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Abstract: In this paper, we will focus on three types of functions in a generalized topological space,
namely; lower and upper semi-continuous functions, and cliquish functions. We give some results for
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1. Introduction

Generalized topological spaces were introduced by Császár in [1]. Different types
of continuity in topological and generalized topological spaces were analyzed in ([2–11]).
Frolik [12] characterized Baire spaces using semi-continuous functions in topological spaces.
In continuation, cliquish functions have been analyzed (by Ewert [13]) in a Baire space using
sequences, and these functions were introduced by H. P. Thielman [14], whose importance
are discussed in ([15–17]). Using these aspects in generalized topological spaces, Korczak-
Kubiak et al. [18] introduced two types of nowhere dense sets along with lower and upper
semi-continuous functions, where they realized some properties of cliquish functions on
Baire spaces. These served as a support to develop two sections of theory, one being a game
similar to the well-known Banach–Mazur game (an infinite topological game) and the other
centering on set function games.

Through these last references, we note that the theme they expose contributes to the
development of topological theory. However, within this topic, it is interesting to investigate
the characteristics of a function’s domain in generalized topological spaces, or to determine
whether or not a given set is a set nowhere dense; or whether a given map is a lower (upper)
semi-continuous function, or is a cliquish function. These reasons provide the inspiration
for us to present two sections of new results in generalized topological spaces.

The paper is presented as follows: Section 3, where µ, η, ζ will denote generalized
topologies; and as always, we are looking for new properties, we prove on a strong general-
ized topological space, new properties for nowhere dense sets and second category sets. In
addition, we examine the relations between µ-lower (upper) semi-continuous functions and
(µ, η)-lower (upper) semi-continuous functions.

Section 4, as always it is important to distinguish the results, thus we give some
characterization theorems for cliquish functions on a Baire space by using nowhere dense
sets in generalized metric spaces. Furthermore, preserving theorems of cliquish functions
are investigated.
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With these results, the two classical generalized topologies µ? and µ?? are considered,
and it subsequently becomes possible to easily find out whether a given set is µ?-nowhere
dense (µ??-nowhere dense) or is not in a strong Baire space. We obtain some results to check
in a hyperconnected space whether a given function is η-lower (upper) semi-continuous
or (η, ζ)-lower (upper) semi-continuous function, and also, whether they characterize the
cliquish functions in terms of nowhere dense sets in a generalized metric space. In doing
so, the results will prove useful to explore the nature of the set of all points in the domain
of a given function.

2. Preliminaries

Let X be a non-null set. From [1]; a collection µ of subsets of X is a generalized topology
on X if it contains the empty set and it closed under arbitrary union, thus the pair (X, µ)
called as a generalized topological space (GTS). Furthermore, it is called a strong generalized
topological space (sGTS) if X ∈ µ. On the other hand, if Q ∈ µ, then Q is called a µ-open set,
and if X−Q ∈ µ, then Q is said to be a µ-closed set. For D ⊂ X, the interior of D denoted by
iµD, is the union of all µ-open sets contained in D and the closure of D denoted by cµD, is
the intersection of all µ-closed sets containing D. For simplicity of notation, let us denote
iD and cD to mitigate any confusion.

In what follows, we present some definitions and lemmas that are found in [18]. We
denote a generalized topology by µ. In order to provide definitions, some sets will be defined
beforehand.

µ̃ := {Q ∈ µ | Q 6= ∅}.

Definition 1. Let (X, µ) a GTS. A subset Q ⊂ X is said to be:

• µ-nowhere dense, if iµcµQ = ∅;
• µ-dense, if cµQ = X;
• µ-meager, if Q =

⋃
n∈N

Pn and each Pn is µ-nowhere dense.

Note that every subset of a µ-meager set is µ-meager.

M(µ) := {Q ⊂ X | Q is a µ-meager set in X}.

Definition 2. Let (X, µ) a GTS. A subset Q ⊂ X is called:

• of µ-second category (µ-II category), if Q /∈ M(µ);
• a µ-residual set if X−Q ∈ M(µ).

Let;
µ? := {⋃

t
(Qt

1 ∩Qt
2 ∩Qt

3 ∩ . . . ∩Qt
nt) | Qt

1, Qt
2, . . . , Qt

nt ∈ µ}.

µ?? := {P ⊂ X | P is of µ-II category} ∪ {∅}.

It is known that µ?, µ?? are two generalized topologies and µ ⊂ µ?.

Definition 3. The pair (X, µ) is called:

• a Baire space (BS) if µ̃ ⊂ µ??, (that is, every non-null µ-open set is of µ-II category).
• a strong Baire space (sBS) if J1 ∩ J2 ∩ . . . ∩ Jn ∈ µ?? for every J1, J2, . . . , Jn ∈ µ such that:

J1 ∩ J2 ∩ . . . ∩ Jn 6= ∅.

Note that if X is a BS, then µ ⊂ µ??. Moreover, µ? is closed under finite intersection.
We denote the set of all real numbers by R and by

µ(x) := {Q ∈ µ | x ∈ Q}.

Definition 4. Let µ, η be generalized topologies in X. The map h : X → R is called:
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• µ-lower semi-continuous (µ-l.s.c.) at a point x0 ∈ X, if for any real number β < h(x0), there
is L ∈ µ(x0) such that h(L) ⊂ (β, ∞),

• µ-upper semi-continuous (µ-u.s.c.) at a point x0 ∈ X if for any real number β > h(x0)), there
is L ∈ µ(x0) such that h(L) ⊂ (−∞, β),

• (µ, η)-lower semi-continuous ((µ, η)-l.s.c.) at a point x0 ∈ X if for any real number β <
h(x0), there is K ∈ η(x0) being a µ-residual set such that h(K) ⊂ (β, ∞),

• (µ, η)-upper semi-continuous ((µ, η)-u.s.c.) at a point x0 ∈ X if for any real number
β > h(x0), there is K ∈ η(x0) being a µ-residual set such that h(K) ⊂ (−∞, β)).

Let ζ, η be generalized topologies in X. L(ζ) is the set of all ζ-lower (upper) semi-
continuous functions on X. That is,

L(ζ) := {h | h : X → R is a ζ-l.(u.)s.c. function on X}.

Also, L(η, ζ) is the collections of (η, ζ)-lower (upper) semi-continuous functions de-
fined on X. That is,

L(η, ζ) := {h | h : X → R is a (η, ζ)-l.(u.)s.c. function on X}.

Note that L(ζ, η) ⊂ L(η) and L(ζ) ⊂ L(ζ?).

Definition 5 ([19]). Let (X, µ) be a generalized topological space and h : X → R be a map. Then
h is said to be continuous if and only if r ∈ X and D is a non-null open set in R which contains
h(r) there is Q ∈ µ(r) such that h(Q) ⊂ D.

The following notation is necessary to define the (µ, η)-cliquish functions. The set of
µ-continuity (resp. µ-discontinuity) points of h : X → R, is denoted by Cµ(h) (resp. Dµ(h)).
Moreover;

D(µ) := {P ⊂ X | P is µ-dense in X}.

Definition 6. A map h : X → R is called (µ, η)-cliquish if Cη(h) ∈ D(µ).

Note that if (X, η) is a BS and Dµ(h) ∈ M(η), then h is (η, µ)-cliquish.

Lemma 1. Let (X, µ) be a generalized topological space and L ⊂ X be a nowhere dense set. Then,
cµL and any subset of L, is nowhere dense set.

Lemma 2. If (X, µ) is a sGTS which is sBS, then (X, µ??) is Baire.

Other sets to be used are:

• N (µ) = {Q ⊂ X | Q is µ-nowhere dense in X},
• C(µ) = {Q ⊂ X | Q is of µ-second category in X}.

Lemma 3. If (X, µ) is a µ-II category space, then N (µ??) ⊂M(µ).

Up to here, the preliminaries are obtained from [18].

Definition 7 ([20]). A subset Q of a generalized topological space (X, µ) is said to be a µ-Gδ-set if
Q =

⋂
n∈N

Bn, where each Bn ∈ µ.

Definition 8 ([21]). A space X is hyperconnected if µ̃ ⊂ D(µ).

