Novel Method for Ranking Generalized Fuzzy Numbers Based on Normalized Height Coefficient and Benefit and Cost Areas
Abstract
:1. Introduction
- (I)
- This research develops a new coefficient to calculate the impact of the height of generalized fuzzy numbers on the final ranking score.
- (II)
- The new areas considered as benefit and cost are introduced to reflect the influence of vertical values on the final ranking score.
- (III)
- A new index is proposed to guarantee that both vertical and horizontal values of a generalized fuzzy number are important parameters that impact the final ranking score.
- (IV)
- The proposed method can rank both normal and non-normal fuzzy numbers without normalization or height minimization, thereby avoiding information loss and incorrect final ranking results.
- (V)
- The proposed method can overcome the shortcomings of some existing methods and can be applied to many fuzzy MCDM models to support decision makers in selecting the most suitable alternative in the decision-making process.
2. Preliminaries
2.1. Definitions and Notions
2.2. A Review of the Deviation Degree Method
2.3. Limitations and Shortcomings of Existing Methods
3. Proposed Method
4. Numerical Example and Comparative Study
4.1. Examples
4.2. Comparison
4.3. Method Reasonableness Proof
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.M.; Luo, Y. Area ranking of fuzzy numbers based on positive and negative ideal points. Comput. Math. Appl. 2009, 58, 1769–1779. [Google Scholar] [CrossRef]
- Bortolan, G.; Degani, R. A review of some methods for ranking fuzzy subsets. Fuzzy Sets Syst. 1985, 15, 1–19. [Google Scholar] [CrossRef]
- Brunelli, M.; Mezei, J. How different are ranking methods for fuzzy numbers ? A numerical study. Int. J. Approx. Reason. 2013, 54, 627–639. [Google Scholar] [CrossRef]
- Chu, T.C.; Kysely, M. Ranking objectives of advertisements on Facebook by a fuzzy TOPSIS method. Electron. Commer. Res. 2021, 21, 881–916. [Google Scholar] [CrossRef]
- Chou, S.Y.; Dat, L.Q.; Yu, V.F. A revised method for ranking fuzzy numbers using maximizing set and minimizing set. Comput. Ind. Eng. 2011, 61, 1342–1348. [Google Scholar] [CrossRef]
- Yu, V.F.; Chi, H.T.X.; Dat, L.Q.; Phuc, P.N.K.; Shen, C.W. Ranking generalized fuzzy numbers in fuzzy decision making based on the left and right transfer coefficients and areas. Appl. Math. Model. 2013, 37, 8106–8117. [Google Scholar] [CrossRef]
- Chi, H.T.X.; Yu, V.F. Ranking generalized fuzzy numbers based on centroid and rank index. Appl. Soft Comput. J. 2018, 68, 283–292. [Google Scholar] [CrossRef]
