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Abstract

:

For a quantale   I ,   the unit interval endowed with a continuous triangular norm, we introduce the canonical, op-canonical and Kleisli extensions of the conical  I -semifilter monad to   I - Rel .   It is proved that the op-canonical extension coincides with the Kleisli extension.
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1. Introduction and Preliminaries


Monoidal topology [1] provides a unification of settings to describe some important mathematical structures as   ( T , Q ,  T ^  )  -algebras (lax algebras for short) in which  Q  is a quantale and  T  is a monad on  Set  with a lax extension   T ^   to the category   Q - Rel   of sets and  Q -relations.



Examples include:




	
Metric spaces can be described as   ( I ,  P +  ,  I ¯  )  -algebras [2].



	
Topological spaces can be characterized as   ( β , 2 ,  β ¯  )  -algebras [3,4].



	
Approach spaces [5] can be viewed as   ( β ,  P +  ,  β ¯  )  -algebras [6].








Here, 2 denotes the two-element quantale,    P +  =  (   [ 0 , ∞ ]  op  , + , 0 )    is the Lawvere quantale,  I  is the identity monad with the identity extension, and  β  is the ultrafilter monad with the Barr extensions   β ¯   to   2 - Rel   ( Rel  for short) and   I - Rel  , respectively.



To study many-valued topologies within the monoidal topology framework, it is of importance to determine the counterpart of the filter monad in the many-valued context and investigate its lax extensions. Extensive studies have been conducted to develop many-valued filter monads and their lax extensions, including the  B -valued filter monad [7], the ⊤-filter monad with its Kleisli extension to  Rel  [8], and the saturated prefilter monad with its Kleisli extension to  Rel  [9]. The lax algebras for the latter two are both CNS spaces, which are a kind of many-value topological spaces introduced in [10].



Lax extensions offer rich topological structures. For example, as demonstrated in [11], there are two lax extensions of the filter monad  F  to  Q -  Rel :   the canonical one   F ^   and the op-canonical one   F ˇ  . When   Q = 2 ,   the lax algebras with respect to the canonical extension are closure spaces, while those associated with the op-canonical extension are topological spaces. When   Q =  P +  ,   the lax algebras with respect to the canonical extension are closeness spaces, while those for the op-canonical extension are approach spaces.



The approach adopted in this paper is motivated by an observation that the filter monad is the discrete restriction of two composite monads on   Ord :   up-set-ideal monad  IdeUp  and the down-set-filter monad   FilDn .   Furthermore, the canonical (op-canonical) lax extension of the filter monad can be induced from the lax extension of  IdeUp  ( FilDn ) to  Dist .



In Section 2, we introduce the composite monads   CP †   and    C †  P   and show that the discrete restriction of them are the conical  I -semifilter monad [12], where  C  is the monad of  I -distributors generated by a forward Cauchy net that plays the role of the ordered-ideal monad   Ide .   The canonical and op-canonical extensions of the conical  I -semifilter monad to   I - Rel   are also presented in this section. Section 3 focuses on the Kleisli extension of the conical  I -semifilter monad to   I - Rel  . The lax algebras for the Kleisli extension to   I - Rel   are same to those for the Kleisli extension to   Rel .  



In the remainder of this section, we introduce the many-valued context in which we work, including the quantale   I ,    I -relations and  I -categories.



1.1. Monads


A monad on a category  A  is a triple   T = ( T , m , e ) ,   where   T : A → A   is an endfunctor and   m :  T 2  → T ,   e :  id A  → T   are natural transformations such that


  m · e T = m · T e =  id A      and     m · m T = m · T m .  








Sometimes, we simply write T for   ( T , m , e )   if no confusion arises.



Given two monads   T = ( T , m , e )   and   S = ( S , n , d ) ,   a morphism   σ : T → S   of monads is a natural transformation   σ : T → S   such that


  d = σ · e     and     σ · m = n · ( σ ∗ σ ) ,  








where ∗ is the horizontal composition of natural transformations.



We let   ( T , m , e )   be a monad on   A .   A submonad of   ( T , m , e )   is a monad   ( S , n , d )   with a monad morphism   i : ( S , n , d ) → ( T , m , e )   such that every component   i X   is monic. In this case,   i : S → T   is called the inclusion transformation. To keep notations simple, we write   ( S , m , e )   for submonad   ( S , n , d ) .  



Given monad   T = ( T , m , e )   on   A ,   an Eilenberg–Moore algebra for  T  ( T -algebra for short) is a pair   ( X , a )   consisting of an  A -object X and an  A -morphism   a : T X → X   subject to the following:


  a ·  e X  =  1 X      and     a ·  m X  = a · T a .  








  ( T X ,  m X  )   is obviously a  T -algebra, which is called the free  T -algebra on   X .  



A  T -homomorphism   f :  ( X , a )  →  (  X ′  ,  a ′  )    of  T -algebras is an  A -morphism   f : X →  X ′    such that    a ′  · T f = f · a .    T -algebras and  T -homomorphisms assemble into a category   A T   which is called the Eilenberg–Moore category of   T .  



Given a monad morphism   σ : S → T ,   there exists a functor    K σ  :  Set T  →  Set S    induced by   σ ,   which is identical on morphisms, sends the  T -algebra   ( X , a )   to the  S -algebra   ( X , a ·  σ X  ) ,   and makes the diagram
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commute, where    G T  ,  G S    are forgetful functors.



For more information on monads, we refer to [13,14]. Monads are useful for encoding general algebraic structures. The monograph by Plotkin [15] offers a comprehensive exploration of the algebraic aspects of database theory. Therefore, further research on the application of monads in the theory of databases is warranted.



Power-Enriched Monads


The powerset monad  P  is given by the covariant powerset functor   P : Set → Set   and two natural transformations:


      { − }  X  :    X → P X ,  x ↦ { x } ,       ⋃ X  :     P 2  X → P X ,  A ↦ ⋃ A .     








