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Abstract: The paper is concerned with equilibrium problems for two elastic plates connected by
a crossing elastic bridge. It is assumed that an inequality-type condition is imposed, providing a
mutual non-penetration between the plates and the bridge. The existence of solutions is proved, and
passages to limits are justified as the rigidity parameter of the bridge tends to infinity and to zero.
Limit models are analyzed. The inverse problem is investigated when both the displacement field
and the elasticity tensor of the plate are unknown. In this case, additional information concerning a
displacement of a given point of the plate is assumed be given. A solution existence of the inverse
problem is proved.
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1. Introduction

Bridged structures are very popular for solving connecting problems. Such structures
may be different in type, and their quality depends on the purposes addressed. In this
paper, we analyze the structure consisting of two Kirchhoff–Love elastic plates and a
junction (bridge) that is in contact with the plates. To describe the behavior of the bridge,
we use the Euler–Bernoulli beam model. The junction has the displacement coinciding with
the displacement of the plates at two fixed points. Moreover, an inequality-type restriction
is assumed to be imposed for the solution to provide a mutual non-penetration between
the plates and the bridge. This approach implies that the problem is formulated as a free
boundary one.

During the last years, boundary-value problems in elasticity with inequality-type
boundary conditions have been under active study. We can refer the reader to the books [1,2]
containing results for crack models with the non-penetration boundary conditions for
a wide class of elasticity problems. There are many papers related to thin inclusions
incorporated into elastic bodies. In the case of delamination of the surrounding elastic
body from the inclusion, one more difficulty appears since we obtain an interfacial crack.
We pay attention to the paper [3] where an equilibrium problem for two elastic plates is
analyzed in the case of thin incorporated inclusion and Neumann type boundary conditions
for the plate. Different properties of solutions in equilibrium problems for elastic bodies
with thin rigid, semi-rigid, and elastic inclusions and cracks are analyzed in [4–13] and
many other papers. In [14–16], one can find models for the analysis of non-homogeneous
elastic bodies. Note that a derivation of models for elastic bodies with thin inclusions
usually takes into account changing physical and geometrical parameters [17–19]. Contact
problems for elastic plates with thin elastic structures were analyzed in [20,21]. We can also
mention a number of applied studies related to thin inclusions of different nature in elastic
bodies [22–29]. An application of the finite element method for planar mechanical elastic
systems can be found in [30]. As for inverse problems in elasticity, the literature in this field
is very vast. We will only mention the articles [31,32] and the links in them.
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The structure of the paper is as follows. Section 2 addresses variational and differential
formulations of the equilibrium problem. Passages to limits, as a rigidity parameter of
the bridge tends to infinity and to zero, are investigated in Sections 3 and 4. We provide a
justification of the limit procedure and analyze the limit models. Section 5 is concerned
with the analysis of the inverse problem.

2. Setting the Problem

Let Ω1, Ω2 ⊂ R2 be bounded domains with Lipschitz boundaries Γ1, Γ2, respec-
tively, such that Ω̄1 ∩ Ω̄2 = ∅. Assume that Γi is divided into two smooth parts Γi

N
and Γi

D, meas Γi
D > 0, i = 1, 2. We set b = (−2, 2) × {0}, b1 = (−2,−1) × {0},

b2 = (1, 2)× {0}, b0 = (−1, 1)× {0}. Moreover, we assume that bi ⊂ Ωi, and b crosses
Γi

N , b0 ∩Ωi = ∅, i = 1, 2, see Figure 1. Denote by ν = (0, 1), n = (n1, n2) unit normal
vectors to b, Γi, respectively, and set Ω = Ω1 ∪Ω2, Ωb = Ω \ b̄.
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Figure 1. Elastic plates Ω1, Ω2 with crossing bridge b.

The set Ω corresponds to two elastic plates, and b fits to a thin elastic crossing bridge
between two plates. We describe b in the frame of the Euler–Bernoulli beam model. In what
follows, the crossing bridge b will be characterized by a rigidity parameter α > 0. At the
first step, this parameter is fixed being equal to 1, and in the sequel we analyze passages to
the limit as α goes to infinity and to zero.

Let w be a scalar-valued function. We use the notations wn = ∂w
∂n , wν = ∂w

∂ν . If
M = {Mij}, i, j = 1, 2, then ∇∇M = Mij,ij. We also put ∇∇w = {w,ij}, i, j = 1, 2.
Summation convention over repeated indices is used; all functions with two lower in-
dices are assumed to be symmetric in those indices.