- Chen, S.H. Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets Syst. 1985, 17, 113–129. [Google Scholar] [CrossRef]
- Liou, T.S.; Wang, M.J.J. Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 1992, 50, 247–255. [Google Scholar] [CrossRef]
- Chen, S.M.; Chen, J.H. Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads. Expert Syst. Appl. 2009, 36, 6833–6842. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, P.; Kaur, P.; Kaur, A. RM approach for ranking of L-R type generalized fuzzy numbers. Soft Comput. 2011, 15, 1373–1381. [Google Scholar] [CrossRef]
- Wang, X.; Kerre, E.E. Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst. 2001, 118, 375–385. [Google Scholar] [CrossRef]
- Chen, S.M.; Sanguansat, K. Analyzing fuzzy risk based on a new fuzzy ranking method between generalized fuzzy numbers. Expert Syst. Appl. 2011, 38, 2163–2171. [Google Scholar] [CrossRef]
- Xu, P.; Su, X.; Wu, J.; Sun, X.; Zhang, Y.; Deng, Y. A note on ranking generalized fuzzy numbers. Expert Syst. Appl. 2012, 39, 6454–6457. [Google Scholar] [CrossRef]
- De, A.; Kundu, P.; Das, S.; Kar, S. A ranking method based on interval type-2 fuzzy sets for multiple attribute group decision making. Soft Comput. 2020, 24, 131–154. [Google Scholar] [CrossRef]
- Revathi, M.; Valliathal, M. Non-normal fuzzy number analysis in various levels using centroid method for fuzzy optimization. Soft Comput. 2021, 25, 8957–8969. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Chu, T.C. Ranking startups using DEMATEL-ANP-Based fuzzy PROMETHEE II. Axioms 2023, 12, 528. [Google Scholar] [CrossRef]
- He, W.; Rodríguez, R.M.; Takáč, Z.; Martínez, L. Ranking of Fuzzy Numbers on the Basis of New Fuzzy Distance. Int. J. Fuzzy Syst. 2023. [CrossRef]
- Jain, R. A procedure for multiple-aspect decision making using fuzzy sets. Int. J. Syst. Sci. 1977, 8, 1–7. [Google Scholar] [CrossRef]
- Wang, Z.X.; Liu, Y.J.; Fan, Z.P.; Feng, B. Ranking L–R fuzzy number based on deviation degree. Inf. Sci. 2009, 179, 2070–2077. [Google Scholar] [CrossRef]
- Chutia, R. Ranking of fuzzy numbers by using value and angle in the epsilon-deviation degree method. Appl. Soft Comput. J. 2017, 60, 706–721. [Google Scholar] [CrossRef]
- Nejad, A.M.; Mashinchi, M. Ranking fuzzy numbers based on the areas on the left and the right sides of fuzzy number. Comput. Math. Appl. 2011, 61, 431–442. [Google Scholar] [CrossRef]
- Asady, B. The revised method of ranking LR fuzzy number based on deviation degree. Expert Syst. Appl. 2010, 37, 5056–5060. [Google Scholar] [CrossRef]