The Eilenberg–Moore category of the powerset monad is isomorphic to the category  Sup  of complete lattices and sup-maps.



We consider monad  T  on  Set  equipped with monad morphism   σ : P → T .   By the functor    K σ  :  Set T  →  Set P   , every  T -algebra   ( X , a )   carries an order making X a complete lattice, and every morphism of  T -algebras is a sup-map. In particular, endowed with the order induced by the free  T -algebra structure on   X ,   every set   T X   becomes a complete lattice.



If, for any sets   X , Y ,   the map


    ( − )  T  : Set  ( X , T Y )  → Set  ( T X , T Y )  ,     f ↦  m Y  · T f  








is monotone, where the hom-sets   Set ( − , T Y )   are ordered pointwise, then we refer to   ( T , σ )   as a power-enriched monad. Morphism   σ :  ( T ,  σ 1  )  →  ( S ,  σ 1 ′  )    of power-enriched monads is monad morphism   σ : T → S   such that    σ 1 ′  = σ ·  σ 1  .  





1.2.  I -Settings


1.2.1. Continuous Triangular Norms


A triangular norm [16] (t-norm for short) is a binary operation & on the unit interval I subject to the following:




	
& is associated;



	
& is commutative;



	
  a & ( − )   is monotone for any   a ∈ I ;  



	
  a & 1 = a   for any   a ∈ I .  








A t-norm & is called continuous if map   & :  I 2  → I   is continuous with respect to the standard topologies. We denote by   I = ( I , & , 1 )   the unit interval I endowed with a continuous t-norm   & .  



Example 1.

There are three basic continuous t-norms.




	(1)

	
The Gödel t-norm   a & b = a ∧ b ;  




	(2)

	
The product t-norm   a & b = a × b ;  




	(3)

	
The Łukasiewicz t-norm   a & b = max { 0 , a + b − 1 } .  











For each   a ∈ I ,   since   a & ( − ) : I → I   preserves arbitrary joints, then there exists a map   a → ( − ) : I → I   which is right adjoint to   a & ( − )   and is determined by


  a & b ≤ c ⇔ b ≤ a → c .  











A continuous t-norm is said to satisfy condition (S); if it satisfies that, for each   a ∈ ( 0 , 1 ] ,   map   a → ( − )   is continuous on the interval   [ 0 , a ) .  



The following proposition includes some basic properties of continuous t-norms.



Proposition 1.

For any   a , b , c ∈ I   and     {  a i  }  i  ⊂ I ,  




	(1)

	
   a & ( a → b ) ≤ b ;   




	(2)

	
   1 → a = a ;   




	(3)

	
   a → b = 1 ⇔ a ≤ b ;   




	(4)

	
   ( a & b ) → c = a → ( b → c ) ;   




	(5)

	
   a →  (  ⋀ i   a i  )  =  ⋀ i   ( a →  a i  )  ;   




	(6)

	
    (  ⋁ i   a i  )  → a =  ⋀ i   (  a i  → a )  .   











The reasons why we work with the particular quantale  I  include:




	
Some important many-valued topological structures are considered as topologies valued in   I = ( I , & , 1 )   with & being certain t-norms. For example, fuzzy topologies can be seen as topologies valued in   ( I , ∧ , 1 ) ,   and since   ( I , × , 1 )   is isomorphic to the Lawvere quantale    P +  ,   approach spaces can be considered as topological spaces valued in   ( I , × , 1 ) .  



	
Many results about topologies valued in  Q  rely on the structure of   Q ;   due to the celebrated ordinal sum decomposition theorem [16,17], the structure of  I  is clear.









1.2.2.  I -Relations


An  I -relation r: X ⇸ Y is a map r: X × Y → I. The composition of r: X ⇸ Y, s: Y ⇸ Z is an  I -relation (s · r): X ⇸ Z given by


    ( s · r )   ( x , z )  =   ⋁  y ∈ Y    r  ( x , y )  & s  ( y , z )  .   











Sets and  I -relations assemble into a category


  I - Rel .  











Since the composition of  I -relations preserves arbitrary joins in each variable, for each r: X ⇸ Y and set Z, there are two maps (−) ⟜ r:   I - Rel  (X,Z) →   I - Rel  (Y,Z) and r    ⊸    (−):   I - Rel  (Z,Y) →   I - Rel  (Z,X) determined by


       r · t ≤ s     ⇔ t ≤ s   ⟜   r ;        t ′  · r ≤ s     ⇔  t ′  ≤ r ⊸ s       








for any t ∈   I - Rel  (Y,Z) and t′ ∈   I - Rel  (Z,X).



For each r: X ⇸ Y, there is an   I  -relation rop: Y ⇸ X given by rop(y,x) = r(x,y). For each map f: X → Y, graph f∘: X ⇸ Y of f is given by


    f ∘   ( x , y )  =      1 ,     f ( x ) = y ;       0 ,     f ( x ) ≠ y .        








And the cograph f∘ of f is given by f∘ = (f∘)op. There are two functors:


     ( − )  ∘  : Set → I - Rel     and       ( − )  ∘  : Set → I -  Rel op  .   












1.2.3. Lax Extensions to   I - Rel  


We let   ( T , m , e )   be a monad on   Set .   A lax extension [18] of   ( T , m , e )   to   I - Rel   is a triple    T ^  =  (  T ^  , m , e )  ,   where   T ^   is given by a family of maps


    T ^   X , Y   : I - Rel  ( X , Y )  → I - Rel  ( T X , T Y )   








subject to the following conditions:




	(1)

	
Every    T ^   X , Y    is monotone;




	(2)

	
   T ^  r ·  T ^  s ≤  T ^   ( r · s )  ;  




	(3)

	
    ( T f )  ∘  ≤  T ^   (  f ∘  )    and     ( T f )  ∘  ≤  T ^   (  f ∘  )  ;  




	(4)

	
  s ·  e X ∘  ≤  e Y ∘  ·  T ^  s ;  




	(5)

	
   T ^   T ^  s ·  m X ∘  ≤  m Y ∘  ·  T ^  s  









for any sets   X , Y , Z ,    I -relations s: X ⇸ Y, r: Y ⇸ Z and every map f: X → Y.