In the domains Ω1, Ω2, elasticity tensors A = {aijkl}, B = {bijkl}, i, j, k, l = 1, 2, are
considered with the usual properties of symmetry and positive definiteness,

aijkl ∈ L∞(Ω1), (1)

Aξ · ξ ≥ c0|ξ|2 ∀ξ = {ξij}, ξ ji = ξij, c0 = const > 0 .

Similar properties are fulfilled for the tensor B on Ω2.
We introduce notations for a bending moment Mn and a transverse force Tn = Tn(M)

on the boundaries of the plates,

Mn = −Mijnjni; Tn = −Mij,jni −Mij,kτkτjni , (τ1, τ2) = (−n2, n1). (2)
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In this case, for smooth functions w, M = {Mij}, i, j = 1, 2, the following Green’s
formula holds, see [2], Section 1.2.3,

−
∫
Ωi

M · ∇∇w = −
∫
Ωi

w∇∇M +
∫
Γi

Mnwn −
∫
Γi

Tnw, i = 1, 2.

Since the domain Ωb with the cut b1 ∪ b2 is a union of the domains Ω1 \ b1 and Ω2 \ b2,
the above Green’s formula allows us to write Green’s formula for Ωb,

−
∫

Ωb

M · ∇∇w = −
∫

Ωb

w∇∇M−
∫

b1∪b2

[Mν]wν +
∫

b1∪b2

[Tν]w (3)

+
∫

Γ1∪Γ2

Mnwn −
∫

Γ1∪Γ2

Tnw,

where [h] = h+ − h− is a jump of a function h on bi; h± are the traces of h on the crack faces
b±i , i = 1, 2. The signs ± fit to positive and negative directions of ν; the values Mν, Tν with
the normal vector ν are defined on b similar to (2).

In view of the above notations, an equilibrium problem for the plates Ω1, Ω2 and the
crossing bridge b is formulated as follows. Given external forces f ∈ L2(Ω), g ∈ L2(b)
acting on the plates and the crossing bridge, respectively, we have to find a displacement of
the plates w,; a moment tensor M = {Mij}, i, j = 1, 2, defined in Ω, Ωb, respectively; and a
crossing bridge displacement v defined on b such that

∇∇M + f = 0 in Ωb, (4)

M + E∇∇w = 0 in Ωb, (5)

v,1111 = g on b0; v,1111 = −[Tν] + g on b1 ∪ b2 , (6)

w = wn = 0 on Γ1
D ∪ Γ2

D; Mn = Tn = 0 on Γ1
N ∪ Γ2

N , (7)

w(±2, 0) = 0; v = v,11 = 0 as x1 = −2, 2, (8)

v− w ≥ 0, [Tν] ≤ 0, (v− w)[Tν] = 0 on b1 ∪ b2, (9)

[w] = [wν] = 0, [Mν] = 0 on b1 ∪ b2, (10)

[v(±1)] = [v,1(±1)] = 0, [v,11(±1)] = [v,111(±1)] = 0. (11)

Here, [h(a)] = h(a + 0) − h(a − 0); w,1 = ∂w
∂x1

, (x1, x2) ∈ Ω. The tensor E is equal
to A, B in Ω1, Ω2, respectively. Functions defined on b we identify with functions of the
variable x1.

Relations (4) and (5) are the equilibrium equations for the Kirchhoff–Love elastic plates
Ω1, Ω2 and the constitutive law; (6) is the Euler–Bernoulli equilibrium equations for the
crossing bridge parts bi, see [1,2]. The right-hand side −[Tν] in (6) describes forces acting
on b1 ∪ b2 from the elastic plates. The first inequality in (9) provides a non-penetration
between the plates and the bridge. Relation (11) provides glue conditions at the points
where the bridge b crosses the external boundaries of the elastic plates. Note that, by (9),
the contact set between the plates and the bridge is unknown.

We can provide a variational formulation of the problem (4)–(11). Introduce the space

W = H2,0(b)× H2,0
D (Ω)

with the norm
‖(v, w)‖2

W = ‖v‖2
H2,0(b) + ‖w‖

2
H2,0

D (Ω)
,

where H2,0(b), H2,0
D (Ω) are the usual Sobolev spaces,

H2,0
D (Ω) = {w ∈ H2(Ω) | w = wn = 0 on Γ1

D ∪ Γ2
D; w(±2, 0) = 0},

H2,0(b) = {v ∈ H2(b) | v(±2) = 0},
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and consider the energy functional Π : W → R,

Π(v, w) =
1
2

C(w, w)−
∫
Ω

f w +
1
2

∫
b

v2
,11 −

∫
b

gv.