- Hajjari, T.; Abbasbandy, S. A note on “the revised method of ranking LR fuzzy number based on deviation degree”. Expert Syst. Appl. 2011, 38, 13491–13492. [Google Scholar] [CrossRef]
- Yu, V.F.; Chi, H.T.X.; Shen, C.W. Ranking fuzzy numbers based on epsilon-deviation degree. Appl. Soft Comput. J. 2013, 13, 3621–3627. [Google Scholar] [CrossRef]
- Kaufmann, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic: Theory and Application; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–626. [Google Scholar] [CrossRef]
- Nguyen, V.H. Ranking fuzzy numbers based on relative positions and shape characteristics. Expert Syst. Appl. 2022, 191, 116312. [Google Scholar]
- Seghir, F. FDMOABC: Fuzzy discrete multi-objective artificial bee colony approach for solving the non-deterministic QoS-driven web service composition problem. Expert Syst. Appl. 2021, 167, 114413. [Google Scholar] [CrossRef]
- Chakraborty, S. A simulation based comparative study of normalization procedures in multiattribute decision making. In Proceedings of the 6th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, 16–19 February 2007; pp. 102–109. [Google Scholar]
- Çelen, A. Comparative analysis of normalization procedures in TOPSIS method: With an application to Turkish deposit banking market. Informatica 2014, 25, 185–208. [Google Scholar] [CrossRef]
- Chen, S.J.; Chen, S.M. Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. Appl. Intell. 2007, 26, 1–11. [Google Scholar] [CrossRef]
Fuzzy Numbers | SL | SR | ȝ | RS | Rank | |
---|---|---|---|---|---|---|
Ex.6 | A1 (0.1, 0.2, 0.3, 0.5; 1) | 0.069 | 0.122 | 0.500 | 0.362 | 2 |
A2 (0.1, 0.3, 0.4, 0.6; 1) | 0.102 | 0.102 | 0.500 | 0.500 | 1 | |
Ex.7 | A1 (0.1, 0.2, 0.3, 0.5; 1) | 0.064 | 0.089 | 0.500 | 0.419 | 1 |
A2 (0.1, 0.2, 0.3, 0.5; 1) | 0.064 | 0.089 | 0.500 | 0.419 | 1 | |
Ex.8 | A1 (0.1, 0.2, 0.3, 0.5; 1) | 0.044 | 0.065 | 0.556 | 0.460 | 1 |
A2 (0.1, 0.2, 0.3, 0.5; 0.8) | 0.051 | 0.071 | 0.444 | 0.365 | 2 | |
Ex.9 | A1 (0.1, 0.3, 0.5, 0.6; 1) | 0.113 | 0.122 | 0.500 | 0.479 | 2 |
A2 (0.2, 0.3, 0.6, 0.7; 1) | 0.122 | 0.073 | 0.500 | 0.625 | 1 | |
Ex.10 | A1 (0.1, 0.3, 0.5, 0.6; 1) | 0.050 | 0.066 | 0.625 | 0.558 | 1 |
A2 (0.2, 0.3, 0.6, 0.7; 0.6) | 0.073 | 0.044 | 0.375 | 0.500 | 2 | |
Ex.11 | A1 (0.1, 0.3, 0.5, 0.6; 0.9) | 0.085 | 0.096 | 0.529 | 0.499 | 2 |
A2 (0.2, 0.3, 0.6, 0.7; 0.8) | 0.098 | 0.059 | 0.471 | 0.597 | 1 | |
Ex.12 | A1 (0.1, 0.2, 0.3, 0.5; 1) | 0.231 | 0.139 | 0.500 | 0.625 | 1 |
A2 (−0.5, −0.3, −0.2, −0.1; 1) | 0.139 | 0.231 | 0.500 | 0.375 | 2 | |