Morphism   σ :  (  S ^  , n , d )  →  (  T ^  , m , e )    of lax extensions is a monad morphism   σ : ( S , n , d ) → ( T , m , e )   such that    S ^  r ≤   (  σ Y  )  ∘  ·  T ^  r ·   (  σ X  )  ∘    for any  I -relation r: X ⇸ Y.



We let   σ : S → T   be a monad morphism and   T ^   a lax extension of  T  to   I - Rel .   There is a lax extension of  S  given by


   S ^  r =   (  σ Y  )  ∘  ·  T ^  r ·   (  σ X  )  ∘   








for any  I -relation r: X ⇸ Y. This lax extension    S ^    is called the initial extension of   S   induced by σ.




1.2.4.  I -Categories


An  I -category [2,19] is a pair   ( X , r )   consisting of a set X and a transitive and reflexive  I -relation   r ,   that is,


  r ( x , y ) & r ( y , z ) ≤ r ( x , z )     and    r ( x , x ) = 1  








for all   x , y , z ∈ X .   For convenience, we simply use X to denote an  I -category   ( X , r )   and use   X ( − , − )   to denote   r ( − , − ) .  



For every  I -category   X ,   the  I -relation    X op   ( x , y )  = X  ( y , x )    also gives an  I -category, which is called the dual of   X .  



Example 2.

(1) The singleton   { ∗ }   set endowed with    ( id )  ∘   is obviously an  I -category.








	(2)

	
The set   I X   can be made an  I -category via











    sub X   ( μ , ν )  =  ⋀  x ∈ X   μ  ( x )  → ν  ( x )  .   













An  I -functor   f : X → Y   is a map   f : X → Y   between  I -categories such that


  X ( x , y ) ≤ Y ( f ( x ) , f ( y ) )  








for all   x , y ∈ X .   If the converse of the above inequality also holds, we refer to this  I -functor as fully faithful.  I -functors   f : X → Y , g : Y → X   are called an adjunction   f ⊣ g   if


  Y ( f ( x ) , y ) = X ( x , g ( y ) )  








for any   x ∈ X , y ∈ Y .   In this case, we say f is left adjoint to   g .  



Example 3.

Given an  I -relation r: X ⇸ Y, there is an adjunction r∨ ⊣ r∧, in which r∧,r∨ are given by


           r ∧  :  I X  →  I Y  , μ ↦  ⋀  x ∈ X   r  ( x , − )  → μ  ( x )  ;           r ∨  :  I Y  →  I X  , ν ↦  ⋁  y ∈ Y   r  ( − , y )  & ν  ( y )  .       













 I -categories and  I -functors assemble into a category


  I - Cat .  








The forgetful functor   o : I - Cat → Set   admits a left adjoint:


  d : Set → I - Cat ,     X ↦ ( X ,  1 X ∘  ) .  











A locally small category is ordered if every hom-set carries an order such that the composition maps are monotone. A functor   F : A → B   between ordered categories is called a 2-functor if every    F  A , B   : A  ( A , B )  → B  ( F A , F B )    is monotone. A monad on an ordered category is called a 2-monad if the endfunctor is a 2-functor.



The underlying order of an  I -category X is given by


  x  ≤ X  y ⇔ X  ( x , y )  = 1 .  








An  I -category X is called separated if its underlying order is a partial order.   I - Cat   is an ordered category with   I - Cat ( X , Y )   carrying the pointwise order.



Given an  I -category X and   p ∈ I , x ∈ X ,   the tensor of   ( p , x )   is an element   p ⊗ x   of X such that   X ( p ⊗ x , − ) = p → X ( x , − ) ;   the cotensor of   ( p , x )   is an element   p ↣ x   of X such that   X ( − , p ↣ x ) = p → X ( − , x ) .  



An  I -category X is called tensored (cotensored) if it fulfills that the tensor   p ⊗ x   (cotensor   p ↣ x  ) exists for all   p ∈ I , x ∈ X .  



Proposition 2

([20]). The following statements are equivalent:




	(1)

	
X is tensored,   ( X ,  ≤ X  )   is complete, and


  X  (  ⋁ i   x i  , y )  =  ⋀ i  X  (  x i  , y )   








for all     {  x i  }  i  ⊂ X , y ∈ X ;  




	(2)

	
X is cotensored,   ( X ,  ≤ X  )   is complete, and


  X  ( x ,  ⋀ i   y i  )  =  ⋀ i  X  ( x ,  y i  )   








for all     {  y i  }  i  ⊂ X , x ∈ X .  











An  I -category is called complete if it satisfies the equivalent conditions stated above. For a complete  I -category, we have   p ⊗ ( − ) ⊣ p ↣ ( − ) .  



Example 4.

The  I -category   (  I X  ,  sub X  )   is complete and separated. For any   p ∈ I , μ ∈  I X  ,   the cotensor of   ( p , μ )   is given by   p → μ .  





The following proposition is useful in ensuring the existence of adjunctions.



Proposition 3 ([20]).

We let   f : X → Y , g : Y → X   be  I -functors between  I -categories. Then,   f ⊣ g   is an adjunction if and only if   f ⊣ g :  ( Y ,  ≤ Y  )  →  ( X ,  ≤ X  )    is an adjunction.