Here,
C(w, w̄) =

∫
Ω1

aijklw,klw̄,ij +
∫

Ω2

bijklw,klw̄,ij.

Denote by S the set of admissible displacements,

S = {(v, w) ∈W | v− w ≥ 0 on b1 ∪ b2}

and consider the problem:

Find (v, w) ∈ S such that Π(v, w) = inf
S

Π.

This minimization problem has a unique solution since the functional Π is weakly
lower semicontinuous and coercive. The coercivity of the functional Π follows from the
Dirichlet boundary conditions on the sets Γi

D for the function w and conditions v(±2) = 0.
The set S is weakly closed. The solution of the problem satisfies the following variational
inequality

(v, w) ∈ S, (12)

C(w, w̄− w)−
∫
Ω

f (w̄− w) (13)

+
∫
b

v,11(v̄,11 − v,11)−
∫
b

g(v̄− v) ≥ 0 ∀ (v̄, w̄) ∈ S.

Theorem 1. Problem formulations (4)–(13) are equivalent for smooth solutions.

Proof. Assume that (12) and (13) hold. We can substitute in (13) test functions of the form
(v̄, w̄) = (v, w)± (0, ϕ), ϕ ∈ C∞

0 (Ωb). This provides the equilibrium Equation (4) fulfilled
in the distributional sense. Next, test functions of the form (v̄, w̄) = (v, w + ϕ) can be
substituted in (13), where ϕ ∈ C∞

0 (Ω), ϕ ≤ 0 on b1 ∪ b2; ϕ(±2, 0) = 0. Taking into account
the equilibrium Equation (4) and Green Formula (3), we obtain

−
∫

b1∪b2

[Mν]ϕν +
∫

b1∪b2

[Tν]ϕ ≥ 0.

From here, it follows

[Mν] = 0, [Tν] ≤ 0 on b1 ∪ b2. (14)

Now, test functions of the form (v̄, w̄) = (v + ψ, w + ϕ) are substituted in (13),
(ψ, ϕ) ∈ S, supp ψ ⊂ (b1 ∪ b2). This gives

C(w, ϕ)−
∫
Ω

f ϕ +
∫
b

v,11ψ,11 −
∫
b

gψ ≥ 0.

Consequently, by using the Green Formula (3), in view of (4), (14), we derive∫
b1∪b2

[Tν]ϕ +
∫
b

v,1111ψ−
∫
b

gψ ≥ 0.
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Choosing the above inequality ψ = ϕ on b1 ∪ b2,, the following equation

v,1111 = −[Tν] + g on b1 ∪ b2 (15)

is derived. To proceed, take test functions of the form (v̄, w̄) = (v± ψ, w) in (3), supp ψ ⊂
b0. The following relation is obtained:∫

b0

v,11ψ,11 −
∫
b0

gψ = 0.

Thus,
v,1111 = g on b0. (16)

Now, we are aiming to derive the last relation of (9). Assume that the inequality
v(x0)− w(x0) > 0 holds at a point x0 ∈ b1 ∪ b2. In this case, we can take (v̄, w̄) = (v, w)±
ε(ψ, ϕ) as a test function in (13), where the support of ψ belongs to a small neighborhood
of x0; the support of ϕ belongs to a small neighborhood of the point (x0, 0), and ε is small.
This implies

C(w, ϕ)−
∫
Ω

f ϕ +
∫
b

v,11ψ,11 −
∫
b

gψ = 0.

By (3), (4), and (14), we obtain the relation∫
b1∪b2

[Tν]ϕ +
∫
b

v,1111ψ−
∫
b

gψ = 0.

In particular, this provides

[Tν] = 0 in a neighborhood of the point x0.

This means that
(v− w)[Tν] = 0 on b1 ∪ b2.

The next step of our reasoning is to derive boundary conditions for v at the points ±1,±2
and the last condition of (7). To this end, we take test function in (13) of the form (v̄, w̄) =
(v, w)± (ψ, ϕ), (ψ, ϕ) ∈W, ϕ = ψ on b1 ∪ b2. It provides the equality

C(w, ϕ)−
∫
Ω

f ϕ +
∫
b0

v,11ψ,11 +
∫

b1∪b2

v,11ψ,11 −
∫
b

gψ = 0.

