint qualification conditions, Chen et al. [18] give some
optimality conditions and duality results for an uncertain nonconvex and nonsmooth
multi-objective optimization problem. Guo and Yu [19] obtain optimality conditions for
robust approximate quasi-weakly efficient solutions for uncertain multi-objective convex
optimization problems. By combining robust optimization and scalarization technique, Sun
et al. [20] give some new characterizations of Wolfe type robust approximate duality and
saddle point theorems for a nonsmooth robust multi-objective optimization problem. Sun
et al. [21] investigate optimality conditions for robust ε-quasi efficient solutions of a class
of uncertain semi-infinite multi-objective optimization under some tools of non-smooth
analysis and a new modified scalarization technique. In addition, nonsmooth robust ε-
duality properties and ε-quasi saddle point theorems are also established. New results
on optimality and duality results for uncertain multiobjective polynomial optimization
problems are given in [22]. By using tangential subdifferential and robust optimization, Liu
et al. [23] obtained some characterizations of robust optimal solution sets for nonconvex
uncertain semi-infinite optimization problems.

On the other hand, the fractional multi-objective optimization problem is an important sub-
class of multi-objective optimization problems. In the last decades, a wide variety of interesting
works devoted to fractional multi-objective optimization problems and its generalizations have
been given, see, for example, [24–33]. We observe that there are some papers devoted to the
study of uncertain fractional multi-objective optimization problems under a robust optimiza-
tion approach. In [34], the authors study approximate optimality conditions and Wolfe-type
robust approximate duality of robust approximate weakly efficient solutions for uncertain
fractional multi-objective optimization problems. Li et al. [35] establish optimality theorems
and robust duality properties for minimax convex–concave fractional optimization problems
with uncertainty. Antczak [36] establish a new parametric approach for robust approximate
quasi-efficient solutions of robust fractional multi-objective optimization problems. Feng and
Sun [37] obtain some new results for robust weakly ε-efficient solutions for an uncertain frac-
tional multi-objective semi-infinite optimization by employing conjugate analysis. Very recently,
by employing robust limiting constraint qualification conditions and generalized convexity as-
sumptions, Thuy and Su [38] consider optimality conditions and duality results for nonsmooth
fractional multi-objective semi-infinite optimization problems with uncertain data.

In this paper, our main concern is to give new duality results of robust ε-quasi-
efficient solutions for fractional multi-objective semi-infinite optimization problems (UFP,
for brevity) with uncertainty appearing in the constraint functions. We first introduce the
robust counterpart model (RFP, for brevity) for UFP. Then, with the help of a robust-type
subdifferential constraint qualification, we present a necessary approximate optimality
condition for robust ε-quasi-efficient solutions for (UFP). Subsequently, we introduce
a Mond–Weir-type robust approximate dual problem of (UFP) based on the obtained
necessary optimality conditions. Then, we investigate robust weak, strong and converse-
like duality results between them under a new assumption of generalized convex-inclusion
for Lipschitz functions.

This paper is organized as follows. In Section 2, we first recall some basic concepts in
nonsmooth analysis and present approximate optimality results for robust ε-quasi-efficient
solutions of (UFP). In Section 3, we introduce a Mond–Weir-type robust approximate dual
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problem for (UFP), and establish the robust ε-quasi duality results between them. As a
special case, we also deal with robust ε-quasi duality results of the uncertain multi-objective
optimization problem (UMP) and its robust approximate dual problem.

2. Mathematical Preliminaries

In this paper, let us recall some concepts and preliminary results [39,40]. Let Rp be the
p-dimensional Euclidean space. We use the notation ‖ · ‖ for the Euclidean norm for Rp.
The nonnegative orthant of Rp is defined by Rp

+ := {x = (x1, . . . , xn) | xk ≥ 0, k = 1, . . . , n}.
We always use the symbol 〈·, ·〉 for the inner product in Rp. The closed unit ball of Rp is
denoted by B∗. For a nonempty infinite index set T, the linear space R(T)[41] is denoted by

R(T) := {γT = (γt)t∈T | γt = 0 for all t ∈ T except for finitely many γt 6= 0}.

Let R(T)
+ be the nonnegative cone of R(T), i.e.,

R(T)
+ := {γT ∈ R(T) | γt ≥ 0, ∀t ∈ T}.