Lemma 4 ([22]). In a GTS (X, µ), countable union of a µ-meager set is µ-meager.
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3. Semi-Continuous Functions

In this section, we list and prove some properties between kinds of nowhere dense
sets and second-category sets in an sGTS. These properties are useful for checking whether
a set is µ?-nowhere dense (µ?? -nowhere dense) or not in a strong Baire space. In addition,
the meaning of the collections L(η) and L(η, ζ) in hyperconnected spaces are examined.
We give the necessary condition to explore whether or not a function is in L(η), L(η, ζ).
Furthermore, we find new results for these functions in a Baire space. We start by showing
that µ? ⊂ µ??.

Lemma 5. If (X, µ) is a sBS, then µ? ⊂ µ??.

Proof. Let P ∈ µ?. Then, P =
⋃
t
(Pt

1 ∩ Pt
2 ∩ . . . ∩ Pt

nt), where Pt
1, Pt

2, . . . , Pt
nt ∈ µ. Take

Qk = Pk
1 ∩ Pk

2 ∩ . . . ∩ Pk
nk

for some k such that Qk 6= ∅. Since each Pk
i ∈ µ with ∩n

i=1Pk
i 6= ∅

and (X, µ) is a sBS, Qk is of µ-II category. Since Qk ⊂ P and superset of µ-II category is of
µ-II category, we have that P ∈ µ??. Therefore, µ? ⊂ µ??.

Example 1 below shows that the hypothesis in Lemma 5 cannot be neglected.

Example 1. Let X = {p, q, r, s} and

µ = {∅, {q}, {p, q}, {p, r}, {q, r}, {p, q, r}}.

Take D = {p, q} and E = {p, r}. Then D ∩ E = {p} 6= ∅, but iµ(cµ({p})) = ∅. So that,
(X, µ) is not a sBS. Here,

µ? = {∅, {p}, {q}, {r}, {p, q}, {p, r}, {q, r}, {p, q, r}} and

µ?? = {∅, {q}, {p, q}, {q, r}, {q, s}{p, q, r}, {p, q, s}, {q, r, s}, X}.

However, µ? * µ??.

Moreover, µ?? is not closed under finite intersection if (X, µ) is an sBS as shown in the
following Example 2.

Example 2. Consider the GTS (X, µ), where

µ = {∅, [0, 2), (1, 4], [0, 2) ∪ [3, 4], [0, 4]}

and X = [0, 5]. Then (X, µ) is a sBS and

µ?? = {∅} ∪ {A, B ⊂ X | A ∈ exp((1, 2))− {∅}, A ⊂ B},

knowing that exp((1, 2)) is the collection of subsets of (1, 2). Now, if C = [0, 1] ∪ { 3
2} and

D = [0, 1] ∪ { 4
3}, then C, D ∈ µ??, but C ∩ D /∈ µ??.

Next, we obtain some inclusion between the setsN (µ),N (µ?);M(µ),M(µ?); C(µ?),C(µ)
and µ-residual, µ?-residual sets, in an sBS.

Theorem 1. If (X, µ) is a sBS, then:

1. N (µ) ⊂ N (µ?).
2. M(µ) ⊂M(µ?).
3. C(µ?) ⊂ C(µ).
4. Every µ-residual set is µ?-residual.
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Proof. 1. Assume that Q ∈ N (µ), whereby by Lemma 1 it follows that cµQ ∈ N (µ), and
so cµQ ∈ M(µ). Suppose that iµ?cµ?Q 6= ∅, whereby iµ?cµQ 6= ∅. Since µ ⊂ µ?, there is
L ∈ µ̃? such that L ⊂ cµQ.

As L ∈ µ̃?, by Lemma 5, we have that L ∈ µ̃??. Since superset of µ-II category set is of
µ-II category, we have that cµQ ∈ ˜µ??,; however, this is not possible. Therefore, Q ∈ N (µ?).
Items 2., 3. and 4. are proved in a similar manner.

Example 3 below shows that the converse part of 1., in Theorem 1 is not true.

Example 3. Consider the GTS (X, µ), where:

X = {p, q, r, s, t} and µ = {∅, {q, r}, {p, q, r}, {p, q, s}, {p, q, r, s}}.

Thus, (X, µ) is a sBS and

µ? = {∅, {q}, {q, r}, {p, q}, {p, q, r}, {p, q, s}, {p, q, r, s}}.

Now, take H = {p, r, s, t} so iµ?cµ? H = iµ? H = ∅ and so H is a µ?-nowhere dense set in X.
However, iµcµ H = iµX = {p, q, r, s} 6= ∅, for that H is not a µ-nowhere dense set in X.

The same results of Theorem 1 instead of an sBS are obtained in a GTS, but with an
additional property.

Theorem 2. Let (X, µ) be a GTS such that iµ(J1 ∩ J2 ∩ . . . ∩ Jn) 6= ∅, where J1, . . . , Jn ∈ µ with
J1 ∩ J2 ∩ · · · ∩ Jn 6= ∅. Thus, the items of Theorem 1 are given.

Proof. It is enough to prove that N (µ) ⊂ N (µ?). Let Q ∈ N (µ) and suppose that
iµ?cµ?Q 6= ∅. Note that iµcµQ = ∅, and moreover iµ?cµQ 6= ∅ because µ ⊂ µ?. There-
fore, there exists J ∈ µ̃? such that J ⊂ cµQ, for that J =

⋃
t
(Jt

1 ∩ Jt
2 ∩ . . . ∩ Jt

nt) where

Jt
1, Jt

2, . . . , Jt
nt ∈ µ. Take Pk = Jk

1 ∩ Jk
2 ∩ . . . ∩ Jk

nk
for some k such that Pk 6= ∅, whereby Pk ⊂ J

and so Pk ⊂ cµQ and by hypothesis, iµPk 6= ∅. Thus, iµcµQ 6= ∅ which is not possible.
Therefore, Q ∈ N (µ?).

The rest are tested in a similar manner.

Example 4 shows that the necessary condition in Theorem 1 cannot be dropped.

Example 4. Consider a GTS (X, µ), where:

X = {p, q, r, s, t} and µ = {∅, {p, q}, {q, r}, {p, q, r}, {p, r, s}, {p, q, r, s}}.

Let K = {p, q} ∈ µ̃ so K ∈ M(µ), whereby (X, µ) is not a BS. Therefore, (X, µ) is not an
sBS. Now,

µ? = {∅, {p}, {q}, {r}, {p, q}, {q, r}, {p, r}, {p, q, r}, {p, r, s}, {p, q, r, s}}.

Take J = {r, t} so J ∈ N (µ), but J /∈ N (µ?). This is N (µ) * N (µ?).

Next, we prove other inclusions but for sets N (µ), N (µ??);M(µ),M(µ??); C(µ??),
C(µ), and µ-residual, µ??-residual sets, in a Baire space.

Theorem 3. If (X, µ) is a Baire space, then:

1. N (µ) ⊂ N (µ??).
2. M(µ) ⊂M(µ??).
3. C(µ??) ⊂ C(µ).
4. Every µ-residual set is µ??-residual.
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Proof. We give the proof for 1.. Let Q ∈ N (µ) so iµcµQ = ∅. Assume that iµ??cµ??Q 6= ∅.
As µ ⊂ µ?? then iµ??cµQ 6= ∅, so there exists a set J ∈ µ̃?? such that J ⊂ cµQ.

As, J ∈ µ̃?? so cµQ is of µ-II category set, since super set of µ-II category is of µ-II
category. However, cµQ ∈ M(µ) whereby iµ??cµ??Q = ∅. Hence Q ∈ N (µ??). Therefore,
N (µ) ⊂ N (µ??). The rest are tested in a similar manner.

Example 5 below shows that the reverse implication of Theorem 3 part 1., is not true.

Example 5. Consider the generalized topological space (X, µ), where X = [0, 5] and

µ = {∅, [0, 3), (2, 4], [0, 4]}.

Then, (X, µ) is a BS and we get that,

µ?? = {∅} ∪ {A, B ⊂ X | A ∈ exp((2, 3))− {∅}, A ⊂ B}.

Let H = [0, 2] ∪ [3, 5]. So that iµ??cµ?? H = iµ?? H = ∅. Therefore, H is a µ??-nowhere dense
set in X. However, iµcµH = iµX = [0, 4] 6= ∅, so that H is not a µ-nowhere dense set in X.

The following Theorem 4 gives the relations between different types of subsets with
respect to the generalized topologies µ? and µ?? in a strong Baire space.

Theorem 4. Let (X, µ) be an sBS and sGTS. Then:

1. N (µ??) ⊂M(µ?).
2. M(µ??) ⊂M(µ?).
3. C(µ?) ⊂ C(µ??).
4. Every µ??-residual set is µ?-residual set.

Proof. It is enough to prove 1.. Let P ∈ N (µ??). By hypothesis and Lemma 3, P ∈ M(µ)
so that P ∈ M(µ?), by Theorem 1 and the fact that (X, µ) is a sBS.