Applying the Green Formula (3), this relation implies

−
∫

Ωb

∇∇M · ϕ−
∫

Ωb

f ϕ +
∫
b0

v,1111ψ +
∫

b1∪b2

v,1111ψ (17)

−
∫

b1∪b2

[Mν]ϕν +
∫

b1∪b2

[Tν]ϕ +
∫

Γ1∪Γ2

Mn ϕn −
∫

Γ1∪Γ2

Tn ϕ

−
∫
b0

gψ−
∫

b1∪b2

gψ− v,111ψ|x1=1
x1=−1 + v,11ψ,1|x1=1

x1=−1

−v,111ψ|x1=−1 + v,11ψ,1|x1=−1
x1=−2 − v,111ψ|x1=1 + v,11ψ,1|x1=2

x1=1 = 0.

From here, it follows that

Mn = Tn = 0 on Γ1
N ∪ Γ2

N . (18)
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Taking into account (4), (14)–(16), from (17) we obtain

−v,11ψ,1(−2) + v,11ψ,1(2)− [v,11(1)]ψ,1(1) (19)

+[v,111(1)]ψ(1)− [v,11(−1)]ψ,1(−1) + [v,111(−1)]ψ(−1) = 0.

Consequently,

v,11(±2) = 0, [v,11(±1)] = [v,111(±1)] = 0.

Hence, we derived all relations (4)–(11) from (12) and (13).
Let us prove the converse. Assume that (4)–(11) are fulfilled. Then, we have for all

(v̄, w̄) ∈ S,

−
∫

Ωb

(∇∇M + f )(w̄− w) +
∫
b0

(v,1111 − g)(v̄− v) (20)

+
∫

b1∪b2

(v,1111 + [Tν]− g)(v̄− v) = 0.

Integrating by parts in the second and the third integrals of (20) and using the For-
mula (3), it follows that

−
∫

Ωb

M∇∇(w̄− w)−
∫

Ωb

f (w̄− w) +
∫
b0

v,11(v̄,11 − v,11)−
∫
b

g(v̄− v) (21)

+
∫

b1∪b2

v,11(v̄,11 − v,11) +
∫

b1∪b2

[Mν](w̄ν − wν)−
∫

b1∪b2

[Tν](w̄− w)

−
∫

Γ1∪Γ2

Mn(w̄n − wn) +
∫

Γ1∪Γ2

Tn(w̄− w) +
∫

b1∪b2

[Tν](v̄− v)

+v,111(v̄− v)|x1=1
x1=−1 − v,11(v̄,1 − v,1)|x1=1

x1=−1 + v,111(v̄− v)|x1=−1
x1=−2

−v,11(v̄,1 − v,1)|x1=−1
x1=−2 + v,111(v̄− v)|x1=2

x1=1 − v,11(v̄,1 − v,1)|x1=2
x1=1 = 0.

We can change the integration over Ωb by integration over Ω in the first two in-
tegrals of (21) and use boundary conditions for w, w̄, Mn, Tn. To derive the variational
inequality (12) and (13) from (21), it suffices to check that

−
∫

b1∪b2

[Tν](w̄− w) +
∫

b1∪b2

[Tν](v̄− v) (22)

+v,111(v̄− v)|x1=1
x1=−1 − v,11(v̄,1 − v,1)|x1=1

x1=−1 + v,111(v̄− v)|x1=−1

−v,11(v̄,1 − v,1)|x1=−1 + v,111(v̄− v)|x1=1 − v,11(v̄,1 − v,1)|x1=1 ≤ 0.

However, the inequality (22) easily follows from (6)–(11). Hence, we proved
that (4)–(11) imply (12) and (13). Theorem 1 is proved .

3. Convergence of Rigidity Parameter α to Infinity

In this section, we introduce a positive bridge rigidity parameter α into the model (12)
and (13) and analyze a passage to the limit as α→ ∞. Our aim is to justify this passage to
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the limit and investigate the limit model. Instead of (12) and (13), for any α > 0, consider
the following problem

(vα, wα) ∈ S, (23)

C(wα, w̄− wα)−
∫
Ω

f (w̄− wα) (24)

+α
∫
b

vα
,11(v̄,11 − vα

,11)−
∫
b

g(v̄− vα) ≥ 0 ∀(v̄, w̄) ∈ S.