Let φ : Rp → R be a locally Lipschitz function. The Clarke generalized directional
derivative of φ at x ∈ Rp in the direction d ∈ Rp is defined by

φc(x; d) := lim sup
y→x,t↓0

φ(y + td)− φ(y)
t

.

The one-sided directional derivative of φ at x ∈ Rp in direction d ∈ Rp is defined by

φ′(x; d) := lim
t↓0

φ(x + td)− φ(x)
t

.

We say that φ is quasidifferentiable at x ∈ Rp iff, for each d ∈ Rn, ϕ′(x; d) exists and
ϕ′(x; d) = ϕc(x; d). The Clarke subdifferential ∂cφ(x) of φ at x ∈ Rp is defined by

∂cφ(x) := {ξ∗ ∈ Rp | φc(x; d) ≥ 〈ξ∗, d〉, ∀d ∈ Rp}.

Obviously,
φc(x; d) = sup

ξ∈∂cφ(x)
〈ξ, d〉, ∀d ∈ Rn.

On the other hand, if φ : Rp → R is a convex function, ∂cφ(x) coincides with the
convex subdifferential ∂φ(x), that is

∂φ(x) := {ξ∗ ∈ Rp | φ(y)− φ(x) ≥ 〈ξ∗, y− x〉, ∀y ∈ Rp}.

Let Ω ⊆ Rp be a nonempty subset. The Clarke normal cone to Ω at x ∈ Ω is defined
by

Nc(Ω, x) := {ξ ∈ Rp | 〈ξ∗, w〉 ≤ 0, ∀w ∈ TΩ(x)}.

Here, TΩ(x) is the Clarke tangent cone to Ω at x ∈ Ω. Clearly, if Ω ⊆ Rn is a nonempty
closed convex set, Nc(Ω, x) becomes the following normal cone:

N(Ω, x) := {ξ∗ ∈ Rp | 〈ξ∗, y− x〉 ≤ 0, ∀y ∈ Ω}.

In what follows, let fi, gi : Rn → R, i = 1, . . . , p, and ht : Rn → R, t ∈ T. We consider
the following fractional multi-objective optimization problem

(FP)


MinRp

+

(
f1(x)
g1(x) , . . . , fp(x)

gp(x)

)
s.t. ht(x) ≤ 0, ∀t ∈ T,

x ∈ Rn.
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The fractional optimization problem (FP) under uncertain data in the constraint
functions becomes

(UFP)


MinRp

+

(
f1(x)
g1(x) , . . . , fp(x)

gp(x)

)
s.t. ht(x, vt) ≤ 0, ∀t ∈ T,

x ∈ Rn.

Here ht : Rn ×Rq → R. vt ∈ Vt ⊆ Rq, t ∈ T are uncertain parameters.
For (UFP), we consider its robust counterpart, namely

(RFP)


MinRp

+

(
f1(x)
g1(x) , . . . , fp(x)

gp(x)

)
s.t. ht(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T,

x ∈ Rn.

In this paper, without special statements, let fi, i = 1, . . . , p, be locally Lipschitz
functions with fi(x) ≥ 0, ∀x ∈ Rn, and gi, i = 1, . . . , p, be locally Lipschitz functions with
gi(x) > 0, ∀x ∈ Rn.

Now, we give the following important notations, which will be used later in this paper.

Definition 1. For (UFP). We say that F is the robust feasible set of (UFP) iff

F := {x ∈ Rn | ht(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T}.

Now, we consider the concept of robust ε-quasi efficient solution for (UFP). We refer
the readers to [19,21,37] for other kinds of robust approximate efficient solutions.

Definition 2. Let ε ∈ Rp
+\{0}. x̄ ∈ F is a robust ε-quasi efficient solution of (UFP) if there is

not x ∈ F , such that

fi(x)
gi(x)

≤ fi(x̄)
gi(x̄)

− εi‖x− x̄‖, for all i = 1, . . . , p,

and

f j(x)
gj(x)

<
f j(x̄)
gj(x̄)

− εj‖x− x̄‖, for some j ∈ {1, . . . , p}.

Remark 1. Note that gi ≡ 1, the concept of robust ε-quasi efficient solution of (UFP) deduces to
the robust ε-quasi efficient solution of (UMP), i.e., there is not x ∈ F , such that

fi(x) ≤ fi(x̄)− εi‖x− x̄‖, for all i = 1, . . . , p,

and

f j(x) < f j(x̄)− εj‖x− x̄‖, for some j ∈ {1, . . . , p}.