Next, Example 6 shows that the condition “(X, µ) is an sBS” cannot be omitted in The-
orem 4.

Example 6. Let us consider again

X = {p, q, r, s} and µ = {∅, {p, r}, {q, r}, {p, s}, {p, q, r}, {p, r, s}, {q, r, s}, X}.

Thus,

µ? = {∅, {p}, {r}, {s}, {p, r}, {q, r}, {p, s}, {r, s}, {p, q, r}, {p, r, s}, {q, r, s}, X},

and
µ?? = {∅, {r}, {p, r}, {q, r}, {r, s}, {p, q, r}, {p, r, s}, {q, r, s}, X}.

Here, (X, µ) is not an sBS. Take G = {p, r} and L = {p, s} so G, L ∈ µ̃ and G ∩ L 6= ∅, but
G ∩ L ∈ M(µ). Choose K = {p, q, s} it turns out iµ??(cµ??(K)) = ∅, so that K ∈ N (µ??), but
{p} and {s} are µ?-II category sets, which implies K /∈ M(µ?). Hence,N (µ??) *M(µ?).

The below Theorem 5 directly follows from Lemmas 3 and 4.

Theorem 5. Let (X, µ) be a µ-II category space. Then:

1. Every µ??-meager is µ-meager.
2. Every µ??-residual is µ-residual.
3. Every µ-II category set is of µ??-II category.
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Now, we obtain some results between the generalized topologies, semi-continuous
functions, and the hyperconnected condition.

Theorem 6. If (X, η) is a hyperconnected space where η ∈ {µ, µ?, µ??}, then J is η-residual for
every J ∈ η̃.

Proof. Let J ∈ η̃. As (X, η) is a hyperconnected space so J ∈ D(η). Hence, iη(X− J) = ∅
and so X− J ∈ N (η), since X− J is η-closed. Hence, X− J ∈ M(η). Thus, J is a η-residual
set in X.

The following Example 7 shows the necessity of hyper-connectedness in Theorem 6.

Example 7. Consider the generalized topological space (X, µ) being

X = {p, q, r, s} and µ = {∅, {p, q}, {p, s}, {r, s}, {p, q, s}, {p, r, s}, X}.

So:

1. (X, µ) is not a hyperconnected space. Because {p, q} ∈ µ̃, but {p, q} /∈ D(µ). Take W =
{r, s} thus W ∈ µ̃ and X −W = {p, q}. Here {p} is of µ-second category set, so that
X−W /∈ M(µ). Thus, W is not µ-residual.

2. In this part,

µ? = {∅, {p}, {s}, {p, q}, {p, s}, {r, s}, {p, q, s}, {p, r, s}, X}.

Obviously, (X, µ?) is not a hyperconnected space. Take D = {p}, then D ∈ µ̃? and
D /∈ D(µ?). Let K = {s}, thus K ∈ µ̃? and X− K = {p, q, r}. Furthermore, {p} is of µ?-II
category, so that X− K is of µ?-II category. Therefore, K is not µ?-residual.

3. With
µ?? = {∅, {p}, {s}, {p, q}, {p, s}, {p, r}, {q, s}, {r, s}, {p, q, r},

{p, q, s}, {p, r, s}, {q, r, s}, X},

we have that (X, µ??) is not a hyperconnected space. Here {p} ∈ µ̃??, but {p} /∈ D(µ??).
Take O = {p, q} then O ∈ µ̃?? and X −O = {r, s}, but {s} is of µ??-II category. This
implies X−O is not inM(µ??), which implies that O is not µ??-residual.

The reverse implication of Theorem 6 is not true as shown by the following Example 8.

Example 8. Let X = {p, q, r, s, t} and

µ = {∅, {p, q}, {q, r}, {r, s}, {p, q, r}, {p, q, s}, {p, r, s}, {q, r, s}, {p, q, r, s}}.

Here, each G ∈ µ̃ is a µ-residual set in X. Let H = {p, q}, so H ∈ µ̃ and cµH = {p, q, t},
but cµH 6= X. Therefore, H is not a µ-dense set in X and hence (X, µ) is not a hyperconnected
space. In the same manner, we can prove that (X, η) is not a hyperconnected space if each G ∈ η̃ is
a η-residual set in X, where η ∈ {µ?, µ??}.

The following Example 9 shows that if (X, µ) is a BS, then it is not necessarily a
hyperconnected space.

Example 9. Consider the generalized topological space (X, µ) where

X = [0, 5] and µ = {∅, [0, 2), [2, 3], [0, 3]}.

Then (X, µ) is a BS but not a hyperconnected space. Since, if H = [0, 2), then cµH =
[0, 2) ∪ (3, 5] 6= X.

Theorem 7. Let (X, µ) be a µ-II category space. If (X, µ) is hyperconnected, then (X, µ) is a BS.
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Proof. Let L ∈ µ̃. By hypothesis and Theorem 6, X− L ∈ M(µ). Suppose L ∈ M(µ). By
Lemma 4, (X − L) ∪ L ∈ M(µ). Hence X ∈ M(µ) which is not possible. Thus, L ∈ C(µ)
and (X, µ) is a Baire space.

Next, in the rest of the section with a series of theorems in a space hyperconnected,
or µ-II category, or strong Baire, the essentials of lower (upper) semi-continuous functions
are discussed. Further, the set theory relationship between L(η) and L(η, ζ) is analyzed.
Finally, we study the notation µ??? defined on [11]. We show that every continuous function
is in L(µ).

The below Theorem 8 is an immediate consequence of Theorem 5 and by the definition
of L(µ??, η).

Theorem 8. If (X, µ) is a µ-II category space and η ∈ {µ, µ?, µ??}, then L(µ??, η) ⊂ L(µ, η).

Remark 1. Since ζ ⊂ ζ? we have L(ζ, ζ) ⊂ L(ζ, ζ?). Furthermore, L(ζ?, ζ) ⊂ L(ζ?, ζ?) and
L(ζ??, ζ) ⊂ L(ζ??, ζ?). Moreover,

L(ζ??, ζ) ⊂ L(ζ??, ζ??) (X, ζ) is a BS

L(ζ, ζ) ⊂ L(ζ, ζ??)

Theorem 9. If (X, µ?) is a hyperconnected space, then L(µ) ⊂ L(µ?, µ).

Proof. Consider h ∈ L(µ) a µ-lower semi-continuous function, t0 ∈ X and β < h(t0).
By assumption there is W ∈ µ(t0) such that h(W) ⊂ (β, ∞). Since µ ⊂ µ?, W ∈ µ?(t0).
By hypothesis and Theorem 6, W is a µ?-residual set. Hence h is a (µ?, µ)-lower semi-
continuous function at t0 and hence h is a (µ?, µ)-lower semi-continuous function on X.
Similar considerations apply to the case of µ-upper semi-continuous function, we get h is a
(µ?, µ)-upper semi-continuous function on X. Therefore, L(µ) ⊂ L(µ?, µ).

The proof of the following result is similar to that of Theorem 9.

Theorem 10. If (X, η) is a hyperconnected space and η ∈ {µ, µ?, µ??}, then L(η) ⊂ L(η, η).

The following Example 10 shows that the condition “(X, µ?) is a hyperconnected
space” can not be dropped in Theorem 9.

Example 10. Take X = [0, 3] and

µ = {∅, [0, 2), [1, 3], [2, 3], [0, 3]}.

Thus:
µ? = {∅, [0, 2), [1, 2), [1, 3], [2, 3], [0, 3]}.

If H = [2, 3] ∈ µ̃?, then H is not a µ?-dense set in X. Therefore, (X, µ?) is not a
hyperconnected space.

Define a function f : X → R by

f (x) =


1 i f x ∈ [0, 1),
2 i f x ∈ [1, 2),
3 i f x ∈ [2, 3].
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For any real number α < f (x) for all x ∈ X, there exists G ∈ µ(x) such that f (G) ⊂ (α, ∞).
Therefore, f is a µ-lower semi-continuous function. Take x = 2 and choose α = 2.9 for which
α < f (2). If A = [1, 3] and B = [0, 3], then A, B ∈ µ(x). Now,

iµ?cµ?(X− A) = iµ?cµ? [0, 1) = iµ? [0, 1) = ∅ and iµ?cµ?(X− B) = iµ?cµ?∅ = iµ?∅ = ∅.