The solution (vα, wα) of this problem is supplied with the index α. Note that we can
write an equivalent differential formulation of the problem (23) and (24) similar to (4)–(11).
In this case, instead of (6) we have the following equations for the crossing bridge

αvα
,1111 = g on b0; αvα

,1111 = −[Tν] + g on b1 ∪ b2.

In what follows, we justify a passage to the limit as α → ∞ in (23) and (24). At the
first step, a priori estimates of the solutions are derived.

From (23) and (24), the following relation is obtained:

C(wα, wα)−
∫
Ω

f wα + α
∫
b

(vα
,11)

2 −
∫
b

gvα = 0. (25)

From (25), we derive the estimate being uniform in α ≥ α0 > 0,

‖(vα, wα)‖W ≤ c, (26)

moreover, the relation (25) implies ∫
b

(vα
,11)

2 ≤ c
α

. (27)

By estimates (26) and (27), we can assume that as α→ ∞

(vα, wα)→ (v, w) weakly in W, (28)

v(x1) = a0 + a1x1, x1 ∈ (−2, 2); a0, a1 ∈ R. (29)

On the other hand, since v ∈ H2,0(b), consequently, v = 0 on b.
Then introduce the set of admissible displacements for the limit problem,

S∞ = {w ∈ H2,0
D (Ω) | w ≤ 0 on b1 ∪ b2}.

We take any element w̃ ∈ S∞. Then, (0, w̃) ∈ S. Substitute this function in (24). By (28)
and (29), it is possible to pass to the limit in (23) and (24) as α→ ∞. The limit relations are
of the form

w ∈ S∞, (30)

C(w, w̃− w)−
∫
Ω

f (w̃− w) ≥ 0 ∀w̃ ∈ S∞. (31)

Thus, we have shown the following result.

Theorem 2. As α → ∞, the solutions of the problem (23) and (24) converge in the sense (28)
and (29) to the solution of (30) and (31).
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To conclude this section, we provide a differential formulation of the problem (30)
and (31): find functions w, M = {Mij}, i, j = 1, 2, defined in Ω, Ωb, respectively, such that

∇∇M + f = 0 in Ωb, (32)

M + E∇∇w = 0 in Ωb, (33)

w = wn = 0 on Γ1
D ∪ Γ2

D; Mn = Tn = 0 on Γ1
N ∪ Γ2

N , (34)

w ≤ 0, [Tν] ≤ 0, w[Tν] = 0 on b1 ∪ b2, (35)

[w] = [wν] = 0, [Mν] = 0 on b1 ∪ b2; w(±2, 0) = 0. (36)

The following statement takes place providing a connection between problems (30)–(36).

Theorem 3. Problem formulations (30)–(36) are equivalent provided that the solutions are smooth.

Proof. Let (32)–(36) be fulfilled. Then, we have∫
Ωb

(∇∇M + f )(w̄− w) = 0, w̄ ∈ S∞.

From this relation, by (3), it follows that∫
Ω

M∇∇(w̄− w) +
∫

b1∪b2

[Tν](w̄− w) +
∫
Ω

f (w̄− w) = 0. (37)

In so doing, we changed the integration domain Ωb by Ω since [Mν] = 0, [w] = [wν] =
0 on b1 ∪ b2. Thus, to obtain (30) and (31) from (37) it suffices to check that∫

b1∪b2

[Tν](w̄− w) ≥ 0. (38)

However, the inequality (38) easily follows from (35).
Conversely, assume that (30) and (31) hold. We take a test function of the form

w̃ = w + ϕ, ϕ ∈ C∞
0 (Ωb) and substitute it in (31). This implies the equilibrium Equa-

tion (32). The other arguments are reminiscent of those used in the proof of Theorem 1,
and we omit them. Theorem 3 is proved.

4. Convergence of Rigidity Parameter of b0 to Zero

In this section, we assume that g = 0 on b0. A convergence to zero of the rigidity
parameter α will be analyzed when assuming that a change of this parameter happens at b0.
In this case, the rigidity parameter at b1, b2 is fixed and is equal to 1.