For more details, see [20,21,42].

Definition 3 ([43] (Definition 3.2)). Consider (UFP). We say that the robust-type subdifferential
constraint qualification condition RSCQ holds at x̄ ∈ F , iff

Nc(F , x̄) ⊆
⋃

λT∈T(x̄),
vT∈VT

[
∑
t∈T

λt∂
c
xht(x̄, vt)

]
,
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where T(x̄) =
{

λT ∈ R(T)
+

∣∣ λtht(x̄, vt) = 0, ∀vt ∈ Vt, t ∈ T
}

.

Next, we recall the following necessary optimality conditions for robust ε-quasi-
efficient solutions for (UFP) under the RSCQ . For convenience, let ε := (ε1, . . . , εp) ∈
Rp
+\{0}.

Proposition 1 ([44] (Theorem 1)). Let ε ∈ Rp
+\{0}. Assume that (RSCQ) holds at x̄ ∈ F . If x̄

is a robust ε-quasi-efficient solution of (UFP), then there exist η̄t ≥ 0, and v̄t ∈ Vt, t ∈ T, such that

0 ∈
p

∑
i=1

∂c fi(x̄) +
p

∑
i=1

φi(x̄)∂c(−gi)(x̄) + ∑
t∈T

η̄t∂
cht(·, v̄t)(x̄) + 2

p

∑
i=1

εigi(x̄)B∗, (1)

and
η̄tht(x̄, v̄t) = 0, ∀t ∈ T. (2)

Here, φi(·) =
fi(x̄)
gi(x̄) − εi‖ · −x̄‖, i = 1, . . . , p.

Remark 2. Proposition 1 extends [45] (Theorem 3.1) from the case of scalar optimization to the
multi-objective setting.

In the case that gi ≡ 1, the following result can be easily obtained by Proposition 1.

Proposition 2. Let ε ∈ Rp
+\{0}. Assume that (RSCQ) holds at x̄ ∈ F . If x̄ is a robust ε-quasi-

efficient solution of (UMP), then there exist η̄t ≥ 0, and v̄t ∈ Vt, t ∈ T, such that

0 ∈
p

∑
i=1

∂c fi(x̄) + ∑
t∈T

η̄t∂
cht(·, v̄t)(x̄) + 2

p

∑
i=1

εiB∗, (3)

and
η̄tht(x̄, v̄t) = 0, ∀t ∈ T. (4)

3. Main Results

In this section, based on the optimality conditions obtained in Proposition 1, we estab-
lish a robust Mond-Weir-type approximate dual problem for (UMFP), and then investigate
robust duality properties between them. Here, we only consider their robust ε-quasi-
efficient solutions. For the sake of convenience in the sequel, we set f := ( f1, . . . , fp), g :=

(g1, . . . , gp), hT := (ht)t∈T , ηT := (ηt)t ∈ R(T)
+ , VT := ∏t∈T Vt, and vT := (vt)t∈T ∈ VT .

Let y ∈ Rn and ε ∈ Rp
+\{0}. For given vt ∈ Vt, t ∈ T, the Mond-Weir-type uncertain

approximate dual problem (UFD) of (UFP) is

(UFD)



MaxRp
+

(
f1(y)
g1(y)

, . . . , fp(y)
gp(y)

)
s.t. 0 ∈

p
∑

i=1
∂c fi(y) +

p
∑

i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(·, vt)(y) + 2

p
∑

i=1
εigi(y)B∗,

ηtht(y, vt) ≥ 0, t ∈ T,
y ∈ Rn, εi ≥ 0, i = 1, . . . , p, ηt ≥ 0, t ∈ T.

The optimistic counterpart of (UFD) is defined by

(OFD)



MaxRp
+

(
f1(y)
g1(y)

, . . . , fp(y)
gp(y)

)
s.t. 0 ∈

p
∑

i=1
∂c fi(y) +

p
∑

i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(·, vt)(y) + 2

p
∑

i=1
εigi(y)B∗,

ηtht(y, vt) ≥ 0, t ∈ T,
y ∈ Rn, εi ≥ 0, i = 1, . . . , p, ηt ≥ 0, vt ∈ Vt, t ∈ T.
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Here, the maximization is also over all the parameters vt ∈ Vt, t ∈ T. The feasible set
of (OFD) is defined as

F̂ :=

{
(y, ηT , vT) ∈ Rn ×R(T)

+ × VT

∣∣∣0 ∈ p

∑
i=1

∂c fi(y) +
p

∑
i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(·, vt)(y)

+2
p

∑
i=1

εigi(y)B∗, ηtht(y, vt) ≥ 0, t ∈ T

}
.

