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Abstract: This article is focused on the investigation of Mond-Weir-type robust duality for a class of
semi-infinite multi-objective fractional optimization with uncertainty in the constraint functions. We
first establish a Mond—Weir-type robust dual problem for this fractional optimization problem. Then,
by combining a new robust-type subdifferential constraint qualification condition and a generalized
convex-inclusion assumption, we present robust e-quasi-weak and strong duality properties be-
tween this uncertain fractional optimization and its uncertain Mond-Weir-type robust dual problem.
Moreover, we also investigate robust e-quasi converse-like duality properties between them.
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MSC: 90C29; 90C46

1. Introduction

Let T be a nonempty infinite index set. Suppose that f; : R" - R, i =1,...,p, and
hy : R" =+ R, t € T. Let us consider the semi-infinite optimization problem:

MinRi (fl(x),...,fp(x))
s.t. ht(x) <0,VteT,
x € R

(MP)

The study of optimization problem (MP) is a very interesting topic and has been
considered extensively by many scholars from different points of view, see [1-13]. How-
ever, most semi-infinite optimization models of real-world problems are contaminated
by prediction errors or asymmetry knowledge. Thus, it is necessary to consider semi-
infinite optimization problems under uncertain data. This optimization problem (MP) with
uncertainty can be captured by

Mings ()., fy(2))
(UMP) st. h(x,0) <O, VteT,
x € R™.

Here, Ii; : R" x R — R, t € T, are given functions, v, t € T, are uncertain parameters
which belongs to compact sets V; C RY.

As we know, robust optimization [14-16] is an useful approach to solve optimiza-
tion problems with uncertainty. Following robust optimization methodology, we usually
associate UMP with its robust counterpart
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MinRi (fl(x), . ,fp(x))
(RMP) st h(x,0) <0,Vor € Vit €T,
x € R™.

Recently, following robust optimization methodology, many interesting results de-
voted to (UMP) and its generalizations have been obtained from several different perspec-
tives. By using scalarizing methods and robust optimization, Lee and Lee [17] establish
necessary optimality theorems for robust weakly and properly efficient solutions of a multi-
objective optimization problem with uncertainty. By virtue of a new concept of generalized
convexity and robust type constraint qualification conditions, Chen et al. [18] give some
optimality conditions and duality results for an uncertain nonconvex and nonsmooth
multi-objective optimization problem. Guo and Yu [19] obtain optimality conditions for
robust approximate quasi-weakly efficient solutions for uncertain multi-objective convex
optimization problems. By combining robust optimization and scalarization technique, Sun
et al. [20] give some new characterizations of Wolfe type robust approximate duality and
saddle point theorems for a nonsmooth robust multi-objective optimization problem. Sun
et al. [21] investigate optimality conditions for robust e-quasi efficient solutions of a class
of uncertain semi-infinite multi-objective optimization under some tools of non-smooth
analysis and a new modified scalarization technique. In addition, nonsmooth robust e-
duality properties and e-quasi saddle point theorems are also established. New results
on optimality and duality results for uncertain multiobjective polynomial optimization
problems are given in [22]. By using tangential subdifferential and robust optimization, Liu
et al. [23] obtained some characterizations of robust optimal solution sets for nonconvex
uncertain semi-infinite optimization problems.

On the other hand, the fractional multi-objective optimization problem is an important sub-
class of multi-objective optimization problems. In the last decades, a wide variety of interesting
works devoted to fractional multi-objective optimization problems and its generalizations have
been given, see, for example, [24-33]. We observe that there are some papers devoted to the
study of uncertain fractional multi-objective optimization problems under a robust optimiza-
tion approach. In [34], the authors study approximate optimality conditions and Wolfe-type
robust approximate duality of robust approximate weakly efficient solutions for uncertain
fractional multi-objective optimization problems. Li et al. [35] establish optimality theorems
and robust duality properties for minimax convex—concave fractional optimization problems
with uncertainty. Antczak [36] establish a new parametric approach for robust approximate
quasi-efficient solutions of robust fractional multi-objective optimization problems. Feng and
Sun [37] obtain some new results for robust weakly e-efficient solutions for an uncertain frac-
tional multi-objective semi-infinite optimization by employing conjugate analysis. Very recently,
by employing robust limiting constraint qualification conditions and generalized convexity as-
sumptions, Thuy and Su [38] consider optimality conditions and duality results for nonsmooth
fractional multi-objective semi-infinite optimization problems with uncertain data.

