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Abstract: We introduce a non-instantaneous impulsive Hopfield neural network model in this paper.
Firstly, we prove the existence and uniqueness of an almost periodic solution of this model. Secondly,
we prove that the solution of this model is exponentially stable. Finally, we give an example of
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1. Introduction

It is well known that neural network models have many applications in the area of
parallel computing, associative memory, pattern recognition, computer vision etc. [1-5].
Therefore, more and more experts and scholars pay attention to neural network models.

The studies on neurocomputing have been improved very fast after the work of
McCulloch et al. [6]. One of the neural networks model was given by Hopfield [7,8]. In
the actual situation, system can be affected by short-term fluctuations in the environment.
Impulses are commonly used to describe this phenomenon. For instance, according to
Arbib [9] and Haykin [10], when a stimulus from the body or the external environment
is received by receptors, the electrical impulses will be conveyed to the neural net and
impulsive effects arise naturally in the net. Stamova and Stamov [11] proposed a Hopfield
neural network with impulsive effects at fixed moments as follows

wi(1) = é a;j(1)w;(1) +]Zl bij (1) fj(wj(1)) + &i(1), ¢ # e,

ij
Aw(ix) = Brw(i) + C(w (i) + hy, k € Ny,

n

)

where 1 € J := {0} UR,, Ry := {b|b is a positive real number}, ;; (0 < 11 < 1 <
-) stand for the times which are impulses, aij, bij, gi € C(J,R), fi € CUJ,R), i =
1,2,---,n,j =1,2,---,n, C(J,R) is the space of all the continuous functions from J
to R, w(t) = col(wq (1), wy(t), -, wn(r)), Aw(e) = w(y) —w(y ), w(y) is the right limits
of w(y) and w(y ) is the left limits of w(y), By € R"™", C, € C(R%,R"), R = {x =
(x1,%2,- - ,xp) ER"|x; >0,i=1,2,--- ,n}, where R", n € N is n-dimensional Euclidean
space, iy € R", k e N, N:={0,1,2,3,--- } and N := N/{0}.
However, most systems do not return to normal immediately after the impulse [12].
The system stays active for a limited period of time. Therefore, Herndndez et al. [13]
firstly introduced the theory of non-instantaneous impulses and established the existence
of solutions for a class of impulsive differential equations. After that, Wang et al. [14-16]
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generalized this model and carried out more in-depth research on non-instantaneous impul-
sive differential equations. In general, there are no impulses that happen instantaneously,
that is to say, it is non-instantaneous, even if the event occurs over a short period of time.
Non-instantaneous impulsive effects exist in Hopfield neural network. For instance, in
implementation of electronic networks, the state of the network is often subject to non-
instantaneous perturbations, which may be caused by noise instances. Moreover, many
evolutionary processes, particularly some biological systems, such as biological neural
networks and bursting rhythm models in pathology, might exhibit non-instantaneous
impulsive effects as well. Therefore, it is beneficial to study a class of differential equations
with non-instantaneous impulses.

Then, we consider the case of the model (1) with non-instantaneous impulses as
follows

n

i) = £ a0+ £ b0 @) + 80, € (meal, ke,
C

J]
1

K(w(my ) + e, k€ Ny, @)
w(1) = Byw(my ) + Ce(w(my ) + hy, 1 € (my, li], k € Ny,
w(l) =w(l), ke Ny,

bi
w(m) = Bew(my ) +
where 0 = lp < my <} <mp <lp < -+ < myp < Ilp < mgyq < ---. The solution
w(1) = w(s;19, wp) of model (2) with the initial condition w(1) = wy € R, 19 € Jisa
piecewise continuous function with points of discontinuity of the first kind at the moments
my, k € N, at which it is continuous from the left.

Periodic phenomenon is one of the phenomena widely existing in nature [17]. But
many motion processes in the present world are approximate to periodic instead of strictly
periodicity. Therefore, Danish mathematicians Bohr [18] first proposed the concept of
almost periodic (AP), which is a significant generalization for practical application. Many
scholars have demonstrated that it is more realistic to adopt an AP hypothesis in the process
of AP study, when taking into account the impact of environmental factors, and this has
certain ergodicity [19-25].

