High-Effectiveness and -Accuracy Difference Scheme Based on Nonuniform Grids for Solving Convection–Diffusion Equations with Boundary Layers
Abstract
:1. Introduction
2. RHOC Scheme on Nonuniform Grids (NRHOC Scheme) for 1D Convection–Diffusion Equations
2.1. NRHOC Scheme for 1D Constant-Coefficient Convection–Diffusion Equations
2.2. NRHOC Scheme for 1D Variable-Coefficient Convection–Diffusion Equations
3. NRHOC Scheme for 2D Convection–Diffusion Equations
3.1. NRHOC Scheme for 2D Constant-Coefficient Convection–Diffusion Equations
3.2. NRHOC Scheme for 2D Variable-Coefficient Convection–Diffusion Equations
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Meis, T.; Marcowitz, U. Numerical Solution of Partial Differential Equations; Applied Mathematical Science Series; Springer-Verlag: Berlin, Germany; New York, NY, USA, 1981; Volume 22. [Google Scholar]
- Patanker, S.V. Numerical Heat Transfer and Fluid Flow; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Roache, P.J. Computational Fluid Dynamics; Hermosa: Albuquerque, NM, USA, 1976. [Google Scholar]
- Gupta, M.M.; Manohar, R.P.; Stephenson, J.W. A single cell high order scheme for the convection-diffusion equation with variable coefficients. Int. J. Numer. Meth. Fluids 1984, 4, 641–651. [Google Scholar] [CrossRef]
- Gupta, M.M.; Manohar, R.P.; Stephenson, J.W. High-order difference schemes for two-dimensional elliptic equations. Numer. Methods Partial Differ. Equ. 1985, 1, 71–80. [Google Scholar] [CrossRef]
- Chen, G.Q.; Gao, Z.; Yang, Z.F. A perturbational h4 exponential finite difference scheme for convection diffusion equation. J. Comput. Phys. 1993, 104, 129–139. [Google Scholar] [CrossRef]
- Spotz, W.F. High-Order Compact Finite Difference Schemes for Computational Mechanics. Doctor’s Thesis, The University of Texas at Austin, Austin, TX, USA, December 1995. [Google Scholar]
- Roos, H.G.; Stynes, M.; Tobiska, L. Numerical Solution of Convection’CDiffusion Problems: Convection-Diffusion and Flow Problems; Springer Series in Computational Mathematics; Springer-Verlag: New York, NY, USA, 1996; Volume 24. [Google Scholar]
- Zhang, J. Accurated high accuracy multigrd solution of the convection-diffusion with high Reynolds number. Numer. Meth. Partial Differ. Equ. 1997, 13, 77–92. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J. A high order finite difference discretization strategy based on extrapolation for convection diffusion equations. Numer. Meth. Partial Differ. Equ. 2004, 20, 18–32. [Google Scholar] [CrossRef]
- Tian, Z.F.; Dai, S.Q. High-order compact exponential finite difference methods for convection-diffusion type problems. J. Comput. Phys. 2007, 220, 952–974. [Google Scholar] [CrossRef]
- Sanyasiraju, Y.V.S.S.; Mishra, N. Spectral resolution exponential compact higher order scheme (SRECHOS) for convection-diffusion equations. Comput. Meth. Appl. Mech. Eng. 2008, 197, 4737–4744. [Google Scholar] [CrossRef]
- Kadalbajoo, M.K.; Gupta, V. Numerical solution of singularly perturbed convection-diffusion problem using parameter uniform B-spline collocation method. J. Math. Anal. Appl. 2009, 355, 439–452. [Google Scholar] [CrossRef]