In this paper, our main concern is to give new duality results of robust e-quasi-
efficient solutions for fractional multi-objective semi-infinite optimization problems (UFP,
for brevity) with uncertainty appearing in the constraint functions. We first introduce the
robust counterpart model (RFP, for brevity) for UFP. Then, with the help of a robust-type
subdifferential constraint qualification, we present a necessary approximate optimality
condition for robust e-quasi-efficient solutions for (UFP). Subsequently, we introduce
a Mond-Weir-type robust approximate dual problem of (UFP) based on the obtained
necessary optimality conditions. Then, we investigate robust weak, strong and converse-
like duality results between them under a new assumption of generalized convex-inclusion
for Lipschitz functions.

This paper is organized as follows. In Section 2, we first recall some basic concepts in
nonsmooth analysis and present approximate optimality results for robust e-quasi-efficient
solutions of (UFP). In Section 3, we introduce a Mond-Weir-type robust approximate dual



Axioms 2023, 12, 1029

3of 14

problem for (UFP), and establish the robust e-quasi duality results between them. As a
special case, we also deal with robust e-quasi duality results of the uncertain multi-objective
optimization problem (UMP) and its robust approximate dual problem.

2. Mathematical Preliminaries

In this paper, let us recall some concepts and preliminary results [39,40]. Let R? be the
p-dimensional Euclidean space. We use the notation || - || for the Euclidean norm for R?.
The nonnegative orthant of R is defined by Ri ={x=(x1,...,%) | >0,k=1,...,n}.
We always use the symbol (-, -) for the inner product in R?. The closed unit ball of R? is
denoted by B*. For a nonempty infinite index set T, the linear space R(T[41] is denoted by

R(T) .= {77t = (vt)ter | 7t = 0forall t € T except for finitely many ; # 0}.
Let Rf) be the nonnegative cone of R(T), ie.,
R = {7 e RD | 94 > 0,v¢ € T}.

Let ¢ : R — R be a locally Lipschitz function. The Clarke generalized directional
derivative of ¢ at x € R” in the direction d € R is defined by

¢ly +td) — ¢(y)
t

¢ (x;d) := limsup
y—x,tl0

The one-sided directional derivative of ¢ at x € R? in direction d € R? is defined by

Voo ) o i P F ) — (%)
¢ (x;d) == ltlfg ; .

We say that ¢ is quasidifferentiable at x € R? iff, for each d € R", ¢/(x;d) exists and
¢’ (x;d) = ¢°(x;d). The Clarke subdifferential 0°¢p(x) of ¢ at x € RP is defined by

°P(x) :={¢" € RP | ¢°(x;d) > (¢*,d),Vd € RF}.

Obviously,
¢°(x;d) = sup (¢, d), Vd € R".
geo‘g(x)
On the other hand, if ¢ : R — R is a convex function, 0°¢p(x) coincides with the
convex subdifferential d¢(x), that is

Ip(x) :={C" e RV [ p(y) —p(x) = (¢ y — x), Yy € RV}

Let Q) C R” be a nonempty subset. The Clarke normal cone to () at x € () is defined
by
Ne(Q,x) :={C e RV | (&",w) <0,Vw € Tn(x)}.
Here, Ty (x) is the Clarke tangent cone to Q at x € Q). Clearly, if Q C R" is a nonempty
closed convex set, N°((), x) becomes the following normal cone:

N(Q,x):={" e RV | (", y—x) <0,y € Q}.

In what follows, let f;,g; :R" = R,i=1,...,p,and I : R" = R, t € T. We consider
the following fractional multi-objective optimization problem

AR AW
Ming, (£(5,..., 255)

(FP) sit. h(x) <O, VteT,
x € R".
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The fractional optimization problem (FP) under uncertain data in the constraint
functions becomes

. fi(x) fr(x)
Ming, (gi(X)""’gZ(x»
(UFP) st h(x,v) <O VEET,

x € R".