So, X− A and X− B are µ?-nowhere dense sets in X. Hence, X− A and X− B are µ?-meager
sets in X and A and B are the µ?-residual sets in X. However, f (A) * (α, ∞) and f (B) * (α, ∞).
Therefore, f is not a (µ?, µ)-lower semi-continuous function.

Define a function g : X → R by

g(x) =


3 i f x ∈ [0, 1),
2 i f x ∈ [1, 2),
1 i f x ∈ [2, 3].

For any real number α > g(x) and for all x ∈ X, there exists G ∈ µ(x) such that g(G) ⊂
(−∞, α). Therefore, g is a µ-upper semi-continuous function. Now, g(2) = 1, choose α = 1.1 >
g(2). If A = [1, 3] and B = [0, 3], then A, B ∈ µ(2). By similar manner, A and B are µ?-residual
sets in X. However, g(A) * (−∞, α), g(B) * (−∞, α). Therefore, g is not a (µ?, µ)-upper
semi-continuous function.

Theorem 11. Let (X, µ) be a sBS and η ∈ {µ, µ?, µ??}. Then:

1. L(µ?) ⊂ L(µ??).
2. L(η, µ?) ⊂ L(µ??).
3. L(µ, η) ⊂ L(µ?, η).

Proof. The proof directly follows from the facts that in a strong Baire space, µ? ⊂ µ?? and
every µ-residual set is µ?-residual.

Theorem 12. Let (X, µ) be µ-II category space. If (X, µ??) is hyperconnected, then L(µ??) ⊂
L(µ, µ??).

Proof. By Theorem 5 part 2., each µ??-residual set is a µ-residual set. If h ∈ L(µ??) is a
µ??-lower semi-continuous function, t0 ∈ X and β < h(t0), then there is W ∈ µ??(t0) (with
h(W) ⊂ (β, ∞)) such that W is µ??-residual, whereby W is µ-residual. We deduce that h is
a (µ, µ??)-lower semi-continuous function on X. Similar considerations apply to the case of
µ??-upper semi-continuous function. We conclude that L(µ??) ⊂ L(µ, µ??).

The following Example 11 shows the necessity of hyper-connectedness in Theorem 12.

Example 11. Take X, µ, f and g as given in Example 10. Then,

µ?? = {∅} ∪ {A, [0, 1) ∪ A, B | A ⊆ [1, 3] ⊆ B},

and so (X, µ??) is not a hyperconnected space. Here, for any real number α < f (x) and for all
x ∈ X, there exists a set G ∈ µ??(x) such that f (G) ⊂ (α, ∞). Therefore, f is a µ??-lower
semi-continuous function. For k = 2 and α = 2.9, we get that α < f (2). If A = [1, 3] and
B = [0, 3], then A, B ∈ µ??(k). Furthermore, A and B are µ-residual sets. However, f (A) *
(α, ∞), f (B) * (α, ∞). Therefore, f is not a (µ, µ??)-lower semi-continuous function. In the same
manner, we can prove that g is a µ??-upper semi-continuous function but not a (µ, µ??)-upper
semi-continuous function.

Theorem 13. Let (X, µ) be a sBS. If (X, µ??) is hyperconnected, then L(µ?) ⊂ L(µ??, µ?).

Proof. Consider h ∈ L(µ?) a µ?-lower semi-continuous function and t0 ∈ X, β < h(t0). So,
by definition and Lemma 5, we have a set P ∈ µ??(t0) such that h(P) ⊂ (β, ∞), then by
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Theorem 6, P is a µ??-residual set. We deduce that h is a (µ??, µ?)-lower semi-continuous
function on X. Similarly, it is shown that h is a (µ??, µ?)-upper semi-continuous function.

Theorem 14. Let (X, µ) be an sGTS, sBS and η ∈ {µ, µ?, µ??}. Then:

1. L(µ??, η) ⊂ L(µ?, η).
2. L(µ??, µ) ⊂ L(µ?, µ?).

Proof. 1. Let h ∈ L(µ??, η). Assume that h is a (µ??, η)-lower semi-continuous function.
Let t0 ∈ X and β < h(t0). Then, there is Q ∈ η(t0) being a µ??-residual set such that
h(Q) ⊂ (β, ∞). By hypothesis and Theorem 4 part (4), Q is a µ?-residual set. Thus, h is
a (µ?, η)-lower semi-continuous function at t0. Since t0 is an arbitrary point of X, h is
a (µ?, η)-lower semi-continuous function on X. Similar way apply to the case of upper
semi-continuous function.

2. Assume that, h ∈ L(µ??, µ). By 1., and µ ⊂ µ?, the proof is completed.

Proceeding similarly to the previous demonstration and applying Theorem 3 part 4.,
we obtain the following result.

Theorem 15. Let (X, µ) be a BS. If η ∈ {µ, µ?, µ??}, then L(µ, η) ⊂ L(µ??, η).

In generalized topological space, every (µ??, µ)-l.(u.)s.c. function is a µ-l.(u.)s.c. func-
tion. The below Theorem 16 shows a fact for the reverse implication of the above statement.

Theorem 16. Let (X, µ) be a µ-II category space. If (X, µ) is hyperconnected, then:

1. L(µ) ⊂ L(µ??, µ).
2. L(µ) ⊂ L(µ??, µ?).

Proof. 1. Let h ∈ L(µ). Assume that h is a µ-lower semi-continuous function. By hypothesis
and Theorem 10, h is (µ, µ)-lower semi-continuous function. Let t0 ∈ X and β < h(t0),
so there is L ∈ µ(t0) being µ-residual set, such that h(L) ⊂ (β, ∞). By hypothesis and
Theorem 7, it turns out that (X, µ) is a BS, and by Theorem 3 part 4., we have that L is a
µ??-residual set. Therefore, h is a (µ??, µ)-lower semi-continuous function at t0 and hence h
is a (µ??, µ)-lower semi-continuous function on X. Similar considerations apply to the case
of upper semi-continuous function.

2. Assume that h ∈ L(µ) so by 1., h ∈ L(µ??, µ), as µ ⊂ µ?, the test is followed.

The following Example 12 shows that the condition “hyperconnectedness” on (X, µ)
can not be dropped in Theorem 16.

Example 12. Consider generalized topological space (X, µ) and the functions f , g : X → R, as in
Example 10. Then,

µ?? = {∅} ∪ {A, [0, 1) ∪ A, B | A ⊆ [1, 3] ⊆ B}

and (X, µ) is not a hyperconnected space. Now:

1. Clearly, f is a µ-lower semi-continuous. function on X and f (2) = 3. Choose α = 2.9 < f (2).
If U = [1, 3] and V = [0, 3], then U, V ∈ µ(2). Now;

iµ??cµ??(X−U) = iµ??cµ?? [0, 1) = iµ?? [0, 1) = ∅ and

iµ??cµ??(X−V) = iµ??cµ??∅ = iµ??∅ = ∅.

Therefore, X −U and X − V are µ??-nowhere dense sets in X and so X −U and X − V
are µ??-meager sets in X. Hence, U and V are µ??-residual sets. However, we have that
f (U) * (α, ∞), f (V) * (α, ∞). Therefore, f is not a (µ??, µ)-lower semi-continuous func-
tion. In the same manner, we can prove that g is a µ-upper semi-continuous function but not
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a (µ??, µ)-upper semi-continuous function.

2. Here,
µ? = {∅, [0, 2), [1, 2), [1, 3], [2, 3], [0, 3]}.

Choose α = 2.9 < f (2) = 3. If U = [1, 3] and V = [0, 3], then U, V ∈ µ?(2). Furthermore,
U and V are µ??-residual sets. However, f (U) * (α, ∞), f (V) * (α, ∞). Therefore, f is not
a (µ??, µ?)-lower semi-continuous function. In the same manner, we can prove that g is a
µ-upper semi-continuous function but not a (µ??, µ?)-upper semi-continuous function.

Since it has been proved in a BS, every µ-residual is µ??-residual. So, the following
Theorem 17 gives the relationship between (µ, µ)-l.(u.)s.c. functions and (µ??, µ?)-l.(u.)s.c.
function in a BS.