We first provide a formulation of the equilibrium problem such as (4)–(11) for this
case: find functions wα, M = {Mij}, i, j = 1, 2, defined in Ω, Ωb, respectively, and functions
vα defined on b such that

∇∇M + f = 0 in Ωb, (39)

M + E∇∇wα = 0 in Ωb, (40)

αvα
,1111 = 0 on b0; vα

,1111 = −[Tν] + g on b1 ∪ b2, (41)

wα = wα
n = 0 on Γ1

D ∪ Γ2
D; Mn = Tn = 0 on Γ1

N ∪ Γ2
N , (42)

vα = vα
,11 = 0 as x1 = −2, 2; w(±2, 0) = 0, (43)

[wα] = [wα
ν ] = 0, [Mν] = 0 on b1 ∪ b2, (44)

vα − wα ≥ 0, [Tν] ≤ 0, (vα − wα)[Tν] = 0 on b1 ∪ b2, (45)

[vα(±1)] = [vα
,1(±1)] = 0, vα

,11(±1± 0) = αvα
,11(±1∓ 0), (46)

vα
,111(±1± 0) = αvα

,111(±1∓ 0). (47)
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In relations (46) and (47), we should simultaneously take upper or lower signs.
The problem (39)–(47) can be formulated in a variational form. Indeed, consider the

energy functional πα : W → R,

πα(v, w) =
1
2

C(w, w)−
∫
Ω

f w +
α

2

∫
b0

v2
,11 +

1
2

∫
b1∪b2

v2
,11 −

∫
b1∪b2

gv.

Then, the problem

find (vα, wα) ∈ S such that πα(vα, wα) = inf
S

πα

has a solution satisfying the variational inequality

(vα, wα) ∈ S, C(wα, w̄− wα)−
∫
Ω

f (w̄− wα) (48)

+α
∫
b0

vα
,11(v̄,11 − vα

,11) +
∫

b1∪b2

vα
,11(v̄,11 − vα

,11) (49)

−
∫

b1∪b2

g(v̄− vα) ≥ 0 ∀(v̄, w̄) ∈ S.

In what follows, we aim to justify a passage to the limit in (48) and (49) as α → 0.
From (48) and (49), the following relation is obtained:

C(wα, wα)−
∫
Ω

f wα + α
∫
b0

(vα
,11)

2 +
∫

b1∪b2

(vα
,11)

2 −
∫

b1∪b2

gvα = 0. (50)

This relation provides the following estimate being uniform in α

‖vα‖2
H2(b1∪b2)

+ ‖wα‖2
H2,0

D (Ω)
≤ c, (51)

moreover, the relation (50) implies

α
∫
b0

(vα
,11)

2 ≤ c. (52)

By estimates (51) and (52), we can assume that, as α→ 0,

vα → v weakly in H2(b1 ∪ b2), wα → w weakly in H2,0
D (Ω). (53)

From (51) it follows that uniformly in α,

vα(±1± 0), vα
,1(±1± 0) are bounded. (54)

Here, and in (55) below, we should take upper or below signs simultaneously. Taking
into account the conditions

[vα] = [vα
,1] = 0 as x1 = ±1

we obtain for small α that
√

αvα(±1∓ 0),
√

αvα
,1(±1∓ 0) are bounded. (55)

Consequently, relations (52), (55) imply for small α that
√

αvα are bounded in H2(b0).
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Thus, we can assume that as α→ 0,
√

αvα → ṽ weakly in H2(b0). (56)

Now, introduce the set of admissible displacements for the limit problem

S0 = {(v, w) ∈ H2(b1 ∪ b2)× H2,0
D (Ω) | v− w ≥ 0 on b1 ∪ b2;

v(±2) = 0}.

Take (v̄, w̄) ∈ S0 and extend the function v̄ to b0 assuming that the extension belongs
to the space H2,0(b). In this case (v̄, w̄) ∈ S, and we can substitute (v̄, w̄) in (48) and (49)
as a test function. Passing to the limit as α → 0, by (53), (56), the following variational
inequality is obtained:

(v, w) ∈ S0, (57)

C(w, w̄− w)−
∫
Ω

f (w̄− w) +
∫

b1∪b2

v,11(v̄,11 − v,11) (58)

−
∫

b1∪b2

g(v̄− v) ≥ 0 ∀(v̄, w̄) ∈ S0.

Thus, the following statement is proved.

Theorem 4. As α→ 0, the solutions of the problem (48) and (49) converge in the sense (53) to the
solution of (57) and (58).