Here h; : R" x RT = R. v; € Vy C RY, t € T are uncertain parameters.
For (UFP), we consider its robust counterpart, namely

A AW
Ming, (265, 2145)

(RFP) sit. h(x,00) <0,Vor €V, t €T,
x € R,

In this paper, without special statements, let f;, i = 1,...,p, be locally Lipschitz
functions with fj(x) > 0,Vx € R",and g;,i = 1,..., p, be locally Lipschitz functions with
Qi(x) > 0,Vx € R".

Now, we give the following important notations, which will be used later in this paper.

Definition 1. For (UFP). We say that F is the robust feasible set of (UFP) iff
Fi={x e R" | It(x,v) <0,Vov; € Vs, t € T}

Now, we consider the concept of robust e-quasi efficient solution for (UFP). We refer
the readers to [19,21,37] for other kinds of robust approximate efficient solutions.

Definition 2. Let € € R \{0}. & € F is a robust e-quasi efficient solution of (UFP) if there is
not x € F, such that

~

i(%)
gi(x) ~ gi(%)

—€illx —x||, foralli=1,...,p,

and

fi(x) _ £

— —¢€i||lx — x||, forsomeje {1,...,p}.
o) < @ kTl forsomeji€ {1,...,p)

Remark 1. Note that g; = 1, the concept of robust e-quasi efficient solution of (UFP) deduces to
the robust e-quasi efficient solution of (UMP), i.e., there is not x € F, such that

fi(x) < fi(x) —€illx — x||, foralli=1,...,p,

and

fi(x) < fi(%) —¢€jllx — x|, forsomeje{1,...,p}.

For more details, see [20,21,42].

Definition 3 ([43] (Definition 3.2)). Consider (UFP). We say that the robust-type subdifferential
constraint qualification condition RSCQ holds at ¥ € F, iff

N(Fnc U [Zmaght(x,vt)],
AreT(z), LtET
v VT
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(UFD)

(OFD)

where T(X) = {/\T € R |)\tht %,v1) =0,Yor € Vy, t € T}

Next, we recall the following necessary optimality conditions for robust e-quasi-
efficient solutions for (UFP) under the RSCQ . For convenience, let € := (€1,...,€p) €

R \{0}.

Proposition 1 ([44] (Theorem 1)). Let € € Ri\{O} Assume that (RSCQ) holds at ¥ € F. If %
is a robust e-quasi-efficient solution of (UFP), then there exist j; > 0, and 0y € Vi, t € T, such that

p p
0e) ofi(%) + Zsz (2)0°(—gi) (%) + Y 7:0he (-, 0¢) (%) +2 ) eigi(©)B*, (1)
i=1

teT i=1

fithy(%,9¢) = 0,Vt € T. ()

Remark 2. Proposition 1 extends [45] (Theorem 3.1) from the case of scalar optimization to the
multi-objective setting.

In the case that g; = 1, the following result can be easily obtained by Proposition 1.

Proposition 2. Let € € RY \{0}. Assume that (RSCQ) holds at * € F. If  is a robust e-quasi-
efficient solution of (UMP), then there exist 7y > 0, and 0y € V4, t € T, such that

4 14
0€ Y 0fi(%) + Y (-, 0¢) (%) +2 ) e;B", 3)
i=1 teT i=1
and
fithy(%,9¢) = 0,Vt € T. 4)

3. Main Results

In this section, based on the optimality conditions obtained in Proposition 1, we estab-
lish a robust Mond-Weir-type approximate dual problem for (UMFP), and then investigate
robust duality properties between them. Here, we only consider their robust e-quasi-
efficient solutions. For the sake of convenience in the sequel, we set f := (f1,...,fy), § 1=

(81/---,8p) hr := (Mt)ier, T := (1)t € Rf)/ Vr = [lier Vi, and o1 := (0t)seT € V7.
Lety € R" and € € R\ \{0}. For given v; € V,, t € T, the Mond-Weir-type uncertain
approximate dual problem (UFD) of (UFP) is

Ay) »(v)
Maxgy (%1@)'“ y})q ) )
st 0€ Z oFfily) + ; 0°(—&i)(y) + X mohe(-,01)(y) +2 X €igi(y)B*,

Maxgy (my) gy

s.t.

i 1 teT i=1
Utht(]/,vt) >0,teT,

yeR,e>0,i=1,...,p,m+ >20,t €T.