Theorem 17. If (X, µ) is a Baire space, then:

1. L(µ, µ) ⊂ L(µ??, µ?).
2. L(µ, µ) ⊂ L(µ??, µ??).
3. If (X, µ) is a sGTS, then h ∈ L(µ, µ?)⇔ h ∈ L(µ??, µ?).

Proof. We give the detailed proof only for 3.. By hypothesis, X is of µ-II category. Consider
h ∈ L(µ, µ?) and assume that h is a (µ, µ?)-lower semi-continuous function. Choose
t0 ∈ X is an arbitrary point and β < h(t0), this implies that there is Q ∈ µ?(t0) being
µ-residual such that h(Q) ⊂ (β, ∞). By Theorem 3 part 4., Q is µ??-residual. Hence h is a
(µ??, µ?)-lower semi-continuous function on X.

The reverse inclusion follows directly from the same above argument and the fact that
in a µ-II-category space, every µ??-residual set is µ-residual. Apply similar considerations
in the case of the upper semi-continuous function.

For the following theorem, we consider that

µ??? = {
⋃
t
(Qt

1 ∩Qt
2 ∩ . . . .∩Qt

nt) | Qt
1, Qt

2, . . . ., Qt
nt ∈ µ??}.

Theorem 18. If (X, µ) be a BS, then L(µ?) ⊂ L(µ???).

Proof. We present a proof for lower semi-continuous function. Let h ∈ L(µ?) and consider
that h is a µ?-lower semi-continuous function, t0 ∈ X and β < h(t0). Then, there is
Q ∈ µ?(t0) such that h(Q) ⊂ (β, ∞). Now, Q =

⋃
t
(Qt

1 ∩ Qt
2 ∩ Qt

3 ∩ . . . . ∩ Qt
nt), where

Qt
i ∈ µ for i = 1 to nt. Since X is a BS, we have that µ ⊂ µ??, so that Qt

i ∈ µ?? for i = 1 to
nt, which implies that Q ∈ µ???(t0). Therefore, h is a µ??? -lower semi-continuous function
at t0, and hence h is a µ??? -lower semi-continuous function on X.

Corollary 1. Let (X, µ) be a BS, η ∈ {µ, µ?, µ??}. Then the following set inclusions are true.

1. L(η, µ?) ⊂ L(µ???).
2. L(µ) ⊂ L(µ???).
3. L(η, µ) ⊂ L(µ???).

An interesting result states that every continuous real-valued function is a µ-l.(u.)s.c.
function in a GTS.

Theorem 19. Let (X, µ) be a GTS. If h : X → R is a continuous map, then h ∈ L(µ).

Proof. For t0 ∈ X and β < h(t0), we have that h(t0) ∈ (β, ∞). Since h is continuous on
X, h is continuous at t0. Therefore, there is P ∈ µ(t0) such that h(P) ⊂ (β, ∞). Hence,
h is a µ-lower semi-continuous function at t0. Since t0 is an arbitrary point of X, h is a
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µ-lower semi-continuous function on X. By similar argument, we can prove h is a µ-upper
semi-continuous function on X.

4. Characterizations of Cliquish Functions

In this section, cliquish functions on generalized metric spaces are examined, and several
properties of these are obtained. Moreover, we characterize cliquish functions using nowhere
dense sets in Baire spaces. With these results, we conclude that the set of all discontinuity
points of a real valued function is either a meager set or not, but in a generalized topological
space. Finally, we propose some results to examine whether a function is cliquish or not.

The pair (X, Ω) is called a generalized metric space[18] (briefly, GMS) if Ω = {σ | σ is
a metric on Qσ ⊂ X}. Denote µΩ, the family of Ω-open sets [18] in (X, Ω), more precisely,
K ∈ µΩ if and only if for each r ∈ K, there is σ ∈ Ω and ε > 0 such that Bσ(r, ε) ⊂ K, where
Bσ(r, ε) = {s ∈ dom(σ) | σ(r, s) < ε} and dom(σ) means domain space of σ. So, the pair
(X, µΩ) is a generalized topological spaces.

The following Theorem 20, is a simple method to explore whether or not a set is
residual in a generalized metric space, thus reducing the computational complexity.

Theorem 20. Let (X, η) be a GTS and Q be a η-Gδ-set, where η ∈ {µΩ, µ?
Ω, µ??

Ω }. If Q ∈ D(η),
then Q is a η-residual set in X.

Proof. Assume that Q ∈ D(η) is a Gδ-set. Then, Q =
∞⋂

n=1
Qn, where Qn ∈ η̃ for every

n ∈ N. As, Q ⊂ Qn we have that each Qn ∈ D(η), whereby iη(X − Qn) = ∅. Since each
Qn ∈ η̃, we get that X − Qn is η-closed for each n ∈ N. Thus, each X − Qn ∈ N (η),
whereby X−Q ∈ M(η). Therefore, Q is a η-residual set.

The following Example 13 shows that the condition “Q ∈ D(η)” cannot be neglected
in Theorem 20.

Example 13. Let X = [0, 1] and Ω = {σ1, σ2, σ3}, where

σ1(s, t) =

{
0 if s = t
1 if s 6= t

; σ2 = |s− t| and σ3 = min{1, σ1}.

Then, (X, Ω) is a generalized topological space.
Here;

µΩ = {K, L, M ⊂ X | K ∈ µσ1 , L ∈ µσ2 , M ∈ µσ3};

µ?
Ω = {D, J ⊂ X | D ∈ µ̃Ω, J =

⋃
t
(Qt

1 ∩Qt
2 ∩Qt

3 ∩ . . . ∩Qt
nt)with Qt

1, Qt
2, . . . , Qt

nt ∈ µ̃Ω};

µ??
Ω = {H ⊂ X | H is of µΩ − I I category}.

1. Clearly, Q = [0, 1
2 ) ∈ µ̃Ω, but Q /∈ D(µΩ). Choose D = ( 1

2 , 3
4 ), thus D ∈ µΩ. As Q∩D =

∅, we have that Q is a µΩ-Gδ-set, but Q is not µΩ-dense in X. Clearly, X − Q = [ 1
2 , 1]

contains a µΩ-II category set, so that X−Q is in C(µΩ). Therefore, Q is a not µΩ-residual set.
2. Choose K = [0, 3

4 ) and L = ( 1
2 , 0.825). Then K, L ∈ µ̃ and K ∩ L = ( 1

2 , 3
4 ). Furthermore,

K ∩ L ∈ µ̃?
Ω. Since, (0.3, 1

2 ) ∈ µ̃?
Ω and (0.3, 1

2 ) ∩ (K ∩ L) = ∅, we get K ∩ L /∈ D(µ?
Ω).

Here, X − (K ∩ L) = [0, 1
2 ] ∪ [ 3

4 , 1], which is of µ?
Ω-II category, so that K ∩ L is not a

µ?
Ω-residual set.

3. Take K = [0.345, 1], then K ∈ ˜µ??
Ω and K ∈ D(µ??

Ω ). Now, X − K = [0, 0.345) and
obviously, X− K is of µ??

Ω -II category set. Hence, K is not µ??
Ω -residual.

In a generalized metric space, we encounter some difficulty in analyzing the meaning
of a set of continuity points of a given function. Theorem 21 below easily concludes the
nature of this set.
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Theorem 21. Let (X, Ω) be a GMS. If h : X → R is a function, then CµΩ(h) =
∞⋂

n=1
Qn, where

Qn ∈ µ̃Ω for every n in N (that is, CµΩ(h) is a µΩ-Gδ-set in X).

Proof. Let Qn = {y | there is σ ∈ Ω, δ > 0 such that |h(s) − h(t)| < 1
n , whenever

s, t ∈ Bσ(y, δ)}. Thus, Qn is µΩ-open for every n ∈ N. Assume that h is continuous at r ∈ X,
whereby for every ε > 0, there is δ > 0 such that |h(r)− h(y)| < ε whenever y ∈ Bσ(r, δ).
Take ε = 1

n with n ∈ N. Thus, r ∈ Qn, since r, y ∈ Bσ(r, δ) for every n in N. Therefore,

r ∈
∞⋂

n=1
Qn, and

CµΩ(h) ⊂
∞⋂

n=1

Qn. (1)

Conversely, assume that y ∈
∞⋂

n=1
Qn. Let ε > 0, so there is a positive integer m such

that 1
m < ε. Since y ∈

∞⋂
n=1

Qn, we get y ∈ Qm. This implies that there is σ ∈ Ω, δ > 0 such

that |h(s)− h(t)| < 1
m whenever s, t ∈ Bσ(y, δ), by definition of Qn. Since y ∈ Bσ(y, δ) it

turns out |h(s)− h(y)| < 1
m . Hence, h is continuous at y and y ∈ CµΩ(h). Therefore,

∞⋂
n=1

Qn ⊂ CµΩ(h). (2)

From Equations (1) and (2), CµΩ(h) =
∞⋂

n=1
Qn, where Qn ∈ µ̃Ω for all n ∈ N.