The rest of this paper is arranged as follows. In Section 2, we provide some of the
necessary preliminaries for this paper. In Section 3, we prove the existence, uniqueness

and exponential stability of the AP solution to (2). In Section 4, we present an Example to
support our theoretical results.

2. Preliminaries

For the sequences {m; } and {I }, k € N, assume that lim mj = 400, lim [ = 4o0.

k—+o0 k—+o0
Let the norm [|j(1)[| = max{|j1 (1), |12(1)l, -, [jn(1)[} for j(1) = (j2(1), j2(), -+~ ju(1)) -
The space PC([0,0),R") := {w : [0,00) — R" :w € C((m;,mi1], R"), w(m; ) =
w(m;), w(m;") exist for any i € N} endowed with norm |[w||pc = sup |w(:)||, where
1€[0,00)

C((m;, mi+1],R") represents the space which is made up of all the continuous functions
from (m;, m; 1] to R". It is obvious that (PC(]0,o0),R"), || - ||pc) is a Banach space.

Definition 1 (see [26]). For the sequences {M;}icn,, M; € R", if for any i € Ny there exist
€ > 0and integer p such that the following inequality hold

My, — Mi|| <e, 3)
then p is called to be e-AP of the { M; }ien,, M; € R".

Definition 2 (see [27]). {M;}ien,, M; € R" are called to be AP sequences if for any & > 0, there
exists a relatively dense set of its e-AP.
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Definition 3 (see [26]). The w € PC([0,00),R") is called an AP function if all of the conditions
are satisfied as follows

(i) {m{}, i,j € Ny are uniformly AP sequences, where mf = miyj—m.

(i)  Forany e > 0, there exists a number § = (&) which is positive, such that if 1 and 1, are the
points in the same continuous interval and |11 — 15| < &, then ||w(1y) — w(n)| < e.

(iij) For any € > 0, there exists a relatively dense set I' of e—AP, such that if ¢ € T, then
|lw(t+0) —w(1)|| < eforalli € [0, c0) satisfying the condition |t —m;| > ¢, i € N,.

Together with model (2), we shall consider the linear model
4

where A(1) = (al-]-), i=123---,nj=12---,n
Let w(1) = W(,,19)w,, 0 < 19 < 1 represents the solution of (4) with w(y) = w,,
where W(1, 19) is the Cauchy matrix of model (4) which can be looked up on [28].
We propose some assumptions as follows.
(Hy) The sequences {I{}, If = liyr — I and {m[}, m{ = my —my, k,7 € Ny are
uniformly AP and 0 < [y —my <0 < +00,0 < g <myyq — Il <0 < 400,k e N
(H;) The matrix function A € C(J,R"*") is AP in the sense of Bohr.
(H3) The sequence {By}, k € N is AP.
(Hy) The functions f;(1) are AP in the sense of Bohr, and

0 < sup [f;(1)] < oo, £;(0) =0,

1eJ

and there exists an L; > 0 such that for ¢, s € R,

(1) = fi(s)| < Lt —s].
max i) = fi()] < Ll =]

(Hs) The functions b;;(¢) are AP in the sense of Bohr, and

0 <sup |b,](l)‘ = Z_Jl] < oo.
€]

(Hg) The functions g;(¢), i = 1,2,3,---,n, are AP in the sense of Bohr, the sequences
{hy}, k € Ny are AP and there exists a C > 0 such that

maX{lgﬂpo sup ||hk|} =G

keN4

where g(1) = (81(+), 82(+), -+, gn(1)).
(Hy) The sequence of functions {C(x)}, k € N is AP uniformly with respect to x € R",

and there exists an L, > 0 such that

1C(x) = Gl < Lallx =y,

fork € Ny, x,y € R". Cx(x) = xif and only if x = (0,0,-- - ,0).
Now, we need the following Lemmas.
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Lemma 4 (see [28]). Assume that (Hy)—(Hz) hold. Then, for the Cauchy matrix W(1, 1) of
model (4) there exist positive constants K > 0and Y > 0 such that

IW (1, 10) || < Ke Y070), 0 <49 <1

Lemma 5 (see [28]). Foranye > 0,0 < 19 <1, |t —m;| > ¢ |t —1;| > € 19— m;| > eand
lto — 1j| > ¢, i € Ny, there exist a constant K > 0 and a relatively dense set of T of e-AP such that

IW(+70+7) =W, < sKe*%Y(‘*‘O), rel.