The optimistic counterpart of (UFD) is defined by

a1y)” " gy

0€ £ 0% + & A (g0 + £ ol o) +2 L eiil)B

l 1gl
Utht(]/,vt) >0,teT,
yeR e >0,i=1,...,p,n >0,0: € Vi, t €T.

-~ —
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Here, the maximization is also over all the parameters v; € V;, t € T. The feasible set
of (OFD) is defined as

2. 0 () S L i) e -
F = (ynr 1) € R" X Ry XVT‘OG;B f:(y)+;gi(y)8( gJ(}/HZ;ma he (-, 00) (y)

p
+2 Zeigi(y)IB%*,mht(y, v) >0,t€e T}.
i=1

Remark 3. (i)  Obviously, ifg;(x) =1,i =1, ..., p, (UFD) becomes the following conventional
Mond-Weir-type uncertain approximate dual problem of (UMP)

MaXRK (fl(y)r--'rfp(y))
st 0€ LOR)+ L pdHl, o)) +2 £ B,
i= c

i=1
nihe(y,ve) >0, €T,
yeRe>0,i=1,...,p,3: >0,t€T.

(UMD)

and (OFD) becomes the following Mond-Weir-type optimistic dual problem of (UMP)

Maxgy (fi(¥),--- fp(¥))
P p
(OMD) st. 0€ El o fily) + teZT 70he (-, 06) (y) +2 X B,

i=1
nihe(y, 1) > 0,t € T,
yGR”,ei Z Orl: 1,...,p,]7t Zorvt c Vt,t c T.

Here, we denote the feasible set of (OMD) by

p
F = {(y,i’]T,UT) € R" x RiT) X Vr ‘0 S Zacfl(y) + 2 macht(-,vt)(y)
i=1 teT

|4
+2 Zeigi(y)IB%*,mht(y, ) >0,t€ T}.
i=1

(ii) In the case that € = 0 and there is no uncertainty in the constraint functions. Then, (UFP)
becomes (FP), and (OMD) collapses to
fily) fr(v)
Maxg, (gpl(y)"”'gr(%))
st 0€ Y ofily)+ L HBo(—g)(y) + X mdhu(y),
i=1 i=1 o teT

ﬂtht(y) Z Olt S T/
y GR”,T]t >0,teT.

Now, similar to Definition 2, we introduce robust e-quasi efficient solutions for (UFD).

Definition 4. Let ¢ € R\ \{0}. (7, 7jr, 1) € F is said to be a robust e-quasi efficient solution of
(UFD), iff it is an e-quasi efficient solution of (OFD), i.e., there is no (y, y1,vr) € F, such that

fiy) o fi(§)
si(y) ~ (@)

+eilly—gl, foralli=1,...,p,
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and

% > g((gmw—m, for some j € {1,...,p}.

Remark 4. In particular, if g; = 1, the concept of robust e-quasi efficient solution of (UFD) deduces
to the robust e-quasi efficient solution of (UMD), i.e., there is no (y, y1,vr) € F, such that

fily) = fi(y) +eilly =gl foralli=1,...,p,

and

fiy) > £i(@) +€jlly = gll, forsomeje{1,...,p}.

In order to give robust duality relations for (UFP) and (UFD), we introduce the new
definition of generalized convex-inclusion for Lipschitz functions, which is inspired by [32]
(Definition 3.4) and [21] (Definition 3.3).

Definition 5. Let QO C R". (f, —g, hr) is said to generalized convex-inclusion on Q at x € Q,
iffforanyy € Q, & € 0°fi(x), G* € 0°(—=gi)(x), i =1,...,p, and v} € Shi(x,vt), v € V4,
t € T, there exists w € R", such that

fity) = filx) > (G, w)i=1,...p,

—gi(y) +gi(x) > ({7 w),i=1,...,p,
hi(y, o) — hi(x,00) > (7, w), t €T,
(", w) < |ly — x|, vb* € B,
and

0€d%i(y),i=1,...,p.