Theorem 22 gives a shortcut for finding the significance of the set of all discontinuity
points of a given function in a generalized metric space.

Theorem 22. Let (X, η) be a GTS, η ∈ {µΩ, µ?
Ω} and h : X → R be a (η, µΩ)-cliquish. Then

DµΩ(h) ∈ M(η).

Proof. We present the proof only for η = µ?
Ω. Assume that h is (η, µΩ)-cliquish. By The-

orem 21, it turns out that, CµΩ(h) ∈ D(η) and µΩ-Gδ-set in X. Since µ?
Ω ⊃ µΩ, so CµΩ(h)

is µ?
Ω-Gδ-set in X. Thus, CµΩ(h) is η-Gδ-set in X. By Theorem 20, CµΩ(h) is η-residual and

therefore, DµΩ(h) ∈ M(η).

The following two theorems are considered via a new strategy, such that:

• Theorem 23. To easily explore the meaning of a collection of all discontinuity points
from a given function.

• Theorem 24. To check whether the given function is cliquish from the set of all disconti-
nuity points of that function.

Theorem 23. Let (X, µΩ) be a BS. If h is a (µ??
Ω , µΩ)-cliquish function, then DµΩ(h) is µ??

Ω -
meager and also µΩ-meager.

Proof. Assume that h is (µ??
Ω , µΩ)-cliquish, so CµΩ(h) is µ??

Ω -dense in X, by Theorem 21 is
obtained that CµΩ(h) is a µΩ-Gδ-set. Since (X, µΩ) is a BS, it turns out µΩ ⊂ µ??

Ω . Hence,
CµΩ(h) is µ??

Ω -Gδ-set in X. By Theorem 20 it follows that CµΩ(h) is µ??
Ω -residual. Thus,

DµΩ(h) is a µ??
Ω -meager set.

As µΩ ⊂ µ??
Ω and CµΩ(h) is µΩ-dense in X, so CµΩ(h) is a µΩ-dense set and a µΩ-Gδ-

set in X. By Theorem 20, it is obtained that CµΩ(h) is µΩ-residual. Therefore, DµΩ(h) is a
µΩ-meager set.

Theorem 24. Let (X, µΩ) be a µ-II category GTS, η ∈ {µΩ, µ?
Ω, µ??

Ω } and h : X → R be a map.
If Dη(h) is µ??

Ω -meager, then h is (µ??
Ω , η)-cliquish.
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Proof. Assume that Dη(h) is µ??
Ω -meager. Let K ∈ µ̃??

Ω , then K is of µΩ-II category. By
Theorem 5 part 3., it follows that K is of µ??

Ω -II category. So, K ∩ Cη(h) = K−Dη(h) 6= ∅.
Therefore, Cη(h) is a µ??

Ω -dense in X and h is (µ??
Ω , η)-cliquish.

Theorem 25 reduces the complexity for finding whether a given function in a general-
ized metric space is (µ??

Ω , µΩ)-cliquish.

Theorem 25. Let (X, µΩ) be a sGTS, BS. If h is (µΩ, µΩ)-cliquish, then, h is (µ??
Ω , µΩ)-cliquish.

Proof. Assume that h is a (µΩ, µΩ)-cliquish function. By Theorem 22, DµΩ(h) is a µΩ-
meager set. Hence, by Theorem 3 part 2., DµΩ(h) is a µ??

Ω -meager set. Since (X, µΩ) is a
sGTS and BS, it turns out that (X, µΩ) is a GTS of µΩ-II category. By Theorem 24, it follows
that h is a (µ??

Ω , µΩ)-cliquish function.

Definition 9. Let (X, µ) be a GTS and f : X → R be a map. We denote by:

• [ f = 0] = {x ∈ X | f (x) = 0},
• [ f = 1] = {x ∈ X | f (x) = 1},
• [ f < 0] = {x ∈ X | f (x) < 0},
• [ f > 0] = {x ∈ X | f (x) > 0}.

Next, Theorem 26 gives a characterization of the cliquish functions in terms of nowhere
dense sets.

Theorem 26. Let (X, µΩ) be a GTS and Q0, Q1 ⊂ X. If (X, µ?
Ω) is a BS, then the following

are equivalent.

1. There is a (µ?
Ω, µΩ)-cliquish function h : X → R such that Q0 = [h = 0] and Q1 = [h = 1].

2. Q0 ∩ Q1 = ∅, the sets cµΩ(Q0) − Q0, cµΩ(Q1) − Q1 are µ?
Ω-meager and cµΩ(Q0) ∩

cµΩ(Q1) is µ?
Ω-nowhere dense.

Proof. 1. ⇒ 2. By hypothesis, Q0 ∩Q1 = ∅. Let x ∈ cµΩ(Q0)−Q0 and V = R− {0}. Since
x /∈ Q0, it turns out that x ∈ h−1(V). Now;

x ∈ cµΩ(Q0) ⊂ cµΩ(h
−1({0})) = X− iµΩ(X− h−1({0})) = X− iµΩ(h

−1(V)).

Thus, x /∈ iµΩ(h
−1(V)). Hence, cµΩ(Q0) − Q0 ⊂ DµΩ(h) and so cµΩ(Q0) − Q0 is a

µ?
Ω-meager set, see Theorem 22. Similarly, it is proven that cµΩ(Q1)−Q1 is a µ?

Ω-meager set.
On the other hand, assume that iµ?

Ω
(cµ?

Ω
(cµΩ(Q0) ∩ cµΩ(Q1))) 6= ∅. So, there is an

element x ∈ iµ?
Ω
(cµ?

Ω
(cµΩ(Q0) ∩ cµΩ(Q1))) and we get a set G ∈ µ̃?

Ω(x) such that

G ⊂ cµ?
Ω
(cµΩ(Q0) ∩ cµΩ(Q1)). (3)

Since (X, µ?
Ω) is a BS, G is of µ?

Ω-II category and hence cµ?
Ω
(cµΩ(Q0) ∩ cµΩ(Q1)) is of

µ?
Ω-II category set, by (3) and the fact that superset of II-category set is of II-category.

Furthermore, cµ?
Ω
(cµΩ(Q0) ∩ cµΩ(Q1)) ⊂ cµΩ(Q0) ∩ cµΩ(Q1), since µΩ ⊂ µ?

Ω. There-
fore, cµΩ(Q0) ∩ cµΩ(Q1) is of µ?

Ω-II category set. However,

cµΩ(Q0) ∩ cµΩ(Q1) ⊂ (cµΩ(Q0)−Q0) ∪ (cµΩ(Q1)−Q1),

which implies that it must be (cµΩ(Q0)−Q0)∪ (cµΩ(Q1)−Q1) of µ?
Ω-II category set, which

is not possible. Therefore, iµ?
Ω
(cµ?

Ω
(cµΩ(Q0) ∩ cµΩ(Q1))) = ∅, and so cµΩ(Q0) ∩ cµΩ(Q1) is

µ?
Ω-nowhere dense in X.

2. ⇒ 1. The hypothesis implies that cµΩ(Qi) − Qi =
∞⋃

n=1
Fi,n, where each Fi,n is

µ?
Ω-nowhere dense in X, i ∈ {0, 1}, n ∈ N. Define a function h : X → R as:
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h(r) :=


0 i f r ∈ Q0,
1 i f r ∈ Q1,

n−1 i f r ∈ F0,n,
1− n−1 i f r ∈ F1,n,

2−1 otherwise.

(4)

Thus, Q0 = [h = 0] and Q1 = [h = 1]. Define K0 =
1⋃

n=0
(cµΩ(Qn) − Qn), so by

Lemma 4 the set K0 is a µ?
Ω-meager set. Let t ∈ DµΩ(h) and assume that t /∈ K0, so

t /∈ cµΩ(Qn)−Qn for n = 0, 1. Therefore, t /∈ cµΩ Q0 or t ∈ Q0 and t /∈ cµΩ Q1 or t ∈ Q1. So,
we have four cases:

Case-1: Assume that t /∈ cµΩ Q0 and t /∈ cµΩ Q1. Then, t /∈ cµΩ Qn and there is W ∈ µΩ(t)
such that W ∩Qn = ∅ for n = 0, 1. This implies that h(s) 6= 0 and h(s) 6= 1 for every s ∈W.
Thus, by (4) is h(W) ⊂ {n−1, 1− n−1, 2−1}. Since t ∈W we get h(t) ∈ {n−1, 1− n−1, 2−1}.
Hence, h(t) = n−1 or h(t) = 1− n−1 or h(t) = 2−1. Neither of this is possible.