Remark 3. (i) Obviously, if gi(x) ≡ 1, i = 1, . . . , p, (UFD) becomes the following conventional
Mond-Weir-type uncertain approximate dual problem of (UMP)

(UMD)



MaxRp
+

(
f1(y), . . . , fp(y)

)
s.t. 0 ∈

p
∑

i=1
∂c fi(y) + ∑

t∈T
ηt∂

cht(·, vt)(y) + 2
p
∑

i=1
εiB∗,

ηtht(y, vt) ≥ 0, t ∈ T,
y ∈ Rn, εi ≥ 0, i = 1, . . . , p, ηt ≥ 0, t ∈ T.

and (OFD) becomes the following Mond-Weir-type optimistic dual problem of (UMP)

(OMD)



MaxRp
+

(
f1(y), . . . , fp(y)

)
s.t. 0 ∈

p
∑

i=1
∂c fi(y) + ∑

t∈T
ηt∂

cht(·, vt)(y) + 2
p
∑

i=1
εiB∗,

ηtht(y, vt) ≥ 0, t ∈ T,
y ∈ Rn, εi ≥ 0, i = 1, . . . , p, ηt ≥ 0, vt ∈ Vt, t ∈ T.

Here, we denote the feasible set of (OMD) by

F :=

{
(y, ηT , vT) ∈ Rn ×R(T)

+ × VT

∣∣∣0 ∈ p

∑
i=1

∂c fi(y) + ∑
t∈T

ηt∂
cht(·, vt)(y)

+2
p

∑
i=1

εigi(y)B∗, ηtht(y, vt) ≥ 0, t ∈ T

}
.

(ii) In the case that ε = 0 and there is no uncertainty in the constraint functions. Then, (UFP)
becomes (FP), and (OMD) collapses to

MaxRp
+

(
f1(y)
g1(y)

, . . . , fp(y)
gp(y)

)
s.t. 0 ∈

p
∑

i=1
∂ fi(y) +

p
∑

i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(y),

ηtht(y) ≥ 0, t ∈ T,
y ∈ Rn, ηt ≥ 0, t ∈ T.

Now, similar to Definition 2, we introduce robust ε-quasi efficient solutions for (UFD).

Definition 4. Let ε ∈ Rp
+\{0}. (ȳ, η̄T , v̄T) ∈ F̂ is said to be a robust ε-quasi efficient solution of

(UFD), iff it is an ε-quasi efficient solution of (OFD), i.e., there is no (y, ηT , vT) ∈ F̂ , such that

fi(y)
gi(y)

≥ fi(ȳ)
gi(ȳ)

+ εi‖y− ȳ‖, for all i = 1, . . . , p,
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and

f j(y)
gj(y)

>
f j(ȳ)
gj(ȳ)

+ εj‖y− ȳ‖, for some j ∈ {1, . . . , p}.

Remark 4. In particular, if gi ≡ 1, the concept of robust ε-quasi efficient solution of (UFD) deduces
to the robust ε-quasi efficient solution of (UMD), i.e., there is no (y, ηT , vT) ∈ F , such that

fi(y) ≥ fi(ȳ) + εi‖y− ȳ‖, for all i = 1, . . . , p,

and

f j(y) > f j(ȳ) + εj‖y− ȳ‖, for some j ∈ {1, . . . , p}.

In order to give robust duality relations for (UFP) and (UFD), we introduce the new
definition of generalized convex-inclusion for Lipschitz functions, which is inspired by [32]
(Definition 3.4) and [21] (Definition 3.3).

Definition 5. Let Ω ⊆ Rn. ( f ,−g, hT) is said to generalized convex-inclusion on Ω at x ∈ Ω,
iff for any y ∈ Ω, ξ∗i ∈ ∂c fi(x), ξ∗∗i ∈ ∂c(−gi)(x), i = 1, . . . , p, and γ∗t ∈ ∂c

xht(x, vt), vt ∈ Vt,
t ∈ T, there exists ω ∈ Rn, such that

fi(y)− fi(x) > 〈ξ∗i , ω〉, i = 1, . . . , p,

−gi(y) + gi(x) ≥ 〈ξ∗∗i , ω〉, i = 1, . . . , p,

ht(y, vt)− ht(x, vt) ≥ 〈γ∗t , ω〉, t ∈ T,

〈b∗, ω〉 ≤ ‖y− x‖, ∀b∗ ∈ B∗,

and
0 ∈ ∂cgi(y), i = 1, . . . , p.