Lemma 6 (see [11]). Let conditions (Hy)—(Hg) hold. Then for each ¢ > 0, there exist ¢1, 0 <
g1 < ¢ a relatively dense set T of real numbers and a set Q of integers such that the following
relations are fulfilled.

(@) |JA(+r)—AQ)| <erel, rel;

(b) |bij(l+1’) - b,’j(t)| <egtel,rel,ij=123,--,n

@ |fit+tr)=fi)| <erel,rel,j=123,n

(d) |g]'(l—|—1’) —gj(1)| <grel],rel,j=1,23,---,n;

(€)  |Bkyg—Bell <& g€ Q keRy;

) g — el <e,q€ Q keRy;

(g) |l,'Z—r|<81,|m2—r|<81,q€Q,r€1",k€N+.

Lemma 7 (see [26]). If the sequences {m]} i,j € Nare uniformly AP, then we can get

(i)  There exists a constant p > 0 such that sup (’H 2

t—+o0

= p which is uniformly with respect to

1> 0.
(ii)  Forany p > 0, there exists N which is a positive integer such that the number of elements in
the sequences {m;} on each interval of length p does not exceed N. We can choose N > p.

3. Main Results

Theorem 8. Assume that conditions (Hy)—(Hy) are satisfied, model (2) has a unique positive AP
solution if

L1
K{ max Zbl]-f—LQN]} <1

Y i=12,-n
(10 v #(1,0) Ly (o
Proof. Let N; = sup Z e~ (=) Ny =sup Y e 2070 0= {w € PC(J,R), w
€] k=1 €] k=1

is AP (|lw(-+7) —w(-)|]| <e& reTl)and ||w]pc < N}, where I is mentioned in Lemma 5.
For I <t <mypyq, k€N, let

u(1,0)—1

M1
p = ) W(t,u)g(u)du +/ (u)du
k=0 lk ;4 (1,0)
#(1.0)
+ Y W, mi )k
k=1

Then,
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u(1,0)—1
lollre < sup{ "% [ WG lg s [l
e ;110
#(1,0)
+ X VGl
k=1
u(1,0)
< supq [ WG lg) ldu+ 3 WG el
k=1
#(1,0)
< supg . max /HW(l/ Hgi () ldu+ Y W, md) el
e | =12 k=1
u(1,0)
< sup{/ Ke Y= cdu + )y Ke Y- ’”k)C}
1eJ
KC
< TKNiC
< KC(%+N1> =N (5)

Letr € T, g € Q, where the sets I and Q are determined in Lemma 6. Then,

sup [[¢(t+7)

€]

Set

where

k40l

u(1,0)—1 M
{ 2 /I (IW(+r,u+7r)—W(,

< sup u) ||l (u +7)lldu
€]
u(1,0)—1
+ Z / W, u)llllg(u+1) — g(u)l|du
+/ W@ +ru+r)=W(,u)llllg(u+r)|du
;110
+/ W, u)lllg(u+r) — g(u)|ldu
luw0)
1(1.0)
+ ) IWG+rml ) = W md) [
k=1
1(1,0)
1 W00 sy~ e}
k=1
< sup{ [ ) WOt 1)
€]
L
+/0 W, u)llllg(u+1) — g(u)l|du
1(10)
+ ) IWG+rml ) = W md) |
k=1
1(10)
X IV ey~ 1l |
k=1
< sup{ /’ sKe’%Y(’*”)Cdu—i-/’ Ke Y0~ Weduy
1eJ J0 0
1(10) 1(10)
+ eKe— Y0 " e 4 2 Kefy(‘*"’lr)&}
k=1 k=1
2 1
< eKC—= + Ke—= + eKNp,C + KeNy
Y Y
<

2 1
e(KcY + Ky + KN C + KN1>.