- Mittal, R.C.; Jain, R.K. Redefined cubic B-splines collocation method for solving convection-diffusion equations. Appl. Math. Model. 2012, 36, 5555–5573. [Google Scholar] [CrossRef]
- Qian, L.; Feng, X.; He, Y. The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems. Appl. Math. Model. 2012, 36, 561–572. [Google Scholar] [CrossRef]
- Mai-Duy, N.; Thai-Quang, N.; Hoang-Trieu, T.T.; Tran-Cong, T. A compact 9 point stencil based on integrated RBFs for the convection-diffusion equation. Appl. Math. Model. 2014, 38, 1495–1510. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; He, Y.N. Least-squares virtual element method for the convection-diffusion-reaction problem. Int. J. Numer. Methods Eng. 2021, 122, 11. [Google Scholar] [CrossRef]
- Kadalbajoo, M.K.; Gupta, V. A brief survey on numerical methods for solving singularly perturbed problems. Appl. Math. Comput. 2010, 217, 3641–3716. [Google Scholar] [CrossRef]
- Jeon, Y.; Tran, M.L. The upwind hybrid difference methods for a convection diffusion equation. Appl. Numer. Math. 2018, 133, 69–82. [Google Scholar] [CrossRef]
- Lan, B.; Sheng, Z.Q.; Yuan, G.W. A new positive finite volume scheme for two-dimensional convection-diffusion equation. Zamm-J. Appl. Math. Mech. Angew. Math. Und Mech. 2019, 99, 2. [Google Scholar] [CrossRef]
- Xiao, X.F.; Feng, X.L.; Li, Z.L. A gradient recovery-based adaptive finite element method for convection-diffusion-reaction equations on surfaces. Int. J. Numer. Methods Eng. 2019, 120, 7. [Google Scholar] [CrossRef]
- Chen, G.; Hu, W.W.; Shen, J.G.; Singler, J.R.; Zhang, Y.W.; Zheng, X.B. An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 2018, 343, 643–661. [Google Scholar] [CrossRef]
- Choo, J.Y.; Schultz, D.H. Stable high order method for differential equations with small coefficients for the second order terms. Comput. Math. Appl. 1993, 25, 105–123. [Google Scholar] [CrossRef]
- Choo, J.Y. Stable high order methods for elliptic equations with large first order terms. Comput. Math. Appl. 1994, 27, 65–80. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Zhao, J.J. High order compact scheme with multigrid local mesh refinement procedure for convection diffusion problems. Comput. Meth. Appl. Mech. Eng. 2002, 191, 4661–4674. [Google Scholar] [CrossRef]
- Teigland, R.; Eliassen, I.K. A multiblock/multilevel mesh refinement procedure for CFD computations. Int. J. Numer. Meth. Fluids 2001, 36, 519–538. [Google Scholar]
- Berger, M.J.; Coella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 1997, 82, 64–84. [Google Scholar] [CrossRef]
- Spotz, W.F.; Carey, G.F. Formulation and experiments with high-order compact schemes for nonuniform grids. Int. J. Numer. Meth. Heat Fluid Flow 1998, 8, 288–297. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, J. High accuracy iterative solution of convection diffusion equation with boundary layers on nonuniform grids. J. Comput. Phys. 2001, 171, 560–578. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, L.; Gupta, M.M. Fourth order compact difference schemes for 3D convection diffusion equation with boundary layers on nonuniform grid. Neural Parallel Sci. Comput. 2000, 8, 373–392. [Google Scholar]