Case-2: If t /∈ cµΩ Q0 and t ∈ Q1, by (4), h(t) = 1. Since h is a constant function on Q1,
t is a µΩ-continuity point of h, which is not possible.

Case-3: Assume that t ∈ Q0 and t /∈ cµΩ Q1. By (4) must be h(t) = 0. Since h is a
constant function on Q1, t is a µΩ-continuity point of h, which is a contradiction.

Case-4: Suppose t ∈ Q0 and t ∈ Q1. Then, t ∈ Q0 ∩Q1, but Q0 ∩Q1 = ∅.
Therefore, none of the cases are possible, whereby t ∈ K0. So, DµΩ(h) ⊂ K0 and

DµΩ(h) is µ?
Ω-meager, because (X, µ?

Ω) is a BS. Hence, h is (µ?
Ω, µΩ)-cliquish.

In a Baire space, the existence of a (µ?
Ω, µΩ)-cliquish function using µ?

Ω-nowhere dense
sets can be found straightforwardly by Theorem 27.

Theorem 27. Let (X, µΩ) be a GTS and Q0, Q1 ⊂ X. If (X, µ?
Ω) is a BS, then the following

are equivalent.

1. There is a (µ?
Ω, µΩ)-cliquish function h : X → R such that Q0 ⊂ [h = 0] and Q1 ⊂ [h = 1].

2. Q0 ∩Q1 = ∅, and cµΩ(Q0) ∩ cµΩ(Q1) is µ?
Ω-nowhere dense.

Proof. 1. ⇒ 2. By hypothesis, we have Q0 ∩ Q1 = ∅. By Theorem 26 it is obtained that
cµΩ([h = 0]) ∩ cµΩ([h = 1]) is µ?

Ω-nowhere dense in X. Therefore, cµΩ(Q0) ∩ cµΩ(Q1) is
µ?

Ω-nowhere dense.
2. ⇒ 1. Define the sets P0 = Q0 ∪ (cµΩ(Q0) − cµΩ(Q1)), P1 = Q1 ∪ (cµΩ(Q1) −

cµΩ(Q0)). Thus, P0 ∩ P1 = ∅, Q0 ⊂ P0 ⊂ cµΩ(Q0) and Q1 ⊂ P1 ⊂ cµΩ(Q1). By definition
of P0 and P1, is clear that cµΩ(P0) ⊃ cµΩ(Q0) and cµΩ(P1) ⊃ cµΩ(Q1). Hence,

cµΩ(P0) ∩ cµΩ(P1) = cµΩ(Q0) ∩ cµΩ(Q1),

and so cµΩ(P0) ∩ cµΩ(P1) is µ?
Ω-nowhere dense in X. Now,

cµΩ(Q0)−Q0 = cµΩ(Q0) ∩ (X−Q0) = cµΩ(Q0) ∩Q1 ⊂ cµΩ(Q0) ∩ cµΩ(Q1).

Thus, cµΩ(Q0)− Q0 is µ?
Ω-nowhere dense. Similarly, cµΩ(Q1)− Q1 is µ?

Ω-nowhere
dense in X. Therefore, cµΩ(Q0)−Q0 and cµΩ(Q1)−Q1 are µ?

Ω-meager. Furthermore,

cµΩ(P0)− P0 ⊂ cµΩ(Q0)−Q0 and cµΩ(P1)− P1 ⊂ cµΩ(Q1)−Q1.

Hence, cµΩ(P0) − P0 and cµΩ(P1) − P1 are µ?
Ω-meager. By Theorem 26, there is a

(µ?
Ω, µΩ)-cliquish function h : X → R such that P0 = [h = 0] and P1 = [h = 1]. Therefore,

there is a (µ?
Ω, µΩ)-cliquish function h : X → R such that Q0 ⊂ [h = 0] and Q1 ⊂ [h = 1].

Theorem 28 provides the easier route to finding the presence of (µ?
Ω, µΩ)-cliquish

function using µ?
Ω-meager sets.
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Theorem 28. Let (X, µΩ) be a GTS and Q−, Q+ ⊂ X. If (X, µ?
Ω) is a BS, then the following

are equivalent.

1. There is a (µ?
Ω, µΩ)-cliquish function h : X → R such that Q− = [h < 0] and Q+ = [h >

0].
2. Q− ∩Q+ = ∅ and the sets Q− − iµΩ(Q

−), Q+ − iµΩ(Q
+) are µ?

Ω-meager in X.

Proof. 1. ⇒ 2. By hypothesis, Q− ∩ Q+ = ∅. Consider the function h− = max{−h, 0}.
So, h− is (µ?

Ω, µΩ)-cliquish and [h− = 0] = X − Q−. By Theorem 26, it turns out that
cµΩ([h

− = 0])− [h− = 0] is µ?
Ω-meager in X. Furthermore,

Q− − iµΩ(Q
−) = cµΩ(X−Q−)− (X−Q−) = cµΩ([h

− = 0])− [h− = 0].

Therefore, Q−− iµΩ(Q
−) is µ?

Ω-meager in X. With similar considerations we can prove
Q+ − iµΩ(Q

+) is µ?
Ω-meager in X.

2. ⇒ 1. The hypothesis implies that the set Q− − iµΩ(Q
−) can be expressed as the

union of countably many µ?
Ω-nowhere dense subsets {F−n | n ∈ N}, Q− − iµΩ(Q

−) =
∞⋃

n=1
F−n . Similarly, Q+ − iµΩ(Q

+) =
∞⋃

n=1
F+

n where {F+
n | n ∈ N} is a family of µ?

Ω-nowhere

dense subsets of X.
Define a map h : X → R as follows:

h(r) :=


−1 i f r ∈ iµΩ Q−,
1 i f r ∈ iµΩ Q+,
−n−1 i f r ∈ F−n ,
n−1 i f r ∈ F+

n ,
0 otherwise.

(5)

So, Q− = [h < 0] and Q+ = [h > 0]. Define L0 = Q0 ∪Q1, where Q0 = Q−− iµΩ(Q
−)

and Q1 = Q+ − iµΩ(Q
+). Thus, L0 is µ?

Ω-meager. Let t ∈ DµΩ(h) and suppose that t /∈ L0.
Then, t /∈ Qn for all n = 0, 1. Thus, t /∈ Q− or t ∈ iµΩ(Q

−) and t /∈ Q+ or t ∈ iµΩ(Q
+). So,

we have four cases:
Case-1: Assume that t /∈ Q− and t /∈ Q+, Hence, t ∈ [h ≥ 0] and t ∈ [h ≤ 0] for which

we get four cases.

• h(t) > 0 and h(t) < 0.
• h(t) > 0 and h(t) = 0.
• h(t) = 0 and h(t) < 0.
• h(t) = 0.

Thus, all the cases are not possible and our assumption is not true.
Case-2: If t /∈ Q− and t ∈ iµΩ Q+, then h(t) = 1, by (5). Since h is a constant function

on iµΩ Q+, t is a µΩ-continuity point of h, which is not possible.
Case-3: Suppose t ∈ iµΩ Q− and t /∈ Q+. Then, h(t) = −1, by (5). Since h is a constant

function on iµΩ Q−, t is a µΩ-continuity point of h, but t is a µΩ-discontinuity point of h.
Case-4: Assume that t ∈ iµΩ Q− and t ∈ iµΩ Q+. Consider t ∈ iµΩ(Q

−), thus
h(t) = −1. Now, t ∈ iµΩ(Q

+) so h(t) = 1. In both cases, t is a continuity point of h,
which is not possible.

Thus, all the cases are not possible. Hence, t ∈ L0 and so DµΩ(h) ⊂ L0, whereby
DµΩ(h) is µ?

Ω-meager in X. Since (X, µ?
Ω) is a BS, h is a (µ?

Ω, µΩ)-cliquish function on X.

The following Theorem 29 provides an easier way to check the nature of the subsets of
a domain space using the cliquish function.