Remark 5. (i) In the special case that gi ≡ 1, the concept of generalized convex-inclusion
reduces to the concept of generalized convexity, i.e., ( f , hT) is generalized convex on Ω at
x ∈ Ω, iff for any y ∈ Ω, ξ∗i ∈ ∂c fi(x), i = 1, . . . , p, and γ∗t ∈ ∂c

xgt(x, vt), vt ∈ Vt, t ∈ T,
there exists ω ∈ Rn, such that

fi(y)− fi(x) > 〈ξ∗i , ω〉, i = 1, . . . , p,

ht(y, vt)− ht(x, vt) ≥ 〈γ∗t , ω〉, t ∈ T,

and
〈b∗, ω〉 ≤ ‖y− x‖, ∀b∗ ∈ B∗.

(ii) If gi ≡ 1 and there is uncertain data on fi, i = 1, . . . , p, Definition 5 reduces to [21]
(Definition 3.3).

(iii) If gi ≡ 1 and there is no uncertain data on ht, t ∈ T, Definition 5 reduces to the concept
of generalized convexity-inclusion introduced in [32] (Definition 3.4), i.e., for any y ∈ Ω,
ξ∗i ∈ ∂c fi(x), ξ∗∗i ∈ ∂c(−gi)(x), i = 1, . . . , p, and γ∗t ∈ ∂cht(x), t ∈ T, there exists
ω ∈ Rn, such that

fi(y)− fi(x) > 〈ξ∗i , ω〉, i = 1, . . . , p,

−gi(y) + gi(x) ≥ 〈ξ∗∗i , ω〉, i = 1, . . . , p,

ht(y)− ht(x) ≥ 〈γ∗t , ω〉, t ∈ T,

〈b∗, ω〉 ≤ ‖y− x‖, ∀b∗ ∈ B∗,
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and
0 ∈ ∂cgi(y), i = 1, . . . , p.

Note that this concept has been used to establish sufficient optimality conditions for weakly
ε-quasi-efficient solution for fractional optimization problem. For more details, please see [32]
(Theorem 3.5).

Now, we show robust approximate duality properties for (UFP) and (UFD) by show-
ing approximate duality properties between the robust counterpart (RMP) and the opti-
mistic counterpart (OFD). In what follows, we set

ω1 � ω2 ⇔ ω2 −ω1 ∈ Rp
+ \ {0}, ∀ω1, ω2 ∈ Rp,

ω1 6� ω2 ⇔ ω2 −ω1 6∈ Rp
+ \ {0}, ∀ω1, ω2 ∈ Rp.

The following result gives robust ε-quasi-weak duality between (UFP) and (UFD).

Theorem 1. Let ε ∈ Rp
+\{0}. Suppose that x ∈ F and (y, ηT , vT) ∈ F̂ . If ( f ,−g, hT) is

generalized convex-inclusion on Rn at y ∈ Rn, then,(
f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

)
6�
(

f1(y)
g1(y)

− 2ε1‖x− y‖, . . . ,
fp(y)
gp(y)

− 2εp‖x− y‖
)

.

Proof. Suppose to the contrary that(
f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

)
�
(

f1(y)
g1(y)

− 2ε1‖y− x‖, . . . ,
fp(y)
gp(y)

− 2εp‖y− x‖
)

.

Then,

fi(x)
gi(x)

≤ fi(y)
gi(y)

− 2εi‖y− x‖, for all i = 1, . . . , p, (5)

and

fi(x)
gi(x)

<
f j(y)
gj(y)

− 2εj‖y− x‖, for some j ∈ {1, . . . , p}. (6)

On the other hand, note that (y, ηT , vT) ∈ F̂ . Then, y ∈ Rn, ηt ≥ 0, vt ∈ Vt, t ∈ T, and

0 ∈
p

∑
i=1

∂c fi(y) +
p

∑
i=1

fi(y)
gi(y)

∂c(−gi)(y) + ∑
t∈T

ηt∂
cht(·, vt)(y) + 2

p

∑
i=1

εigi(y)B∗, (7)

and

ηtht(y, vt) ≥ 0, t ∈ T. (8)