- Kalita, J.C.; Dass, A.K.; Dalal, D.C. A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids. Int. J. Numer. Methods Fluids 2004, 44, 33–53. [Google Scholar] [CrossRef]
- Hu, S.G.; Pan, K.; Wu, X.X.; Ge, Y.B.; Zhang, L. An efficient extrapolation multigrid method based on a HOC scheme on nonuniform rectilinear grids for solving 3D anisotropic convection diffusion problems. Comput. Method. Appl. M 2023, 403, 115724. [Google Scholar] [CrossRef]
- Ge, Y.; Cao, F. Multigrid method based on the transformation-free HOC scheme on nonu niform grids for 2D convection diffusion problems. J. Comput. Phys. 2011, 230, 4051–4070. [Google Scholar] [CrossRef]
- Tian, F.; Ge, Y.B.; Tian, Z.F. Exponential high-order compact finite difference method for convection-dominated diffusion problems on nonuniform grids. Numer. Heat Transf. Part B Fundam. 2019, 75, 145–177. [Google Scholar] [CrossRef]
- Bataineh, A.S.; Noorani, M.S.M.; Hashim, I. Homotopy analysis method for singular IVPs of Emden-Fowler type. Commun. Nonlinear. Sci. 2009, 14, 1121–1131. [Google Scholar] [CrossRef]
- Venturino, E. The Galerkin method for singular integral eiquationsrevisited. J. Comput. Appl. Math. 1992, 40, 91–103. [Google Scholar] [CrossRef]
- Mustafa, T. Solution of Initial and Boundary Value Problems by an Effective Accurate Method. Int. J. Compu.t Methods 2017, 14, 1750069. [Google Scholar]
- Turkyilmazoglu, M. Analytic approximate solutions of parameterized unperturbed and singularly perturbed boundary value problems. Appl. Math. Model 2011, 35, 3879–3886. [Google Scholar] [CrossRef]
- Sleijpen, G.L.G.; Diederik, R.F. BiCGStable(L) for linear equations involing unsymmetic matrices with complex spectrum. Electron. Trans. Numer. Anal. 1993, 1, 11–32. [Google Scholar]
- Liang, X.; Zhang, H.Y.; Tian, Z.F. A fourth-order compact difference algorithm for numerical solution of natural convection in an inclined square enclosure. Numer. Heat Transf. Part A Appl. 2021, 80, 255–290. [Google Scholar] [CrossRef]
- Gupta, A.; Kaushik, A.; Sharma, M. A higher-order hybrid spline difference method on adaptive mesh for solving singularly perturbed parabolic reaction-diffusion problems with robin-boundary conditions. Numer. Methods Partial Differ. Equ. 2023, 39, 1220–1250. [Google Scholar] [CrossRef]
- Weinan, E.; Liu, J.G. Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 1996, 126, 122–138. [Google Scholar]
- Wang, C.; Liu, J.G. Fourth order convergence of compact finite difference solver for 2-D incompressible flow. Commun. Appl. Anal. 2003, 7, 171–192. [Google Scholar]
Nodes | FOC [7] | NRHOC | ||||
---|---|---|---|---|---|---|
Error | Rate | Error | Rate | |||
1 | 11 | 2.18 (−7) | – | 4.18 (−8) | – | 0.00 |
21 | 1.38 (−8) | 3.98 | 2.71 (−9) | 3.94 | ||
41 | 8.63 (−10) | 4.00 | 1.71 (−10) | 3.99 | ||
21 | 3.35 (−2) | – | 6.50 (−3) | – | 0.75 | |
41 | 2.83 (−3) | 3.57 | 4.08 (−4) | 3.99 | ||
81 | 1.65 (−4) | 4.10 | 2.61 (−5) | 3.97 | ||
21 | 3.60 (−1) | – | 1.76 (−1) | – | 0.95 | |
41 | 7.72 (−1) | −1.10 | 1.35 (−2) | 3.71 | ||
81 | 3.05 (−1) | 1.34 | 7.93 (−4) | 4.08 | ||
201 | 4.52 (−1) | – | 2.95 (−2) | – | 1.00 | |
401 | 2.18 (−1) | 1.05 | 1.88 (−3) | 3.98 | ||
801 | 1.03 (−1) | 1.08 | 1.15 (−4) | 4.03 |
Nodes | FOC [7] | RHOC | NRHOC | |||