Remark 5. (i)  In the special case that ¢; = 1, the concept of generalized convex-inclusion
reduces to the concept of generalized convexity, i.e., (f,hr) is generalized convex on Q) at
x € Q, iffforanyy € O, 5F € 0°fi(x),i=1,...,p,and yf € 958:(x,v¢), v € Vi, t €T,
there exists w € R", such that

fily) = filx) > (&, w),i=1,...,p,

he(y,0¢) — he(x,00) > (7f,w), t €T,

and
(0%, w) < |ly — x||, Vb* € B*.

(ii) If g = 1 and there is uncertain data on f;, i = 1,...,p, Definition 5 reduces to [21]
(Definition 3.3).

(iii) If g = 1 and there is no uncertain data on hy, t € T, Definition 5 reduces to the concept
of generalized convexity-inclusion introduced in [32] (Definition 3.4), i.e., forany y € Q),
Gr e o°fi(x), &F € o°(—gi)(x), i = 1,...,p, and v; € Ohy(x), t € T, there exists
w € R", such that

fily) = filx) > (& w),i=1,...,p,

—gi(y) +gi(x) > (&, w),i=1,...,p,
hi(y) — hi(x) > (v, w),t €T,
(b*,w) < |ly — x||,Vb* € B,
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and
0€d%i(y),i=1,...,p.

Note that this concept has been used to establish sufficient optimality conditions for weakly
e-quasi-efficient solution for fractional optimization problem. For more details, please see [32]
(Theorem 3.5).

Now, we show robust approximate duality properties for (UFP) and (UFD) by show-
ing approximate duality properties between the robust counterpart (RMP) and the opti-
mistic counterpart (OFD). In what follows, we set

W 2wy wy—w € ]Ri \ {0}, Vwi,wy € RP,
w1 A wy & wy —wy ¢ R\{0}, Vi, w, € R
The following result gives robust e-quasi-weak duality between (UFP) and (UFD).

Theorem 1. Let € € R7\{0}. Suppose that x € F and (y,yr,or) € F. If (f,—g hr) is
generalized convex-inclusion on R" at y € R", then,

AR BON L (AW o B
(i) 2 (o 2l vl 05 20— ).
Proof. Suppose to the contrary that
filx) fr(x) Aly) B frly) B
(o) = (G 2ty 25 20y 1),
Then,
;llgg < ;gg —2¢illy — x|, foralli=1,...,p, (5)
and
g%i; < gg)) —2¢jlly — x|, forsomeje€ {1,...,p}. (6)
On the other hand, note that (y, 1, vr) € F. Then, yeR", 5 >0,v: €V}, t €T, and
Z c Z fl(y) c c P *
0€ ) ofily) + ) ~730(=8) (W) + Y} mohe (-, ve) (y) +2 ) eigi(y)B", @)
i=1 = siy) teT i=1
and

nihe(y,vt) > 0,t € T. (8)

By (5), there exist ' € o°fi(y), & € o°(—gi)(v), i = 1,...,p, &f € Oh(-,v6)(y),
t € T,and b* € B*, such that

Y&+ ) T+ Y mili4+2) eigi(y)bt =0. )
i—1 = &iy) teT i—1

Since (f, —g, hr) is generalized convex-inclusion on R"” at y € R”, we have for such
G e ofily), & € 0°(—=gi)(y), i = 1,...,p,and {} € 0hi(-,vt)(y), t € T, there exists
% € R", such that

filx) = fily) > (&, 8), i=1,...,p,
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—gi(x) +gi(y) > (&,9), i=1,...,p,
he(x,v¢) —he(y,v¢) > (07, 0), teT,
(b*,8) < |lx —yl|,vb* € B,