F(i,w) = col{F1(1,w), F(t,w), -+, Fa(1,w)},

)= byt

]:

(1)),i=1,2,3,-
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We define in () an operator T,
u(1,0)—1

o= Y [ W) (B w(0)) + g )

I

k=0
+/l[ W(t,u)(F(u,w(u))+ g(u))du

1(1,0)
+ Y W ml) (Crlw(mg)) + hi)
k=1
and consider a subset Q) C ), where
R RN
= : — < — .
0= {wea: gl < 7|

Consequently, for an arbitrary w € ) from (5) and (6) it follows that

N

RN
< lw — < - '
[wllpc < llw—@llpc +[¢llpc < T-r T N = T-R

Now, we prove that T is a self-mapping from Q) to Q).
For w € () we have

||Tw—fPHPC
}‘(’/0)_1 Myeqq
< sup{ Y[ W) ()
€] k=0 Jlk
[ Il ()
ZM(LO)
#(1,0)
iy ||W<z,mk+>n|\ck<w<m,:>>||}
k=1
L
< sup{ [ 1w lF G w()
eJ 0
#(1,0
Y W0 m Gk (ol ;))H}
k=1
< sup{ max / W) 32 i) 15y ) e
] i=1,2,-- nJ0 =1
#(1,0)
T ||w<t,mk+>|\Hck(w(m,:))n}
k=1
L no_
< sup{ max [ IWG0] Y Byt
ey Li=12-nJo =
#(1,0)
iy ||w<z,mk+>|\Lz||w<m,:>u}
k=1
L no_
< { max /KeiY(liu)lebi]'du
i=12,--,nJ0 =1
#(1,0) N
Yy Ke‘Y<"’”k>Lz}||wupc
k=1
L n
< K 112 ng, + NiLp pllw|pc

RN

= R < —
wllee < 7o

(6)

@)



Axioms 2023,12,115 7 of 13

Letr € T, g € Q, where the sets I' and Q are determined in Lemma 6. Then

I Tw(t+7) = Tw(1)]|

< sup (Ta(t+7) ~ To(0) = (9p(-+) ~ 9(0) | +5up (e +7) — 9(0)]
< sup (Ta(t+7) = 9(a-+1)) = (Ta(t) = 9(0) | +5up (e +7) — 9(0)]
p(10)—1 My q
< sup{ y / IV 10+ 7) = W, ) ||| F( + 7, w(u + 7)) ||du
€] =0 “k
#(10)-1 Mt
L [T IV IFG+ 0+ ) = F () du
k=0 k
+/l IW(@+r,u+r) =W u)||||F(u+r,w(u+r))|du
1(1,0)
+/I( | WV ) ||| F i+ 7, w(u + 7)) — E(u, w(u)) | du
1(10)
+ k; W+ 1m0 ) = W md) [ Crsg (w(mye, )
1(1,0)
+ k; W (e, m ) | Cg (wlmy, ) — Ck(W(mk_))l}
+81€1§ lo(t+7)— @)l
< sup{/l||W(t+r,u+r)—W(t,u)||||F(u+r,w(u+r))||du
1eJ 0
[ I G+ ) = F () d
(1,0
+ k; W+ r,m ) = Wm0 | Crsg (w(my, )
1(1,0)
+ X (e G )) = Cileoto )1
+Slel}? lo(t+7) — @)
< sltéj};{l_rlraaxn (/0 IWG+r,u+r)—W(,u) ];bi]-(u—l—r)fj(w]-(u—i-r)) du
[ 01| 32 o )y -+-)) = 32 by oy ) )
j=1 j=1