2. The Lax Extensions from the Laxly Extended Monads on   I - Cat  


2.1.  I -Distributors


Given two  I -categories, X and   Y ,   an  I -distributor [2] r: X ⇴ Y is an  I -relation such that


  r · X ≤ r     and     Y · r ≤ r .  








If an  I -distributor r: X ⇴ Y is dummy in one variable, that is X = {∗} or Y = {∗}, then we simply write r(x) for r(x,∗) or r(∗,x).  I -categories and  I -distributors give rise to an ordered category


   I - Dist .   








The forgetful functor o:   I - Dist   →   I - Rel   admits a left adjoint:


   d : I - Rel → I - Dist ,     d X = ( X ,  1 X ∘  ) ,     r ↦ r .   











There are two 2-functors     ( − )  *  : I - Cat → I -  Dist co    and     ( − )  *  : I - Cat → I -  Dist op    defined on objects and morphisms by


       ( X )  *   = X ,      ( f : X → Y )  ↦ (   f *  =  ( Y ·  f ∘  )  : X  ⇴  Y ) ;         ( X )  *   = X ,      ( f : X → Y )  ↦ (   f *  =  (  f ∘  · Y )  : Y  ⇴  X ) .     











We denote the set of  I -distributors from an  I -category X to   { ∗ }   by   P X .   Then, the set   P X   can be made an  I -category via


  P X  ( μ , ν )  = ν ⟜ μ =  sub X   ( μ , ν )  .  








Furthermore,  P  can be made a 2-functor from   I -  Dist op    to   I - Cat   via


  ( r : X  ⇴  Y ) ↦ ( P ( r ) : μ ↦ μ · r ) .  








It is routine to check that (−)* is left adjoint to   P  . The induced 2-monad (  P , s , y  ) on   I - Cat   is called the presheaf monad.



Similarly, taking the  I -distributors of type   { ∗ }    ⇴    X also gives rise to a 2-functor    P †  : I -  Dist op  → I - Cat  :


   X ↦  P †   X ,     ( r : X  ⇴  Y ) ↦ (  P †  ( r ) : μ ↦ r · μ ) ,    








in which


   P †  X  ( μ , ν )  = ν  ⊸  μ =  sub X op   ( μ , ν )   








for any μ, ν ϵ    P †  X  . The functor   ( —  ) *    is left adjoint to    P †   . The induced 2-monad (   P †  ,  s †  ,  y †   ) on   I - Cat   is called the copresheaf monad.



The following lemmas present some basic properties of  I -distributors.



Lemma 1

(Yoneda Lemma). For any   ν ∈  P †  X , μ ∈ P X ,   we have


    (  y X  )  *   ( − , μ )  = μ     a n d       (    y †   X  )  *   ( ν , − )  = ν .  













Lemma 2.

We let   f : X → Y , g : Z → Y   be  I -functors. For any   μ ∈ P Z , ν ∈  P †  X , ϕ ∈  P †  P X ,   and   ψ ∈  PP †  Z ,   we have the following statements:




	(1)

	
     ( P g )  *  ·   ( P f )  *   ( − , μ )  =  y  P X    ( μ ·  g *  ·  f *  )  ;   




	(2)

	
     (  P †  g )  *  ·   (  P †  f )  *   ( ν , − )  =  y   P †  Z  †   (  g *  ·  f *  · ν )  ;   




	(3)

	
     ( P g )  *  ·   ( P f )  *  · ϕ = ϕ  ( − ·  g *  ·  f *  )  ;   




	(4)

	
   ψ ·   (  P †  g )  *  ·   (  P †  f )  *  = ψ  (  g *  ·  f *  · − )  .   












2.2. Composite Monads on   I - Cat  


We let   T = ( T , m , e )   and   S = ( S , n , d )   be monads. A distributive law of  T  over  S  is a natural transformation   σ : T S → S T   subject to some conditions. A composite monad of  T  and  S  is a monad   ( S T , m , d ∗ e )   such that   S e : S → S T , d T : T → S T   are monad morphisms and  m  satisfies that   m ·  ( S e d T )  =  id  S T   .   A distributive law σ yields a composite monad


  ( S T , ( n ∗ m ) · S σ T , d ∗ e ) .  








This correspondence is bijective. Details can be found in [21].



A saturated class of weights is a submonad  A  of the presheaf monad   P .   It is easy to check that it also offers a submonad   A †   of   P †   by    A †  X =   ( A  X op  )  op    for any   X .  



A distributive law   σ :  P †  A →  A †  P   of   P †   over  A  also offers a distributive law of  P  over   A †   whose components are given by


      σ X ′  :  PA †  X =   (  P †  A  X op  )  op    →   σ  X op            (  AP †   X op  )  op  =  A †  P X .     








One example of distributive laws is that the copresheaf monad distributes over the presheaf monad.



Proposition 4

([22]). There is a distributive law of   P †   over   P ,   which offers the double presheaf 2-monad   PP †   on   I - Cat .  





We let X be an  I -category. A forward Cauchy net [23] on X is a net    {  x i  }   i ∈ D    such that


   ⋁  i ∈ D    ⋀  k ≥ j ≥ i   X  (  x j  ,  x k  )  = 1 .  








A forward Cauchy net generates an  I -distributor   μ : X  ⇴    {∗}:


  μ =   ⋁  i ∈ D      ⋀  j ≥ i    X  ( − ,  x j  )  .  











Example 5.

A directed set D of   ( X ,  ≤ X  )   is a forward Cauchy net    {  x i  }   i ∈ D    on   X .   The  I -distributor generated by D is


    ⋁  d ∈ D   X  ( − , d )  .   













We denote by   C X   the set of all  I -distributors   μ : X  ⇴    {∗} generated by forward Cauchy nets. The proof of that   C   is a saturated class of weights can be found in [24]. The following lemma offers a characterization of   C X   when X is complete and separated.