and
0e€d%ily),i=1,...,p.
Together with (7)-(9), these follow that
P , _ i(y) ) e .
Yo filx) — =255 8i(x) + 2€i8i(y) lly — x|l
i—1 Si(y)
3 fily) fi(y) )
> + (&F,0) — = (y) + = ,0) + 264 (y) (0%, 0
l;(m )+ 60~ L0+ LB 5, 0) 4 26igi) 67, 0)
! * fl y ** P *
= (). &+ Z & +2) egiy)b”, 8
i=1 i=1 8i y i=1
= Z s, l9>
> — 2 Utht(X,Ut) + Y nihe(y, o).
teT teT
Together with 14 (x,v¢) <0, Vx € F, and n¢h:(y, v: > 0, we have
r ;
3 () = L) + 2ei) Iy +1 ) > 0
i=1 8i y)
Then, there exists iy € {1,...,p}, such that
(v)
Fol) = 12 () 1 261,80, )lly — x> 0,
glg( )
which follows that
fiolx)  fi,(y) 8iy(y)
— + 2¢; —x|| > 0. 10
Si(¥)  &i(y) g (x) ly == (10

Moreover, it follows from 0 € 0°¢;(y),i =1,..., p, that

Sio (%) > iy (y)- (11)

Together with (10) and (11) , we have

fiolx)  fi,(y)
8i0(x) gio(y)

+2¢;,[ly — x|| > 0.

which is a contradiction to (5) and (6). Thus, the conclusion holds. [

Now, we give the following example to justify the importance of the assumption of
generalized convex-inclusion in Theorem 1.

Example 1. Let V; == [1 —t,1+t],t € T := [O,%}. Let f1,f2,81,82 : R — Roand g :
RxR — R,t €T, be defined by

fi(x) = fax) = IXI+ 22%,81(x) = ga(x) = [x| + 1,
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and
hi(x,0¢) = tx? — tx — 20y,

where x € Rand vy € V4, t € T. Then, (UFP) becomes

Ming, iEdus S Lk £
R [x[+1 7 Jx[+1

st tx? —tx —20; <0,Vt € [O, %},
x € R,

and (RFP) becomes

1 1,3 1 1,3
Ming, (2x+6x 5 |x[+gx )
"l

EES A
st tx? —tx —20; <O, Vo € [1—t,1+1],t € [O,%},
x € R.

Obviously, F = [—1,2]. Let us consider X := —1 € F. Then,

(s atn) = (5:6)

Now, consider the dual problem (UFD). In this setting, (OFD) becomes

AW AW
Maxga (g1 W)’ gz<y))

st 0€Ffy) +Ffy) + BB (—g)(y) + 250 (—g2) ()

+ L1000 (1) + 26081 (1)B + 26225,
S

nehe(y,ve) > 0,t € {0,%},
yEeRe1 >0, >0, >0,00€ [1—t,1+1],t€ [o,ﬂ.

Clearly, for any y € R and vr € Vr, we have

Ofily) = faly) = B}f — S gt ﬂ

o(=81)(y) = (=) (y) = [-1,1],

and
Ohe(-,ve)(y) = {2ty — t},Vt € T.
By selecting i := 1, j; := 0, and 9; := —t, we have
c - c _ fl (]7) c - fZ(y) c =
d +9 + =20~ R
f(@) + 0 fo(7) ) (—81)(@) () (—82)(#)
+ Y 10 h (-, 0) (7) 4 2€181(7)B* + 2€282(7)B*
teT
1 7
= | —4€1 —4er — 5,461 + 4eyr + 3],
and

|

N~

the(7,0¢) > 0,t € [0,

These mean that (, 7, 071) € F.
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Now, take an arbitrarily € = (€1,€2) € R3\{0} such that e; < £5,i = 1,2. Clearly,

AD)  eis—ar 2O o) = (Lo
(LD —zerjr—g1, B ez ) = (§ - 201, 5 ~22:)

-(2)-(4559)
6'6) " \51(®) 82()

Thus, Theorem 1 is not applicable since (f, —g, hr) is not generalized convex-inclusion at ij.
To do this, by choosing &; := 0 € o°f;(i7), i = 1,2, we have

fi(®) = fig) = =3 <0 = (G ), Yo e R

Similarly, we obtain the following robust weak duality between (UMP) and (UMD).

Corollary 1. Let e € RE\{0}. Suppose that x € F and (y,nr,vr) € F. If (f, hr) is generalized
convex on R" at y € R", then,

(A&), - fp(x) 2 (A(y) = 2e1llx =yl ... fp(y) = 2epllx = yl]).