1(1,0)
+ ) IWG+rml, ) =W mE)| Crpg(w(m, )l
k=1

1(10)
+ k; W (L, m ) | Crepg (wlimy ) Ck(w(mk‘))l}

+sup [lp(t+71) — ()]
€]
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L n
< sup { ~ max (/ IW(i+r,u+r)—W(,u)| Zb,'j(u +7)fi(wj(u+r))|du
g Li=12,m 0 j=1
L n
+ /0 IV ()l Y (bij(u +7) = b)) fj(wj(u + 7))
j=1
n
3 ) 5+ 1) ) o
j=1
#(10) .
£ L IVt ) = WGl el )
#(1,0)
+ kzl W (1, m ) | Crg (wlmy, ) _Ck(w(mk_))”}
+sup [[o(t+1) — o]
eJ
L no_
< sup{ ~ max (/ eKe2Y(—) Y bijLi|wj(u+r))|du
ey Li=120m \Jo =1
L v n no_
+/O Ke Y(—4) ( Z%sLﬂw]-(u +7)|+ X; bijL|wj(u +7) — w]-(u)|>du)
= =
p(10) . N
+ ) eKem 2 L w(my, )|
k=1
1(1,0) B
I Z Ke— Y(—m; )L2||w(mk’+q) — w(mk)||}
k=1
+sup [[@(t+7) — @)
eJ
2K & - N K N L
< e i PR W - y
< Sllel}]) { i:rlr}zz,i.).(.,n ( Y ]; b”Lll Ty <€L11 — —I—]; bZJLl.s))
#(1.0) 1 R p(10)
—AY(1—m;" =Y (1—m;
+ k; gKe 2Y(! mk)Lzl_R—i— k; Ke Y mk)Lzs}
+sup [[o(t+1) — o)
eJ
L nooo R N no R
< -1 L _ .
> S{ Y (i_lil:IZ?)-(-,n (j_lszz]l —R + K1 R + K]; b1]> +KL2N21 R + KLZNl}
+ KC2 +K1 + KN>C + KN-
€ Y Y 2 1
L noo R N no R
< -1 L _ .
> S{ Y (i_%?).(_’n (]gszz]l —R + K1 R +K]; b1]> +KL2N21 R +KL2N1
2 1
+KCE + K= +KN2C+KN1}. ®)

Y Y

Consequently, after (7) and (8), we obtain that T, € Q.
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Let¢p € O, ¢ e Q). Then,

IN

IN

IN

<

Ty — Tzllpc
#(10)-1 Mytq
sup {3 [ IV G p(0) = Pl 00
1eJ k=0 k
l W (t, u)||||F(u,p(u)) — F(u,é(u))||du
+/l;4(L,o) W (e, w) [[|F(u, p(u)) — F(u, & (u))|
1(10)
+ k; IW (@, mO[Crl(p(mye ) — Cr(E(m))|
sup { [ W00 1)) = P, 20 e
1(10)
+ kZ IIW(t/m;’f)IIICk(qb(m;))—ck(é(m;))ll}
=1
s § e e bt

1(1,0) N
+ Y KeY<‘mk>Lz}||¢—c||pc
k=1

Ly .
K< — bii + LN — . 9
{Yi%‘f’.‘.mg i+ LaNs bl ~ Elee ©)

Then from (9) it follows that T is a contracting operator in €), and there exists a unique

AP solution of (2).

O

Theorem 9. Assume that all conditions in Theorem 8 and

KL; max
=12 n

i=1,2

n
Eij + Nll’l(l + KLZ) <Y
i=1

]

hold. Then, the solution of (2) is globally exponentially stable.

Proof. Let now x(¢) be an arbitrary solution of (2). Then, we obtain

lo() = x| < Ke Y Jw(ig) — x(i0)]

L n
+ max Ke Y(=4 )" bijL1||lw(u) — x(u)||du
=1

lo =12, 1
1(1,0) () - B
Y KDL () — x(mp)l

k=p(10,0)+1
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Set v(1) = ||w(:) — x(1)||e¥", then by means of Gronwall-Bellman’s inequality, it fol-
lows that
1(10) N
lw() —x()] < KeXw(i) —x(o)| [T (1+KLee 7))
k=p(10,0)+1
fg e e X0 & Bk
KL; max )E bii(1—19)
< KHw(IO) _ x(lo) ” (1 + KLZ)y(t,tO)efY(zflg)e =120 51
( Y+KL;  max {: Bij) (1—19)
< K[w(io) = x(10) | (1 + KLp)0)e B

n
—Y+KL; max Y b | (1—19)
< Klw(yp) — x(to)lleN(ito)ln(1+KLz)g( tis12 05 ”) ’