To conclude the section, we provide a differential formulation of the problem (57)
and (58): find a displacement of the elastic plates w, a moment tensor M = {Mij}, i, j = 1, 2,
defined in Ω, Ωb, respectively, and a function v defined on b1 ∪ b2 such that

∇∇M + f = 0 in Ωb, (59)

M + E∇∇w = 0 in Ωb, (60)

v,1111 = −[Tν] + g on b1 ∪ b2 , (61)

w = wn = 0 on Γ1
D ∪ Γ2

D; Mn = Tn = 0 on Γ1
N ∪ Γ2

N , (62)

w(±2, 0) = 0; v = v,11 = 0 as x1 = −2, 2, (63)

v− w ≥ 0, [Tν] ≤ 0, (v− w)[Tν] = 0 on b1 ∪ b2, (64)

[w] = [wν] = 0, [Mν] = 0 on b1 ∪ b2, (65)

v,11(±1) = v,111(±1) = 0. (66)

The following statement is valid.

Theorem 5. Problem formulations (57)–(59) and (66) are equivalent provided that the solutions
are smooth.

We omit the proof of this theorem since it is reminiscent of that of Theorem 1. The
only step we have to take is to provide a proof that from (57) and (58) the boundary
conditions (66) follow. Indeed, take in (57) and (58) test functions of the form (v̄, w̄) =
(v, w)± (ṽ, w̃), (ṽ, w̃) ∈ S0, ṽ = w̃ on b1 ∪ b2. This gives

C(w, w̃)−
∫
Ω

f w̃ +
∫

b1∪b2

v,11ṽ,11 −
∫

b1∪b2

gṽ = 0. (67)
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Since
C(w, w̄) = −

∫
Ω

Mij(w)w̄,ij,

we can integrate by parts in the third term of (67) and use Green’s Formula (3). This implies

−
∫

Ωb

∇∇M · w̃−
∫

Ωb

f w̃ +
∫

b1∪b2

v,1111ṽ (68)

−
∫

b1∪b2

[Mν]w̃ν +
∫

b1∪b2

[Tν]w̃ +
∫

Γ1∪Γ2

Mnw̃n −
∫

Γ1∪Γ2

Tnw̃

−
∫

b1∪b2

gṽ− v,111ṽ|x1=−1 + v,11ṽ,1|x1=−1 − v,111ṽ|x1=1 + v,11ṽ,1|x1=1 = 0.

Since the equilibrium equations (59), (61) hold, and since [Mν] = 0 on b1 ∪ b2,
the relation (68) implies boundary conditions (66) and the second group of boundary
conditions (62).

Theorem 5 is proved.
To conclude this section, we note that the problems (59) and (66) describe an equilib-

rium state for two plates occupying the domains Ω1, Ω2. In fact, we have two independent
problems (for each plate) since there is no connection between the plates.

5. Analysis of Inverse Problem

In this section, we analyze an inverse problem related to the equilibrium problem (12)
and (13). Elasticity tensors A, B are assumed to be constant. The inverse problem consists
in finding displacement fields of the plates and the bridge together with an elasticity tensor
A when assuming that additional data are provided by measurement. More precisely, it is
assumed that for a given continuous function ξ, a value ξ(w(x0)) is known, where w(x0)
is the displacement of the plate at a given point x0 ∈ Ω2, x0 6= (2, 0). In particular, we
can assume that ξ(w(x0)) = w(x0). Note that from a practical standpoint, it is no problem
to provide measurements for finding a displacement w(x0) of the point x0,; consequently,
ξ(w(x0)). We first introduce the 6D space with the Euclidean metric,

Rsym = {A = {aijkl} | aijkl = ajikl = aklij, i, j, k, l = 1, 2; aijkl ∈ R}.

Let G ⊂ Rsym be a bounded domain with a smooth boundary whose elements satisfy
the inequality (1). Then, for any A ∈ Ḡ and the fixed tensor B it is possible to find a
solution of the variational inequality

(vA, wA) ∈ S, (69)

CA(wA, w̄− wA)−
∫
Ω

f (w̄− wA) (70)

+
∫
b

vA
,11(v̄,11 − vA

,11)−
∫
b

g(v̄− vA) ≥ 0 ∀ (v̄, w̄) ∈ S,

where CA = C with the given tensor A.
Now, we assume that the elasticity tensor A is unknown in the problems (69) and (70).