Remark 6. Clearly, by virtue of Example 1, we can also illustrate that the assumption of generalized
convexity imposed in Corollary 1 is indispensable.

Now, we give robust strong duality results between (UFP) and (UFD).

Theorem 2. Let € € RE\{0}. Assume that (RSCQ) holds at X € F. Suppose that (f, —g, hr) is
generalized convex-inclusion on R" at y € R™. If % is a robust e-quasi-efficient solution of (UFP),
then there exist fiT € Rf) and o € Vr, such that (%,7jr,01) € F is a robust 2e-quasi-efficient
solution of (UFD).

Proof. Assume that X € F is a robust e-quasi-efficient solution of (UFP). By Theorem 1,
there exist 7; > 0, and o; € V}, t € T, such that

p p p
0€ ) afi(x) — ) ¢i()agi(x) + Y idhe(-,0¢) (%) +2 ) £;gi(X)B, (12)
i=1 i=1 teT i=1
and
fthe(x,9¢) = 0,Vt € T. (13)
From (12), (13) and ¢;(%) = {;g%, we have
(%,71,97) € F.
By Theorem 1, for all (v, #1,vT) € ]?, we have
fi(x) fp(@) <f1(y) oerllE — fr(y) e lE )
() 2 (B 2l vl 205 20l w1

Thus, (%, i, 97) is a robust 2e-quasi-efficient solutions of (UFD). Thus, the conclusion
holds. O

Remark 7. In [32] (Theorem 4.2), the authors established duality properties for e-quasi-weakly
efficient solutions between (FP) and its Mond Weir-type dual problem. Therefore, Theorem 2
encompasses [32] (Theorem 4.2), where the corresponding results were given in terms of the
similar methods.
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Similarly, we give robust strong duality properties for robust e-quasi efficient solutions
between (UMP) and (UMD).

Corollary 2. Let € € RE\{0}. Assume that (RSCQ) holds at & € F. Suppose that (f, hr) is

generalized convex on R" at y € R". If % is a robust e-quasi-efficient solution of (UMP), then there

exist Tt € Rg) and o7 € Vr, such that (%, ijr, 1) € F is a robust 2e-quasi-efficient solution

of (UMD).
Now, we give a robust converse-like duality property between (UFP) and (UFD).

Theorem 3. Let e € R%\{0} and (%,777,97) € F. If (f, —g, hr) is generalized convex-inclusion
on R" at x € F, then, & € F is a robust 2e-quasi efficient solution of (UMP).

Proof. Sine (%,71,7) € F and (f, —g,ht) is generalized convex-inclusion on R" at £, it
follows from Theorem 1 that

A6 KON L (A fo(®)
<g1<x>""'gp<x>> 2 <g1<f> 3 (®)

Therefore, X € F is a robust 2e-quasi efficient solution of (UFP) and the proof is com-
plete. O

—2e||lx—%|,...,

—26p||x—3?|>,Vx S

Remark 8. Note that the converse-like duality result obtained in Theorem 3 extends [32] (Theorem 4.4)
from the deterministic (i.e., with singleton uncertainty sets) to the robust setting. Moreover, Theorem
3 extends [43] (Theorem 4.3) from the scalar case to the multi-objective setting.

Similarly, we have the following results for (UMP) and (UMD), which has been
considered in [21] (Theorem 4.3).

Corollary 3. Let ¢ € RE\{0} and (%,7r,01) € F. If (f, hr) is generalized convex on R" at
% € F, then, X € F is a robust e-quasi efficient solution of (UMP).

4. Conclusions

In this paper, we consider robust e-quasi-efficient solutions for a class of uncertain
fractional optimization problems. By employing robust optimization and the obtained opti-
mality conditions, a Mond-Weir-type robust dual problem for the fractional optimization
problem is established. Then, we give robust e-quasi-weak, strong and converse duality
properties between them in terms of generalized convex-inclusion assumptions. We also
show that the obtained results extend the corresponding results obtained in [21,32,37].

In the future, similar to [21,43], it is of interest to formulate Mixed-type robust ap-
proximate dual problem of uncertain fractional optimization problems, and study robust
e-quasi-weak, strong, and converse duality properties between them.
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