Theorem 29. Let (X, µΩ) be a GTS and Q−, Q+ ⊂ X. If (X, µ?
Ω) is a BS and if there is a

(µ?
Ω, µΩ)-cliquish function g : X → R such that Q− ⊂ [g < 0] and Q+ ⊂ [g > 0], then

Q− ∩Q+ = ∅ and the sets Q− ∩ cµΩ(Q
+), Q+ ∩ cµΩ(Q

−) are µ?
Ω-meager.
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Proof. Let g be a (µ?
Ω, µΩ)-cliquish function such that Q− ⊂ [g < 0] and Q+ ⊂ [g > 0].

Thus, Q− ∩Q+ = ∅. By hypothesis and Theorem 28, we have that [g < 0]− iµΩ([g < 0])
and [g > 0]− iµΩ([g > 0]) are µ?

Ω-meager set. Since Q− ∩ cQ+ ⊂ [g < 0]− iµΩ([g < 0])
and Q+ ∩ cQ− ⊂ [g > 0]− iµΩ([g > 0]), we have that Q− ∩ cµΩ(Q

+) and Q+ ∩ cµΩ(Q
−)

are µ?
Ω-meager in X.

The two Theorems 30 and 31 below provide shortcuts for finding the existence of
(µ??

Ω , µΩ)-cliquish function in a sBS using µ??
Ω -meager sets.

Theorem 30. Let (X, µΩ) be a sGTS which is sBS, and Q0, Q1 ⊂ X. So, the following are equivalent.

1. There is a (µ??
Ω , µΩ)-cliquish function g : X → R such that Q0 = [g = 0] and Q1 = [g = 1].

2. Q0 ∩ Q1 = ∅, the sets cµΩ(Q0) − Q0, cµΩ(Q1) − Q1 are µ??
Ω -meager and cµΩ(Q0) ∩

cµΩ(Q1) is µ??
Ω -nowhere dense in X.

Proof. 1. ⇒ 2. Note that Q0 ∩ Q1 = ∅. Take r ∈ cµΩ(Q0)− Q0 and define the set L =
R− {0}. In the same way as in the demonstration of Theorem 26 part 1. ⇒ 2., we get
cµΩ(Q0)−Q0 ⊂ DµΩ(h). By hypothesis and Theorem 23, DµΩ(h) ∈ M(µ??

Ω ) which implies
cµΩ(Q0)−Q0 ∈ M(µ??

Ω ). In a similar way we have that cµΩ(Q1)−Q1 ∈ M(µ??
Ω ).

By hypothesis and Lemma 2, we get (X, µ??
Ω ) is a BS. With similar considerations in

the proof of Theorem 26 part (1. ⇒ 2.), we get cµΩ(Q0) ∩ cµΩ(Q1) is in N (µ??
Ω ).

2. ⇒ 1. The hypothesis implies that cµΩ(Qi) − Qi =
∞⋃

n=1
Di,n where each Di,n ∈

N (µ??
Ω ), i ∈ {0, 1}, n ∈ N.
Define a function g : X → R as:

g(s) :=


0 i f s ∈ Q0,
1 i f s ∈ Q1,

n−1 i f s ∈ D0,n,
1− n−1 i f s ∈ D1,n,

2−1 otherwise.

(6)

Thus, Q0 = [g = 0] and Q1 = [g = 1]. Define L0 =
1⋃

n=0
(cµΩ(Qn)−Qn). Thus, L0 is in

M(µ??
Ω ), see Lemma 4. Let u ∈ DµΩ(h) and assume that u /∈ L0. So, we obtain four cases

as follows:
Case-1: t /∈ cµΩ Q0 and t /∈ cµΩ Q1;
Case-2: t /∈ cµΩ Q0 and t ∈ Q1;
Case-3: t ∈ Q0 and t /∈ cµΩ Q1;
Case-4: t ∈ Q0 and t ∈ Q1;
Note that by hypothesis and Lemma 2, (X, µ??

Ω ) is a Baire space. By the same arguments
from the proof of Theorem 26 part 2. ⇒ 1., we get u ∈ L0. Hence DµΩ(h) ∈ M(µ??

Ω ).
Therefore, g is a (µ??

Ω , µΩ)-cliquish function.

Theorem 31. Let (X, µΩ) be a sGTS which is sBS, and Q0, Q1 ⊂ X. So, the following are equivalent.

1. There is a (µ??
Ω , µΩ)-cliquish function g : X → R such that Q0 ⊂ [g = 0] and Q1 ⊂ [g = 1].

2. Q0 ∩Q1 = ∅ and the set cµΩ(Q0) ∩ cµΩ(Q1) is a µ??
Ω -nowhere dense set in X.

Proof. 1. ⇒ 2. By hypothesis, Q0 ∩ Q1 = ∅, and by Theorem 30 it turns out
cµΩ([g = 0]) ∩ cµΩ([g = 1]) ∈ N (µ??

Ω ). Since the subset of a nowhere dense set is nowhere
dense, we have that cµΩ(Q0) ∩ cµΩ(Q1) ∈ N (µ??

Ω ).
2. ⇒ 1. With same considerations in the proof of Theorem 26 part 2. ⇒ 1., and using

Theorem 30, we get the proof.

The following Theorem 32 states that in order to investigate the existence of (µ??
Ω , µΩ)-

cliquish function in a sBS, divide the domain into two disjoint sets and verify whether the
particular subset of those sets is µ??

Ω -meager or not.
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Theorem 32. Let (X, µΩ) be an sGTS, which is sBS, and Q−, Q+ ⊂ X. So, the following
are equivalent.

1. There is a (µ??
Ω , µΩ)-cliquish function g : X → R with Q− = [g < 0] and Q+ = [g > 0].

2. Q− ∩Q+ = ∅ and the sets Q− − iµΩ(Q
−), Q+ − iµΩ(Q

+) are µ??
Ω -meager in X.

Proof. 1. ⇒ 2. By hypothesis, Q− ∩ Q+ = ∅. Define a function g− = max{−g, 0}.
Note that g− is (µ??

Ω , µΩ)-cliquish and [g− = 0] = X − Q−. By Theorem 30, it turns out
cµΩ([g

− = 0])− [g− = 0] ∈ M(µ??
Ω ). Obviously,

Q− − iµΩ(Q
−) = cµΩ(X−Q−)− (X−Q−) = cµΩ([g

− = 0])− [g− = 0].

Therefore, Q− − iµΩ(Q
−) is in M(µ??

Ω ). Similarly, we show that Q+ − iµΩ(Q
+) is

aµ??
Ω -meager set in X.

2. ⇒ 1. Replace µ? by µ?? in the proof of Theorem 28 part 2. ⇒ 1., and use the fact
that (X, µ??

Ω ) is Baire.

Theorem 33 states the significance of subsets of domain space, by checking whether
the existence of (µ??

Ω , µΩ)-cliquish function or not.

Theorem 33. Let (X, µΩ) be a sGTS and Q−, Q+ ⊂ X. If (X, µΩ) is a sBS and if there is a
(µ??

Ω , µΩ)-cliquish function g : X → R such that Q− ⊂ [g < 0] and Q+ ⊂ [g > 0], then
Q− ∩Q+ = ∅ and the sets Q− ∩ cµΩ(Q

+), Q+ ∩ cµΩ(Q
−) are µ??

Ω -meager in X.

Proof. Let g be a (µ??
Ω , µΩ)-cliquish function such that Q− ⊂ [g < 0] and Q+ ⊂ [g > 0].

Thus, Q− ∩Q+ = ∅. By hypothesis and Theorem 32, it turns out

[g < 0]− iµΩ([g < 0]), [g > 0]− iµΩ([g > 0]) ∈ M(µ??
Ω ). (7)

Here, Q− ∩ cQ+ ⊂ [g < 0]− iµΩ([g < 0]) and Q+ ∩ cQ− ⊂ [g > 0]− iµΩ([g > 0]).
By (7) and the fact that the subset of a meager set is meager, the sets Q− ∩ cµΩ(Q

+), Q+ ∩
cµΩ(Q

−) are inM(µ??
Ω ).

5. Conclusions

The various properties for nowhere dense sets and for second category sets in a strong
Baire space have been evaluated. The evaluation was performed with the help of interior
and closure components for nowhere dense sets and similarly meager sets components
for second category sets. A new relationship between L(η) and L(η, ζ) has obtained from
residual sets. Further, the necessity of meager sets in a Baire space is studied for proving
some equivalent conditions for cliquish functions using nowhere dense sets. Hence, the
computational complexity of a given function from the collection of continuity points is
reduced using meager sets.
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