(=Y+KL; max f Ei,-+Nln(1+KL2))([,l0)
< KHW(lo) — x(l())”E =12, =1

no_
Obviously, if there exists KL, Ilnzax Z bij + NIn(1+KLy) <Y, then the solution
i =1

of (2) is exponentially. [
4. Example

Example 10. We shall consider the classical model of Hopfield neural networks

1 n
wi(t) = — - wi(t) +j§1 bijfj(wj(1)) +8i(1), ¢+ € (hymiial, k €N,

w(m) = Bw(m; ) + Ce(w(my ) + hi, k € Ny, (10)
) = BZU(Tflk_) + Ck(w(mk_)) + h, L € (mk,lk], ke Ny,
w(l) =w(l;), ke Ny,

where 1 € J, R; > 0, b,-]- eER, vy € C(J,R), fi € CRyR),i=1,2--,nj=12,--,n,
x(t) = col(x1(1), x2(1), - - , x4 (1)), B =diag[b;], b; e R,i=1,2,--- ,n, Cx € C(R",R), Iy €
R™.

Let

—~

. 1
wi(l) = _ﬁwi(l)/ IS (lk/ mk—l—l]/ ke N/
1

w(m,‘(") = Bw(m; ), k € Ny,
w(t) = Bw(m ), v € (my, I, k € Ny,
w(ly) =w(l; ), k €Ny,

be the linear part of (10).
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The Cauchy matrix W(1, 19) of (10) is in the form

19,0)+2
B (1i0)+1,A0i(,0)) Kinl) eA(mk_lk—l)eA(mV(‘0r0)+1_[0),
k=u(1,0)
lo < mH(lo,((J)-H) < <oy <t
u(10,0)+2
Bﬂ(l/lo)"rl 1 eA(mk—lk_1)eA(m;¢(Lo,0)+1—10)’
k=pu(1,0)
Wit 1) = 310 S Mrl0)+1 <700 S Moy <
770 1(1,0)+1
BH(i10)+1oA 0 1(,0)) [T eAltm—le-1),
k=p(1,0)
lo < lﬂ(lo,o)( <)' <o) <4
u(10,0)+1
Brlbio)+1° T pAlm—l1),
k=pu(1,0)
L < ly(zo,()) < < my(L,O) <L
Then,
||W(l, lO) || < B;t(t,to)—',-leA(z—to)
< n B0 LA (=)
S e(y([rlo)+1)mBeA(lit0)
< elnBeN(t—zO)lnBeA(z—to)
< elnBe(AJernB)(tfto)
Inb; -1 Ninb; ) (1—
o gt (o pgs, g vk ()
Inb; — in 4L— Nlnb; | (1—
o o (o, A, i) )
Let K = exp| max Inb;|, Y = min L max N Inb;, then we can obtain
i=12,--,n i=1,2,-,n i=12,--,n

IW(1,10)|| < Ke Y1),
According to the Theorems 8 and 9, assume that (Hy)—(Hy) are met and the following
inequalities hold

K= exp<‘ max lnbi>,

i=1,2,--n

) 1
Y= min — — max NlInbp;,
i=12,-m R; i=12,n

L, n
K{ — b;i + LNy p < 1.
(% ope, L+ )

Then, there exists a unique AP solution w(t) of (10).

In addition, if the following inequalities hold

n
KL] max Z EZ] —+ Nll’l(l =+ KLz) <Y,

=121

then the solution w(1) is globally exponentially stable.
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5. Conclusions

Neural network models with impulses can study many phenomena in life. We note
that Stamova and Stamov [11] proposed a Hopfield neural network with impulsive effects
at fixed moments. We are very interested in this work. After careful reading, we introduced
the non-instantaneous impulse factor into this model and proposed a Hopfield neural net-
work non-instantaneous impulsive model. Then, we provided conditions for the existence
of a unique AP solution and the exponential stability of the solution for this model.

There are many limitations to our work. It is known that asymptotic stability of
solutions to impulsive systems can be treated in both weak (convergence towards the
solution depends only on the elapsed time) and strong (convergence depends on the
elapsed on the elapsed time and the number of impulses) flavors [29,30]. We deal with the
classical weak stability in this paper. Then, we will gradually consider the case of strong
stability for the model (2) with non-instantaneous impulses in future.
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