Lemma 3

(Proposition 4.8 in [25]). We let X be a complete separated  I -category. For every   ϕ ∈ C X ,   we have that   D = { x ∈ X ∣ ϕ ( x ) = 1 }   is a directed set on   ( X ,  ≤ X  )   and


  ϕ =  ⋁  d ∈ D   X  ( − , d )  .  













The existence of a distributive law of   P †   over  C  depends on the structure of quantale   I .  



Proposition 5

(Theorem 6.4 in [25]). There is a distributive law of   P †   over  C  if and only if the continuous t-norm satisfies the condition (S).





In the remainder of this paper, we always assume that the continuous t-norm & satisfies the condition (S).




2.3. The Lax Extensions of Composite Monads to   I - Dist  


We let   ( T , m , e )   be a 2-monad on   I - Cat  . A lax extension of   ( T , m , e )   to   I - Dist   is a family of maps


    T ^   X , Y   : I - Dist  ( X , Y )  → I - Dist  ( T X , T Y )   








subject to the following conditions:




	(1)

	
Every    T ^   X , Y    is monotone;




	(2)

	
   T ^  r ·  T ^  s ≤  T ^   ( r · s )  ;  




	(3)

	
    ( T f )  *  ≤  T ^   (  f *  )    and     ( T f )  *  ≤  T ^   f *  ;  




	(4)

	
  s ·  e X *  ≤  e Y *  ·  T ^  s ;  




	(5)

	
   T ^   T ^  s ·  m X *  ≤  m Y *  ·  T ^  s  









for any  I -categories   X , Y , Z ,   distributors   s : X  ⇴    Y, r: Y    ⇴    Z and every  I -functor f: X → Y.



Theorem 1

(Theorem 8.5 in [26]). We let  T  be a 2-monad on   I - Cat .   Then,


   T ^  r =   ( T  r ←  )  *  ·   ( T  y X  )  *  : T X  ⇸  T Y  








defines a lax extension of  T  to   I - Dist  , where    r ←   : Y →   P  X, y ↦ r(−,y).





We let  A  be a saturated class of weights and assume that there is a distributive law   σ :  P †  A →  AP †  .   Then, by Theorem 1, there are lax extensions of the monad   AP †   and    A †  P   given by


       AP †  ¯  r     =   (  AP †   r ←  )  *  ·   (  AP †   y X  )  *  ;          A †  P  ¯  r     =   (  A †  P  r ←  )  *  ·   (  A †   Py X  )  *  .     











In [27], Lai and Tholen introduced a functor Γ which maps monads   ( T , m , e )   on   I - Cat   with a lax extension   T ^   to   I - Dist   to monads on  Set  with a lax extension to   I - Rel :  


        Γ ( T , m , e ) = ( o T d , o m d · o T ϵ T d , o e d ) ,          Γ  (  T ^  )  r = o  T ^  d  ( r )  ,     








in which ϵ is the counit of the adjunction   d ⊣ o .  



It is routine to check that   Γ  (  A †  P )  = Γ  (  AP †  )  .   We denote this monad by   (  U A  , n , d ) .  



For the lax extensions, using Lemma 2, we can compute as follows: for any  I -relation   r : X ⇸   Y,   ϕ  , ∈    AP †  X  ,    ϕ ′  ∈  AP †  Y  ,   ψ ∈  A †  P X  , and    ψ ′  ∈  A †  P X  ,


        AP †  ¯  r  ( ϕ ,  ϕ ′  )      =    (  AP †   r ←  )  *  ·   (  AP †   y X  )  *    ( ϕ ,  ϕ ′  )           =  PP †  X  ( ϕ ,  ϕ ′  ·   (  P †   r ←  )  *  ·   (  P †   y X  )  *  )           =  PP †  X  ϕ ,  ϕ ′   (   r ←  *  ·  y   X *    · − )        








and


         A †  P  ¯  r  ( ψ ,  ψ ′  )      =    (  A †   Py X  )  *  ·   (  A †  P  r ←  )  *    ( ψ ,  ψ ′  )             =  P †  P Y  (   ( P  r ←  )  *  ·   (  Py X  )  *  · ψ ,  ψ ′  )           =  P †  P Y  ( ψ  ( − ·   r ←  *  ·  y   X *    )  ,  ψ ′  )  .      








Thus, we obtain the following result.



Proposition 6.

We let    AP †    be a composite monad. There are two lax extensions of the monad  (  U A  , n , d )  :


        U A  ^  r  ( ϕ , ψ )    =  ⋀  μ ∈  I X    ϕ  ( μ )  → ψ  (   (  r op  )  ∨   ( μ )  )  ,    ( canonical )         U A  ̌   r  ( ϕ , ψ )    =  ⋀  ν ∈  I Y    ψ  ( ν )  → ϕ  (  r ∨   ( ν )  )  ,    ( op - canonical )     








where   r : X ⇸ Y   is an  I -relation,   ϕ ∈  U A  X , ψ ∈  U A  Y .  






2.4. The Conical  I -Semifilter Monad


A conical  I -semifilter [12] on set X is a function   ϕ :  I X  → I   subject to the following:




	(F1)

	
  ϕ (  1 X  ) = 1 ;  




	(F2)

	
  ϕ ( μ ∧ ν ) = ϕ ( μ ) ∧ ϕ ( ν ) ;  




	(F3)

	
   sub X   ( μ , ν )  ≤ ϕ  ( μ )  → ϕ  ( ν )  ;  




	(F4)

	
  ϕ =  ⋁  ϕ ( ξ ) = 1    sub X   ( ξ , − )  .  









Proposition 7.

The elements of    CP †  d X   are exactly the conical  I -semifilters.





Proof. 

Given a conical  I -semifilter ϕ on   X ,   it follows from (F2) that   { μ ∣ ϕ ( μ ) = 1 }   is a directed set of    P †  d X ;   hence, by (F4), we have   ϕ ∈  CP †  d X .  