By (5), there exist ξ∗i ∈ ∂c fi(y), ξ∗∗i ∈ ∂c(−gi)(y), i = 1, . . . , p, ζ∗t ∈ ∂cht(·, vt)(y),
t ∈ T, and b∗ ∈ B∗, such that

p

∑
i=1

ξ∗i +
p

∑
i=1

fi(y)
gi(y)

ξ∗∗i + ∑
t∈T

ηtζ
∗
t + 2

p

∑
i=1

εigi(y)b∗ = 0. (9)

Since ( f ,−g, hT) is generalized convex-inclusion on Rn at y ∈ Rn, we have for such
ξ∗i ∈ ∂c fi(y), ξ∗∗i ∈ ∂c(−gi)(y), i = 1, . . . , p, and ζ∗t ∈ ∂cht(·, vt)(y), t ∈ T, there exists
ϑ ∈ Rn, such that

fi(x)− fi(y) > 〈ξ∗i , ϑ〉, i = 1, . . . , p,
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−gi(x) + gi(y) ≥ 〈ξ∗∗i , ϑ〉, i = 1, . . . , p,

ht(x, vt)− ht(y, vt) ≥ 〈ζ∗t , ϑ〉, t ∈ T,

〈b∗, ϑ〉 ≤ ‖x− y‖, ∀b∗ ∈ B∗,

and
0 ∈ ∂cgi(y), i = 1, . . . , p.

Together with (7)–(9), these follow that

p

∑
i=1

(
fi(x)− fi(y)

gi(y)
gi(x) + 2εigi(y)‖y− x‖

)

>
p

∑
i=1

(
fi(y) + 〈ξ∗i , ϑ〉 − fi(y)

gi(y)
gi(y) +

fi(y)
gi(y)

〈ξ∗∗i , ϑ〉+ 2εigi(y)〈b∗, ϑ〉
)

=

〈
p

∑
i=1

ξ∗i +
p

∑
i=1

fi(y)
gi(y)

ξ∗∗i + 2
p

∑
i=1

εigi(y)b∗, ϑ

〉

= −
〈

p

∑
i=1

ηtζ
∗
t , ϑ

〉
≥ −∑

t∈T
ηtht(x, vt) + ∑

t∈T
ηtht(y, vt).

Together with ηtht(x, vt) ≤ 0, ∀x ∈ F, and ηtht(y, vt ≥ 0, we have

p

∑
i=1

(
fi(x)− fi(y)

gi(y)
gi(x) + 2εigi(y)‖y− x‖

)
> 0.

Then, there exists i0 ∈ {1, . . . , p}, such that

fi0(x)−
fi0(y)
gi0(y)

gi0(x) + 2εi0 gi0(y)‖y− x‖ > 0,

which follows that

fi0(x)
gi0(x)

−
fi0(y)
gi0(y)

+ 2εi0
gi0(y)
gi0(x)

‖y− x‖ > 0. (10)

Moreover, it follows from 0 ∈ ∂cgi(y), i = 1, . . . , p, that

gi0(x) ≥ gi0(y). (11)

Together with (10) and (11) , we have

fi0(x)
gi0(x)

−
fi0(y)
gi0(y)

+ 2εi0‖y− x‖ > 0.

which is a contradiction to (5) and (6). Thus, the conclusion holds.

Now, we give the following example to justify the importance of the assumption of
generalized convex-inclusion in Theorem 1.

Example 1. Let Vt := [1 − t, 1 + t], t ∈ T :=
[
0, 1

2

]
. Let f1, f2, g1, g2 : R → R and gt :

R×R→ R, t ∈ T, be defined by

f1(x) = f2(x) :=
1
2
|x|+ 1

6
x3, g1(x) = g2(x) := |x|+ 1,
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and
ht(x, vt) := tx2 − tx− 2vt,

where x ∈ R and vt ∈ Vt, t ∈ T. Then, (UFP) becomes
MinR2

+

(
1
2 |x|+

1
6 x3

|x|+1 ,
1
2 |x|+

1
6 x3

|x|+1

)
s.t. tx2 − tx− 2vt ≤ 0, ∀t ∈

[
0, 1

2

]
,

x ∈ R,

and (RFP) becomes
MinR2

+

(
1
2 |x|+

1
6 x3

|x|+1 ,
1
2 |x|+

1
6 x3

|x|+1

)
s.t. tx2 − tx− 2vt ≤ 0, ∀vt ∈ [1− t, 1 + t], t ∈

[
0, 1

2

]
,

x ∈ R.