On the other hand, the plate displacement of the point x0 is known. Namely, w(x0) is
known from a measurement. Then, the precise formulation of the inverse problem is as
follows. Let d ∈ R be given. We have to find (vA, wA), A ∈ Ḡ such that

(vA, wA) ∈ S, (71)



Axioms 2023, 12, 120 12 of 14

CA(wA, w̄− wA)−
∫
Ω

f (w̄− wA) (72)

+
∫
b

vA
,11(v̄,11 − vA

,11)−
∫
b

g(v̄− vA) ≥ 0 ∀ (v̄, w̄) ∈ S,

ξ(wA(x0)) = d. (73)

Below, we prove the existence of a solution of the inverse problem (71)–(73).

Theorem 6. d1, d2 ∈ R, d1 ≤ d2, exist such that for any fixed d ∈ [d1, d2], the inverse prob-
lem (71)–(73) has a solution.

Proof. We introduce a function L defined on the closed set Ḡ,

L : Ḡ → R, L(A) = ξ(wA(x0)), (74)

where (vA, wA) is the solution of the direct problem (69) and (70) with the given elastic-
ity tensor A. In what follows, we prove that this function is continuous on the set Ḡ.
Indeed, let Ap ∈ Ḡ,

Ap → A, A ∈ Ḡ, p→ ∞, (75)

where we use the convergence in the Euclidean norm | · |. For any p, we can find the unique
solution of the problem

(vp, wp) ∈ S, (76)

Cp(wp, w̄− wp)−
∫
Ω

f (w̄− wp) (77)

+
∫
b

vp
,11(v̄,11 − vp

,11)−
∫
b

g(v̄− vp) ≥ 0 ∀ (v̄, w̄) ∈ S,

where Cp fits the elasticity tensor Ap. The variational inequality (76) and (77) implies

Cp(wp, wp)−
∫
Ω

f wp +
∫
b

(vp
,11)

2 −
∫
b

gvp = 0. (78)

From (78), by the uniformity of this estimate in p, it follows that

‖(vp, wp)‖W ≤ c. (79)

Choosing a subsequence, if necessary, we can assume that as p→ ∞,

(vp, wp)→ (v, w) weakly in W. (80)

By (75), (80), a passage to the limit in (76) and (77), as p→ ∞, is possible, and the limit
relation reads as follows:

(v, w) ∈ S,

CA(w, w̄− w)−
∫
Ω

f (w̄− w)

+
∫
b

v,11(v̄,11 − v,11)−
∫
b

g(v̄− v) ≥ 0 ∀ (v̄, w̄) ∈ S.
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Consequently, we have (v, w) = (vA, wA),

(vA, wA) ∈ S,

CA(wA, w̄− wA)−
∫
Ω

f (w̄− wA)

+
∫
b

vA
,11(v̄,11 − vA

,11)−
∫
b

g(v̄− vA) ≥ 0 ∀ (v̄, w̄) ∈ S.

Moreover, by (80), we can assume that wp(x0)→ wA(x0) as p→ ∞; consequently,

ξ(wp(x0))→ ξ(wA(x0)).

We proved, therefore, that the function L is continuous on the compact set Ḡ. By the
Weierstrass extreme value theorem, this means that we can find

d1 = min
A∈Ḡ

L(A), d2 = max
A∈Ḡ

L(A).

Taking into account the intermediate value theorem for continuous functions, we
conclude that for any d ∈ [d1, d2] A ∈ Ḡ exists such that

L(A) = d.

This implies that the inverse problems (71) and (73) have a solution. Theorem 6 is
proved.

Note that similar arguments can be used for proving a solution existence to an inverse
boundary problem with a different additional information compared to (73). In particular,
instead of (73), we can consider

ξ(vA(y0)) = d,

where y0 ∈ (1, 2) is a given point, and vA is the displacement of the bridge.

6. Conclusions

The paper presents a rigorous mathematical analysis of the elastic structure consisting
of two Kirchhoff–Love plates and the crossing 1D bridge. An inequality-type restriction
is imposed on the solution, which provides a mutual non-penetration between the plates
and the bridge. This restriction implies that the boundary-value problem as a whole refers
to the problem with unknown set of a contact. The solution existence of the problem is
established, and asymptotic analysis is fulfilled with respect to the rigidity parameter of
the bridge as this parameter tends to infinity and to zero. Therefore, in the frame of the
high-level mathematical model, we provide a correctness of the boundary-value problem
and analyze the limit mathematical models. Moreover, the existence of a solution to the
inverse problem is proved, which allows us to find both the displacement field and the
elasticity tensor of one plate provided that a displacement of the other plate at a given point
is known.
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