We let   ϕ ∈  CP †  d X .   Since    P †  d X   is separated and complete, by Lemma 3, it holds that


  ϕ =  ⋁  ϕ ( ν ) = 1    P †  d X  ( − , ν )  =  ⋁  ϕ ( ν ) = 1    sub X   ( ν , − )  .  








Hence, (F1), (F3) and (F4) are obvious. For (F2),


  ϕ  (  μ 1  ∧  μ 2  )  =  ⋁  ϕ ( ν ) = 1     P †  d X  (  μ 1  , ν )  ∧  P †  d X  (  μ 2  , ν )   = ϕ  (  μ 1  )  ∧ ϕ  (  μ 2  )  ,  








the last equality holds because   { ν ∣ ϕ ( ν ) = 1 }   is directed. □





For every set   X ,    o   ( y ∗  y †  )   d X     maps   x ∈ X   to    P †  d X  ( − ,  y  d X    ( x )  )  =  ( − )   ( x )  ;     ( o  ( s ∗  s †  )  d · o C σ  P †  d · o  CP †  ϵ  CP †  d )  X   maps   Φ ∈    U C   2  X   to the conical  I -semifilter


  ϕ :  P †  d X → I , μ ↦ Φ  (  μ ♯  )  ,  








where   μ ♯   belongs to    P †  d o  CP †  d X   and maps every   ψ ∈ d o  CP †  d X   to   ψ ( μ ) .   Therefore, the monad   (  U C  , n , d )   is exactly the conical  I -semifilter monad in [12]. We adopt the notation from [12] and denote   (  U C  , n , d )   by   ( CSF , n , d ) .  



Corollary 1.

There are two lax extensions of the conical  I -semifilter monad   ( CSF , n , d )  :


       CSF ^  r  ( ϕ , ψ )    =  ⋀  μ ∈  I X    ϕ  ( μ )  → ψ  (   (  r op  )  ∨   ( μ )  )  ,    ( canonical )       CSF ̌  r ( ϕ , ψ )   =  ⋀  ν ∈  I Y    ψ  ( ν )  → ϕ  (  r ∨   ( ν )  )  ,    ( op - canonical )     








where   r : X ⇸   Y is an   I  -relation,   ϕ ∈ C S F X , ψ ∈ C S F Y .  





Remark 1.

Here, we prove that the continuous t-norm satisfies the condition (S) is a sufficient condition for conical  I -semifilters to give rise to a monad. In fact, it is also a necessary condition; see [12].







3. The Kleisli Extensions of   (  U A  , n , d )  


3.1. The  I -Powerset Monad


For each set   X ,   we let    P I  X =  I X  .   Then,   P I   can be made a functor from   I -  Rel op    to  Set  by letting


   P I   ( r )   ( μ )  =  r ∨   ( μ )  =  ⋁  y ∈ Y   μ  ( y )  & r  ( − , y )   








for each  I -relation   r : X ⇸   Y and μ ∈ IY. It is routine to check that (—)° is left adjoint to   P I  . The induced monad is called the   I  -powerset monad and is denoted by    P I  = (  P I  , m , e )  . We spell it out here: for any maps f: X → Y and   μ ∈  P I   ,


       P I   ( f )   ( μ )      : y ↦  ⋁  f ( x ) = y   μ  ( x )  ,       e X     : x ↦  1 x  ,       m X     : ϕ ↦  ⋁  μ ∈  P I  X   ϕ  ( μ )  & μ ,      








where 1A is defined as 1A(x)={      1 ,     x ∈ A ,       0 ,     x ∉ A ,      and 1x denotes 1{x}.



It is easy to check that the  I -powerset monad is power-enriched by


   θ X  : P X →  P I  X ,     A ↦  1 A  .  








It also holds that    P I  = Γ  ( P , s , y )  = Γ  (  P †  ,  s †  ,  y †  )  .  




3.2.  I -Power-Enriched Monads


An  I -power-enriched monad is a pair   ( T , σ )   composed of a monad   ( T , m , e )   on  Set  and a monad morphism   σ :  P I  → T   such that   ( T , σ · θ )   is a power-enriched monad. A morphism   σ :  ( T ,  σ 1  )  →  ( S ,  σ 2  )    of  I -power-enriched monads is a monad morphism   σ : T → S   such that    σ 2  = σ ·  σ 1  .  



We let   AP †   be a composite monad. Since there is a monad morphism    yP †  :  P †  →  AP †  ,   by applying the functor   Γ ,   we obtain the following Proposition.



Proposition 8.

The monad   (  U A  , n , d )   is  I -power-enriched by κ whose components are given by


    κ X  :  P I  X →  U A  X ,     μ ↦  sub X   ( μ , − )  .   













An  I -action in  Sup  is a complete lattice X endowed with a map   − ⊗ − : I × X → X   subject to the following: for any   p , q ∈ I   and   x ∈ X  




	(1)

	
  p ⊗ −   and   − ⊗ x   are sup-maps;




	(2)

	
  ( p & q ) ⊗ x = p ⊗ ( q ⊗ x )   and   1 ⊗ x = x .  









A morphism of  I -actions is a sup-map   f : X → Y   such that   p  ⊗ Y  f  ( x )  = f  ( p  ⊗ X  x )    for any   p ∈ I   and   x ∈ X .    I -actions in  Sup  and their morphisms assemble into a category    Sup I  .  



It is shown in [28] that   Sup I   is isomorphic to the Eilenberg–Moore category of the  I -powerset monad and there exists a functor   Λ :  Set  P I   → I - Cat .  



Explicitly, we let   ( X , a )   be a   P I  -algebra; by functor    K θ  :  Set  P I   →  Set P  ,   X can be made a complete lattice. The  I -action on X in  Sup  is given by


  − ⊗ − : I × X → X ,      ( p , x )  ↦ a  ( p &  1 x  )  .  