Obviously, F = [−1, 2]. Let us consider x̄ := −1 ∈ F . Then,(
f1(x̄)
g1(x̄)

,
f2(x̄)
g2(x̄)

)
=

(
1
6

,
1
6

)
.

Now, consider the dual problem (UFD). In this setting, (OFD) becomes

MaxR2
+

(
f1(y)
g1(y)

, f2(y)
g2(y)

)
s.t. 0 ∈ ∂c f1(y) + ∂c f2(y) +

f1(y)
g1(y)

∂c(−g1)(y) +
f2(y)
g2(y)

∂c(−g2)(y)
+ ∑

t∈T
ηt∂

cht(·, vt)(y) + 2ε1g1(y)B∗ + 2ε2g2(y)B∗,

ηtht(y, vt) ≥ 0, t ∈
[
0, 1

2

]
,

y ∈ R, ε1 ≥ 0, ε2 ≥ 0, ηt ≥ 0, vt ∈ [1− t, 1 + t], t ∈
[
0, 1

2

]
.

Clearly, for any y ∈ R and vT ∈ VT , we have

∂c f1(y) = ∂c f2(y) =
[

1
2

y2 − 1
2

,
1
2

y2 +
1
2

]
,

∂c(−g1)(y) = ∂c(−g2)(y) = [−1, 1],

and
∂cht(·, vt)(y) = {2ty− t}, ∀t ∈ T.

By selecting ȳ := 1, η̄t := 0, and v̄t := −t, we have

∂c f1(ȳ) + ∂c f2(ȳ) +
f1(ȳ)
g1(ȳ)

∂c(−g1)(ȳ) +
f2(ȳ)
g2(ȳ)

∂c(−g2)(ȳ)

+ ∑
t∈T

η̄t∂
cht(·, v̄t)(ȳ) + 2ε1g1(ȳ)B∗ + 2ε2g2(ȳ)B∗

=

[
−4ε1 − 4ε2 −

1
3

, 4ε1 + 4ε2 +
7
3

]
,

and

η̄tht(ȳ, v̄t) ≥ 0, t ∈
[

0,
1
2

]
.

These mean that (ȳ, η̄T , v̄T) ∈ F̂ .
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Now, take an arbitrarily ε = (ε1, ε2) ∈ R2
+\{0} such that εi <

1
12 , i = 1, 2. Clearly,(

f1(ȳ)
g1(ȳ)

− 2ε1‖x̄− ȳ‖, f2(ȳ)
g2(ȳ)

− 2ε2‖x̄− ȳ‖
)
=

(
1
3
− 2ε1,

1
3
− 2ε2

)
�
(

1
6

,
1
6

)
=

(
f1(x̄)
g1(x̄)

,
f2(x̄)
g2(x̄)

)
.

Thus, Theorem 1 is not applicable since ( f ,−g, hT) is not generalized convex-inclusion at ȳ.
To do this, by choosing ξ̄i := 0 ∈ ∂c fi(ȳ), i = 1, 2, we have

fi(x̄)− fi(ȳ) = −
2
3
< 0 = 〈ξ̄k, ω〉, ∀ω ∈ R.

Similarly, we obtain the following robust weak duality between (UMP) and (UMD).

Corollary 1. Let ε ∈ Rp
+\{0}. Suppose that x ∈ F and (y, ηT , vT) ∈ F . If ( f , hT) is generalized

convex on Rn at y ∈ Rn, then,(
f1(x), . . . , fp(x)

)
6�
(

f1(y)− 2ε1‖x− y‖, . . . , fp(y)− 2εp‖x− y‖
)
.

Remark 6. Clearly, by virtue of Example 1, we can also illustrate that the assumption of generalized
convexity imposed in Corollary 1 is indispensable.

Now, we give robust strong duality results between (UFP) and (UFD).

Theorem 2. Let ε ∈ Rp
+\{0}. Assume that (RSCQ) holds at x̄ ∈ F . Suppose that ( f ,−g, hT) is

generalized convex-inclusion on Rn at y ∈ Rn. If x̄ is a robust ε-quasi-efficient solution of (UFP),
then there exist η̄T ∈ R(T)

+ and v̄T ∈ VT , such that (x̄, η̄T , v̄T) ∈ F̂ is a robust 2ε-quasi-efficient
solution of (UFD).