Ex.13 | A1 (0.1, 0.2, 0.3, 0.5; 1) | 0.073 | 0.150 | 0.333 | 0.197 | 3 |
A2 (0.1, 0.3, 0.5, 0.6; 1) | 0.113 | 0.122 | 0.333 | 0.315 | 2 | |
A3 (0.2, 0.3, 0.6, 0.7; 1) | 0.122 | 0.073 | 0.333 | 0.455 | 1 |
Set | FNs | Ut | R | DD | R | RIA | R | RDD | R | SLR | R | MEDD | R | RS | R |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Set 5 | A1 (0.1, 0.3, 0.3, 0.5; 1) | 0.375 | 2 | 0.000 | 2 | 0.250 | 2 | 0.222 | 2 | 0.075 | 2 | 0.041 | 2 | 0.429 | 2 |
A2 (0.3, 0.5, 0.5, 0.7; 1) | 0.625 | 1 | 0.300 | 1 | 0.750 | 1 | 0.571 | 1 | 0.303 | 1 | 24.462 | 1 | 0.571 | 1 | |
Set 6 | A1 (0.1, 0.3, 0.3, 0.5; 1) | 0.500 | 1 | 0.063 | 1 | 0.500 | 1 | 0.286 | 1 | 0.130 | 1 | 1.000 | 1 | 0.500 | 1 |
A2 (0.1, 0.3, 0.3, 0.5; 1) | 0.500 | 1 | 0.063 | 1 | 0.500 | 1 | 0.286 | 1 | 0.130 | 1 | 1.000 | 1 | 0.500 | 1 | |
Set 7 | A1 (0.1, 0.3, 0.3, 0.5; 0.8) | 0.400 | 1 | 0.063 | 1 | 0.500 | 1 | 0.242 | 2 | 0.242 | 2 | 0.126 | 2 | 0.444 | 2 |
A2 (0.1, 0.3, 0.3, 0.5; 1) | 0.400 | 1 | 0.061 | 2 | 0.500 | 1 | 0.286 | 1 | 0.286 | 1 | 9.488 | 1 | 0.556 | 1 | |
Set 8 | A1 (−0.5, −0.3, −0.3, −0.1; 1) | 0.250 | 2 | 0.000 | 2 | 0.125 | 2 | 0.154 | 2 | 0.035 | 2 | 0.015 | 2 | 0.333 | 2 |
A2 (0.1, 0.3, 0.3, 0.5; 1) | 0.750 | 1 | 1.333 | 1 | 0.875 | 1 | 1.143 | 1 | 0.679 | 1 | 65.091 | 1 | 0.667 | 1 | |
Set 9 | A1 (0.3, 0.5, 0.5, 1.0; 1) | 0.503 | 1 | 0.327 | 1 | 0.545 | 1 | 0.514 | 1 | 0.285 | 1 | 1.185 | 1 | 0.502 | 1 |
A2 (0.1, 0.6, 0.6, 0.8; 1) | 0.497 | 2 | 0.000 | 2 | 0.455 | 2 | 0.436 | 2 | 0.196 | 2 | 0.844 | 2 | 0.498 | 2 |
Set | FNs | Ut | R | DD | R | RIA | R | RDD | R | SLR | R | MEDD | R | RI | R | RS | R |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Set 10 | A1 (0.0, 0.4, 0.6, 0.8; 1) | 0.517 | 3 | 0.000 | 3 | 0.500 | 3 | 0.474 | 3 | 0.229 | 3 | 0.087 | 3 | 0.000 | 3 | 0.349 | 3 |
A2 (0.2, 0.5, 0.5, 0.9; 1) | 0.554 | 2 | 0.313 | 1 | 0.636 | 2 | 0.600 | 2 | 0.363 | 1 | 0.498 | 2 | 0.552 | 2 | 0.363 | 2 | |
A3 (0.1, 0.6, 0.7, 0.8; 1) | 0.614 | 1 | 0.207 | 2 | 0.700 | 1 | 0.647 | 1 | 0.362 | 2 | 2.176 | 1 | 1.000 | 1 | 0.434 | 1 | |
Set 11 | A1 (0.4, 0.5, 0.5, 1; 1) | 0.344 | 3 | 0.000 | 3 | 0.167 | 3 | 0.222 | 3 | 0.102 | 3 | 0.043 | 3 | 0.000 | 3 | 0.198 | 3 |
A2 (0.4, 0.7, 0.7, 1; 1) | 0.500 | 2 | 0.048 | 2 | 0.500 | 2 | 0.375 | 2 | 0.184 | 2 | 0.934 | 2 | 0.597 | 2 | 0.333 | 2 | |
A3 (0.4, 0.9, 0.9, 1; 1) | 0.656 | 1 | 0.136 | 1 | 0.833 | 1 | 0.571 | 1 | 0.296 | 1 | 3.857 | 1 | 1.000 | 1 | 0.503 | 1 | |
Set 12 | A1 (0.1, 0.2, 0.3, 0.5; 1) | 0.321 | 3 | 0.000 | 3 | 0.143 | 3 | 0.189 | 3 | 0.102 | 3 | 0.037 | 3 | 0.000 | 3 | 0.197 | 3 |