---|---|---|---|---|---|---|
Error | Rate | Error | Rate | Error | Rate | |
41 | 9.72 (−6) | – | 1.16 (−5) | – | 9.41 (−6) | – |
81 | 6.28 (−7) | 3.95 | 7.68 (−7) | 3.92 | 6.00 (−7) | 3.97 |
161 | 3.99 (−8) | 3.98 | 4.89 (−8) | 3.97 | 3.76 (−8) | 3.99 |
321 | 2.50 (−9) | 4.00 | 3.07 (−9) | 4.00 | 2.35 (−9) | 4.00 |
41 | 1.06 (−2) | – | 2.03 (−2) | – | 8.34 (−4) | – |
81 | 1.30 (−3) | 3.03 | 7.50 (−4) | 4.76 | 4.92 (−5) | 4.08 |
161 | 3.32 (−4) | 3.03 | 3.74 (−4) | 1.01 | 2.99 (−6) | 4.04 |
321 | 2.44 (−5) | 3.76 | 3.03 (−5) | 3.62 | 1.86 (−7) | 4.01 |
41 | 6.17 (+0) | – | 4.26 (+0) | – | 2.65 (−2) | – |
81 | 1.93 (+0) | 1.68 | 3.37 (+0) | 0.33 | 1.69 (−3) | 3.97 |
161 | 2.59 (−1) | 2.89 | 6.68 (−1) | 2.34 | 1.10 (−4) | 3.93 |
321 | 1.52 (−2) | 4.09 | 3.87 (−2) | 4.11 | 6.82 (−6) | 4.02 |
81 | 3.70 (+1) | – | 1.93 (+1) | – | 1.11 (−1) | – |
161 | 1.83 (+1) | 1.02 | 9.65 (+0) | 1.00 | 6.09 (−3) | 4.19 |
321 | 8.43 (+0) | 1.12 | 5.02 (+0) | 0.94 | 3.74 (−4) | 4.02 |
641 | 3.03 (+0) | 1.48 | 3.26 (+0) | 0.62 | 2.38 (−5) | 3.97 |
160 | 1.86 (+2) | – | 9.65 (+1) | – | 1.62 (−1) | – |
320 | 9.32 (+1) | 1.00 | 4.80 (+1) | 1.01 | 8.24 (−3) | 4.30 |
640 | 4.66 (+1) | 1.00 | 2.39 (+1) | 1.01 | 5.03 (−4) | 4.03 |
1280 | 2.31 (+1) | 1.01 | 1.20 (+1) | 1.00 | 3.15 (−6) | 4.00 |
Nodes | HOC [31] | NRHOC | Nodes | HOC [31] | NRHOC | ||||
---|---|---|---|---|---|---|---|---|---|
Error | Rate | Error | Rate | Error | Rate | Error | Rate | ||
, | , | ||||||||
2.15 (−6) | – | 2.15 (−6) | – | 2.96 (−3) | – | 2.22 (−3) | – | ||
1.29 (−7) | 4.07 | 1.29 (−7) | 4.07 | 1.85 (−4) | 4.00 | 1.37 (−4) | 4.01 | ||
7.94 (−9) | 4.02 | 7.94 (−9) | 4.02 | 1.15 (−5) | 4.00 | 8.49 (−6) | 4.00 | ||
, | , | ||||||||
2.23 (−1) | – | 1.18 (−2) | – | 7.82 (−1) | – | 1.41 (−1) | – | ||
5.07 (−2) | 2.13 | 7.14 (−4) | 4.04 | 6.06 (−1) | 0.37 | 1.45 (−2) | 3.29 | ||
5.26 (−3) | 3.27 | 4.38 (−5) | 4.03 | 3.65 (−1) | 0.73 | 9.00 (−4) | 4.01 | ||
, | , | ||||||||
8.16 (−1) | – | 3.35 (−2) | – | 8.74 (−1) | – | 7.66 (−2) | – | ||
6.66 (−1) | 0.29 | 2.86 (−3) | 3.55 | 7.62 (−1) | 0.20 | 8.98 (−3) | 3.09 | ||
4.43 (−1) | 0.59 | 1.79 (−4) | 4.00 | 5.81 (−1) | 0.39 | 5.77 (−4) | 3.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Wang, M.; Ge, Y. High-Effectiveness and -Accuracy Difference Scheme Based on Nonuniform Grids for Solving Convection–Diffusion Equations with Boundary Layers. Axioms 2023, 12, 1056. https://doi.org/10.3390/axioms12111056
Tian F, Wang M, Ge Y. High-Effectiveness and -Accuracy Difference Scheme Based on Nonuniform Grids for Solving Convection–Diffusion Equations with Boundary Layers. Axioms. 2023; 12(11):1056. https://doi.org/10.3390/axioms12111056
Chicago/Turabian StyleTian, Fang, Mingjing Wang, and Yongbin Ge. 2023. "High-Effectiveness and -Accuracy Difference Scheme Based on Nonuniform Grids for Solving Convection–Diffusion Equations with Boundary Layers" Axioms 12, no. 11: 1056. https://doi.org/10.3390/axioms12111056
APA StyleTian, F., Wang, M., & Ge, Y. (2023). High-Effectiveness and -Accuracy Difference Scheme Based on Nonuniform Grids for Solving Convection–Diffusion Equations with Boundary Layers. Axioms, 12(11), 1056. https://doi.org/10.3390/axioms12111056