Conversely, an  I -action   ( X , − ⊗ − )   yields a   P I  -algebra structure as follows:


  a :  P I  X → X ,     μ ↦  ⋁ x  μ  ( x )  ⊗ x .  








The functor Λ maps a   P I  -algebra   ( X , a )   to


  Λ  ( X , a )   ( x , y )  =  a ⊣   ( y )   ( x )  ,  








where   a ⊣  a ⊣  :  ( X ,  ≤ X  )  →  (  P I  X ,  ≤   P I  X   )    is an adjunction. Furthermore, we have the following proposition.



Proposition 9.

Every  I -category   Λ ( X , a )   is complete.





Proof. 

For every   p ∈ I ,   since   p ⊗ −   and a are sup-maps, we have the following adjunctions:


  X   ⊤  ←  p ⊗ −     →  p ↣ −      X   ⊤  ← a    →  a ⊣       P I  X  








To show X is cotensored by ↣, we can follow these steps:


     μ ≤ p →  a ⊣   ( x )      ⇔ p & μ ≤  a ⊣   ( x )           ⇔ a ( p & μ ) ≤ x          ⇔  ⋁ t   ( p & μ  ( t )  )  ⊗ t ≤ x          ⇔ p ⊗   ⋁ t  μ  ( t )  ⊗ t  ≤ x          ⇔ p ⊗ a ( μ ) ≤ x          ⇔ a ( μ ) ≤ p ↣ x          ⇔ μ ≤  a ⊣   ( p ↣ x )  .     








□





Thus, the tensor of   Λ ( X , a )   is given by its  I -action, the cotensor is given by the right adjoint of its  I -action. That is the reason why we use the same notations.



Example 6.

For a composite monad    AP †  ,   since    (  U A  X ,  n X  ·  κ   U A  X   )  =  K κ   (  U A  X ,  n X  )    is a   P I  -algebra,    U A  X   can be made a complete  I -category via


    U A   ( ϕ , ψ )  =   (  n X  ·  κ   U A  X   )  ⊣   ( ψ )   ( ϕ )  =  sub  I X    ( ψ , ϕ )  =  ⋀  μ ∈  I X    ψ  ( μ )  → ϕ  ( μ )  .   








The tensor of   ( p , ϕ )   in    U A  X   is given by


    (  n X  ·  κ   U A  X   )   ( p &  1 ϕ  )  =  ⋀  ψ ∈  U A  X    p &  1 ϕ   ( ψ )  → ψ  = p → ϕ .   














3.3. Kleisli Extensions


Given an  I -power-enriched category   ( T , σ ) ,   for any  I -relations   r : X → Y  , the composite   P I  -homomorphism


      ( T Y ,  m Y  )    →   T  (  σ X  ·  r ♭  )           (  T 2  X ,  m  T X   )   →   m X        ( T X ,  m X  )     








offers an  I -functor    r σ  : T Y → T X ,   where    r ♭  : Y →  P I  X , y ↦ r  ( − , y )  .  



According to Section 4.5 in [18], there is a lax extension   T ^   of  T  to   I - Rel   named the Kleisli extension, which is given by


   T ^  r  ( ϕ , ψ )  = T X  ( ϕ ,  r σ   ( ψ )  )   








for any   ϕ ∈ T X , ψ ∈ T Y   and every  I -relation   r : X ⇸   Y.



Proposition 10.

For a composite monad    AP †    the Kleisli extension of   (  U A  , n , e )   is given by


     U A  ¯  r  ( ϕ , ψ )  =  U A  X  ( ϕ ,  r κ   ( ψ )  )  =   ⋀  μ ∈  I X     ψ  (  r ∧   ( μ )  )  → ϕ  ( μ )  ,   








where   r : X ⇸   Y is an  I -relation,   ϕ ∈  U A  X , ψ ∈  U A  Y .  





Theorem 2.

For the monad    U P  ,   the op-canonical extension to   I - Rel   coincides with the Kleisli extension to   I - Rel .  





Proof. 

For any  I -relation   r : X ⇸   Y and   ϕ ∈  U P  X  , by Lemma 2, the   I  -distributor


   ∗   ⇴ ϕ     P d X    ⇴    (  Py  d X   )  *       P 2  d X    ⇴    ( P   d r  ←  )  *      P d Y   








is given by ϕ(− ·     (  r ←  )  *    ·     (  y  d X   )  *   ) = ϕ(   r ∨   (−)). Thus, mapping ϕ to ϕ(   r ∨   (−)) is an   I  -functor f:    U P  X →  U P  Y  .



To show the op-canonical extension to   I - Rel   coincides with the Kleisli extension to   I - Rel ,   by Proposition 3, it suffices to show that   f ⊣  r κ  :  (  U P  Y ,  ≤   U P  Y   )  →  (  U P  X ,  ≤   U P  X   )    is an adjunction. For any   χ ∈  U P  X , ψ ∈  U P  Y ,   since    r ∨  ⊣  r ∧    we have


   (  r κ  · f )   ( χ )  = χ ·  r ∨  ·  r ∧   ≥   U P  X   χ     and      ( f ·  r κ  )   ( ψ )  = ψ ·  r ∧  ·  r ∨   ≤   U P  Y   ψ .  








This completes the proof. □





Since


   CSF ̌  r  ( ϕ , ψ )  =    U P   ̌  r   i X   ( ϕ )  ,  i Y   ( ψ )       and      CSF ¯  r  ( ϕ , ψ )  =   U P  ¯  r   i X   ( ϕ )  ,  i Y   ( ψ )    








for any   ϕ ∈ CSF X , ψ ∈ CSF Y , r : X ⇸   Y, where   i : CSF →  U P    is the inclusion transformation, we have the following corollary.