Proof. Assume that x̄ ∈ F is a robust ε-quasi-efficient solution of (UFP). By Theorem 1,
there exist η̄t ≥ 0, and v̄t ∈ Vt, t ∈ T, such that

0 ∈
p

∑
i=1

∂ fi(x̄)−
p

∑
i=1

φi(x̄)∂gi(x̄) + ∑
t∈T

η̄t∂ht(·, v̄t)(x̄) + 2
p

∑
i=1

εigi(x̄)B∗, (12)

and
η̄tht(x̄, v̄t) = 0, ∀t ∈ T. (13)

From (12), (13) and φi(x̄) = fi(x̄)
gi(x̄) , we have

(x̄, η̄T , v̄T) ∈ F̂ .

By Theorem 1, for all (y, ηT , vT) ∈ F̂ , we have(
f1(x̄)
g1(x̄)

, . . . ,
fp(x̄)
gp(x̄)

)
6�
(

f1(y)
g1(y)

− 2ε1‖x̄− y‖, . . . ,
fp(y)
gp(y)

− 2εp‖x̄− y‖
)

.

Thus, (x̄, η̄T , v̄T) is a robust 2ε-quasi-efficient solutions of (UFD). Thus, the conclusion
holds.

Remark 7. In [32] (Theorem 4.2), the authors established duality properties for ε-quasi-weakly
efficient solutions between (FP) and its Mond Weir-type dual problem. Therefore, Theorem 2
encompasses [32] (Theorem 4.2), where the corresponding results were given in terms of the
similar methods.
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Similarly, we give robust strong duality properties for robust ε-quasi efficient solutions
between (UMP) and (UMD).

Corollary 2. Let ε ∈ Rp
+\{0}. Assume that (RSCQ) holds at x̄ ∈ F . Suppose that ( f , hT) is

generalized convex on Rn at y ∈ Rn. If x̄ is a robust ε-quasi-efficient solution of (UMP), then there
exist η̄T ∈ R(T)

+ and v̄T ∈ VT , such that (x̄, η̄T , v̄T) ∈ F is a robust 2ε-quasi-efficient solution
of (UMD).

Now, we give a robust converse-like duality property between (UFP) and (UFD).

Theorem 3. Let ε ∈ Rp
+\{0} and (x̄, η̄T , v̄T) ∈ F̂ . If ( f ,−g, hT) is generalized convex-inclusion

on Rn at x̄ ∈ F , then, x̄ ∈ F is a robust 2ε-quasi efficient solution of (UMP).

Proof. Sine (x̄, η̄T , v̄T) ∈ F̂ and ( f ,−g, hT) is generalized convex-inclusion on Rn at x̄, it
follows from Theorem 1 that(

f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

)
6�
(

f1(x̄)
g1(x̄)

− 2ε1‖x− x̄‖, . . . ,
fp(x̄)
gp(x̄)

− 2εp‖x− x̄|
)

, ∀x ∈ F .

Therefore, x̄ ∈ F is a robust 2ε-quasi efficient solution of (UFP) and the proof is com-
plete.

Remark 8. Note that the converse-like duality result obtained in Theorem 3 extends [32] (Theorem 4.4)
from the deterministic (i.e., with singleton uncertainty sets) to the robust setting. Moreover, Theorem
3 extends [43] (Theorem 4.3) from the scalar case to the multi-objective setting.

Similarly, we have the following results for (UMP) and (UMD), which has been
considered in [21] (Theorem 4.3).

Corollary 3. Let ε ∈ Rp
+\{0} and (x̄, η̄T , v̄T) ∈ F . If ( f , hT) is generalized convex on Rn at

x̄ ∈ F , then, x̄ ∈ F is a robust ε-quasi efficient solution of (UMP).

4. Conclusions

In this paper, we consider robust ε-quasi-efficient solutions for a class of uncertain
fractional optimization problems. By employing robust optimization and the obtained opti-
mality conditions, a Mond–Weir-type robust dual problem for the fractional optimization
problem is established. Then, we give robust ε-quasi-weak, strong and converse duality
properties between them in terms of generalized convex-inclusion assumptions. We also
show that the obtained results extend the corresponding results obtained in [21,32,37].

In the future, similar to [21,43], it is of interest to formulate Mixed-type robust ap-
proximate dual problem of uncertain fractional optimization problems, and study robust
ε-quasi-weak, strong, and converse duality properties between them.
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