A2 (0.1, 0.3, 0.5, 0.6; 1) | 0.482 | 2 | 0.037 | 2 | 0.400 | 2 | 0.333 | 2 | 0.184 | 2 | 0.974 | 2 | 0.373 | 2 | 0.315 | 2 | |
A3 (0.2, 0.3, 0.6, 0.7; 1) | 0.571 | 1 | 0.171 | 1 | 0.750 | 1 | 0.467 | 1 | 0.296 | 1 | 2.429 | 1 | 1.000 | 1 | 0.455 | 1 |
Fuzzy Numbers | SL | SR | ȝ | RS | Rank | |
---|---|---|---|---|---|---|
Set 15 | A1 (0.1, 0.2, 0.3, 0.5; 1) | 0.102 | 0.122 | 0.500 | 0.455 | 2 |
A2 (0.2, 0.3, 0.4, 0.6; 1) | 0.111 | 0.102 | 0.500 | 0.521 | 1 | |
A3 (0.3, 0.5, 0.5, 0.7; 1) | ||||||
Set 15.1 | A1 ⊕ A3 (0.4, 0.8, 0.8, 1.2; 1) | 0.192 | 0.213 | 0.500 | 0.474 | 2 |
A2 ⊕ A3 (0.5, 0.8, 0.9, 1.3; 1) | 0.200 | 0.192 | 0.500 | 0.511 | 1 | |
A3 (0, 0.1, 0.1, 0.2; 1) | ||||||
Set 15.2 | A1 ㊀ A3 (−0.1, 0.2, 0.2, 0.5; 1) | 0.147 | 0.168 | 0.500 | 0.467 | 2 |
A2 ㊀ A3 (0, 0.2, 0.3, 0.6; 1) | 0.156 | 0.147 | 0.500 | 0.514 | 1 | |
Set 16 | A1 (0.1, 0.3, 0.3, 0.5; 1) | 0.089 | 0.089 | 0.500 | 0.500 | 1 |
A2 (0.1, 0.3, 0.3, 0.5; 1) | 0.089 | 0.089 | 0.500 | 0.500 | 1 | |
Set 16.1 | A3 (0.3, 0.5, 0.5, 0.7; 1) | |||||
A1 ⊕ A3 (0.4, 0.8, 0.8, 1.2; 1) | 0.178 | 0.178 | 0.500 | 0.500 | 1 | |
A2 ⊕ A3 (0.4, 0.8, 0.8, 1.2; 1) | 0.178 | 0.178 | 0.500 | 0.500 | 1 | |
Set 17.1 | A1 (0.1, 0.3, 0.3, 0.5; 1) | 0.102 | 0.122 | 0.500 | 0.455 | 2 |
A2 (0.2, 0.3, 0.4, 0.6; 1) | 0.111 | 0.102 | 0.500 | 0.521 | 1 | |
Set 17.2 | A3 (0.3, 0.5, 0.5, 0.7; 1) | 0.113 | 0.150 | 0.500 | 0.429 | 2 |
A4 (0.5, 0.7, 0.7, 0.9; 1) | 0.150 | 0.113 | 0.500 | 0.571 | 1 | |
Set 17.3 | A2 ⊕ A4 (0.7, 1, 1.1, 1.5; 1) | 0.269 | 0.215 | 0.500 | 0.556 | 1 |
A1 ⊕ A3 (0.4, 0.8, 0.8, 1.2; 1) | 0.215 | 0.274 | 0.500 | 0.440 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.H.P.; Chu, T.-C. Novel Method for Ranking Generalized Fuzzy Numbers Based on Normalized Height Coefficient and Benefit and Cost Areas. Axioms 2023, 12, 1049. https://doi.org/10.3390/axioms12111049
Le THP, Chu T-C. Novel Method for Ranking Generalized Fuzzy Numbers Based on Normalized Height Coefficient and Benefit and Cost Areas. Axioms. 2023; 12(11):1049. https://doi.org/10.3390/axioms12111049
Chicago/Turabian StyleLe, Thi Hong Phuong, and Ta-Chung Chu. 2023. "Novel Method for Ranking Generalized Fuzzy Numbers Based on Normalized Height Coefficient and Benefit and Cost Areas" Axioms 12, no. 11: 1049. https://doi.org/10.3390/axioms12111049
APA StyleLe, T. H. P., & Chu, T. -C. (2023). Novel Method for Ranking Generalized Fuzzy Numbers Based on Normalized Height Coefficient and Benefit and Cost Areas. Axioms, 12(11), 1049. https://doi.org/10.3390/axioms12111049