Corollary 2.

For the conical   I  -semifilter monad, the op-canonical extension to   I - Rel   coincides with the Kleisli extension to   I - Rel  .





Proposition 11.

We let   λ :  ( S , σ )  →  ( T ,  σ ′  )    be a morphism of   I  -power-enriched monads. Then, λ is a morphism of the Kleisli extensions to   I - Rel  . Furthermore, every component    λ X  : S X → T X   is fully faithful if and only if the initial extension of   S   induced by λ is the Kleisli extension of   S  .





Proof. 

We denote   T =  ( T , m , e )    and   S =  ( S , n , d )   . By the commutative diagram



	[image: Axioms 12 01034 i002]





   λ X  :  ( S X ,  n X  )  →  ( T X ,  m X  ·  λ  T X   )  is   an   S - homomorphism ;   hence ,   it   is   an   I - functor :  


   S ^  r  ( α , β )  = S X  ( α ,  r σ   ( β )  )  ≤ T X   λ X   ( α )  ,  λ X   (  r σ   ( β )  )   .  








By the commutative diagram



	[image: Axioms 12 01034 i003]





we have


  T X   λ X   ( α )  ,  λ X   (  r σ   ( β )  )   = T X   λ X   ( α )  ,  r  σ ′    (  λ Y   ( β )  )   =  T ^  r  (  λ X   ( α )  ,  λ Y   ( β )  )  .  








This completes the proof. □





An element of IX is called bounded if   ⋀ μ   > 0. A conical   I  -semifilter ϕ is called bounded if ϕ(μ) < 1 for any unbounded μ. Conical bounded   I  -semiflters also give rise to a monad (  ConBSF , n , d  ), and there is a monad morphism η:   CSF → ConBSF  


   η X  : CSF X → ConBSF X ,     ϕ ↦   ⋁     ϕ ( μ ) = 1       ⋀ μ > 0        sub X   ( μ , − )  ;  








see [12] for details.



Example 7.






	(1)

	
The Kleisli extension of the conical  I -semifilter monad to   I - Rel   coincides with the initial extension induced by the inclusion transformation   i : CSF →  U P  .  




	(2)

	
The conical bounded  I -semifilter monad is  I -power-enriched by   η · κ ,   and   η : ( CSF , κ ) → ( ConBSF , η · κ )   is a morphism of  I -power-enriched monads. Since κ is not fully faithful, the Kleisli extension   CSF ¯   does not coincide with the initial extension induced by   κ .  












3.4. Lax Algebras


Given a lax extension   T ^   of  T  to   I - Rel ,   a   ( T , I ,  T ^  )  -algebra (lax algebra for short) is a pair   ( X , a : T X ⇸   X) so that


    (  1 X  )  ∘  ≤ a ·   (  e X  )  ∘      and     a ·  T ^  a ≤ a ·   (  m X  )  ∘  .  








A morphism f: (X,a) → (Y,b) of lax algebras is a map f: X → Y subject to


   f ∘  · a ≤ b ·   ( T f )  ∘  .  








Lax algebras and morphisms of lax algebras form a category denoted by


  ( T , I ,  T ^  ) - Cat .  








When the involved lax extension is clear, we simply write   ( T , I ) - Cat  .



Lax extensions   T ^   of monad  T  to  Rel  and lax algebras of   ( T , 2 ,  T ^  )   are defined in a manner similar to those of lax extensions to   I - Rel   and lax algebras of   ( T , I ,  T ^  ) .   Given an  I -power-enriched monad   ( T , σ ) ,   it can be extended to  Rel  via


  α  (  T ¯  r )  ψ ⇔ ϕ  ≤  T X    r σ   ( ψ )  ,  








which is called the Kleisli extension of  T  to   Rel ,   where r is a  2 -relation and   r σ   is defined by treating r as the  I -relation   r  ( x , y )  =      1 ,     x  r  y ,      0    o t h e r w i s e .       



The following proposition affirms that, at the level of lax algebras, there is no distinction between the Kleisli extension to   I - Rel   and the Kleisli extension to   Rel .  



Proposition 12

(Proposition 6.1 in [18]). We let   ( X , σ )   be an  I -power-enriched category. Then, there is an isomorphism


  ( T , I ) - Cat ≅ ( T , 2 ) - Cat ,  








in which the lax extensions are the Kleisli extensions.





In [9], it is proven that


  ( CSF , 2 ,  CSF ¯  ) - Cat ≅ CNS ,  








where  CNS  is the category of CNS spaces. Therefore, we have the following corollary.



Corollary 3.

There is an isomorphism:


   ( CSF , I ,  CSF ¯  ) - Cat ≅ CNS .   













When & is the product t-norm, the conical bounded  I -semifilter monad is isomorphic to the functional ideal monad, and by [29], we have


  ( ConBSF , 2 ,  ConBSF ¯  ) - Cat ≅ App ,  








where  App  is the category of approach spaces and   ConBSF ¯   is the Kleisli extension to   Rel .  



Since   η : ( CSF , κ ) → ( ConBSF , η · κ )   is a morphism of the  I -power-enriched category, by Theorem 11, it is a morphism of the Kleisli extensions. Hence, it induces an algebraic functor as follows:



Proposition 13.

If & is the product t-norm, there is a functor    A κ  : CNS → App :  


  ( X ,   ( − )  ∘  ) ↦  ( X , A )   








that maps a CNS space X to the approach space   ( X , A ) ,   where the bounded approach system    { A  ( x )  }   x ∈ X    is given by


  A  ( x )  = { μ ∈   [ 0 , ∞ ]  X  ∣  ⋁      ω ∘   ( x )  = 1       ⋀ ω > 0       sub X   ( ω ,  e  − μ   )  = 1 } ,  








in which    ( − )  ∘   is the interior operator o