Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(IX)
Abstract
:1. Introduction
2. Admissible Electromagnetic Fields in Homogeneous Spaces
3. Maxwell’s Equations with Zero Electromagnetic Field Sources in a Homogeneous Spacetime
4. Solutions of Maxwell Equations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stackel, P. Uber die intagration der Hamiltonschen differentialechung mittels separation der variablen. Math. Ann. 1897, 49, 145–147. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Separable systems of stackel. Ann. Math. 1934, 35, 284–305. [Google Scholar] [CrossRef]
- Levi-Civita, T. Sulla Integraziome Della Equazione Di Hamilton-Jacobi Per Separazione Di Variabili. Math. Ann. 1904, 59, 383–397. [Google Scholar] [CrossRef]
- Jarov-Jrovoy, M.S. Integration of Hamilton-Jacobi equation by complete separation of variables method. J. Appl. Math. Mech. 1963, 27, 173–219. [Google Scholar] [CrossRef]
- Carter, B. New family of Einstein spaces. Phys. Lett. 1968, A25, 399–400. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry and separation of variables in the Hamilton-Jacobi equation. Sov. Phys. J. 1978, 21, 1124–1132. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Stackel’s spaces. Sib. Math. J. 1979, 20, 1117–1130. [Google Scholar] [CrossRef]
- Miller, W. Symmetry And Separation of Variables; Cambridge University Press: Cambridge, UK, 1984; 318p. [Google Scholar]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.0). Symmetry 2020, 12, 1289. [Google Scholar] [CrossRef]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.1). Int. J. Geom. Meth. Mod. Phys 2020, 14, 2050186. [Google Scholar] [CrossRef]
- Odintsov, S.D. Editorial for Special Issue Feature Papers 2020. Symmetry 2023, 15, 8. [Google Scholar] [CrossRef]
- Oktay, C.; Salih, K. Maxwell-modified metric affine gravity. Eur. Phys. J. 2021, 81, 10. [Google Scholar] [CrossRef]
- Mitsopoulos, A.; Tsamparlis, M.; Leon, G.A.; Paliathanasis, A. New conservation laws and exact cosmological solutions in Brans-Dicke cosmology with an extra scalar field. Symmetry 2021, 13, 1364. [Google Scholar] [CrossRef]
- Dappiaggi, C.; Juarez-Aubry, B.A.; Ground, A.M. State for the Klein-Gordon field in anti-de Sitter spacetime with dynamical Wentzell boundary conditions. Phys. Rev. D 2022, 105, 105017. [Google Scholar] [CrossRef]
- Astorga, F.; Salazar, J.F.; Zannias, T. On the integrability of the geodesic flow on a Friedmann-Robertson-Walker spacetime. Phys. Scr. 2018, 93, 085205. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Odintsov, D. Hamiltonian dynamics and Noether symmetries in extended gravity cosmology. Eur. Phys. J. 2012, C72, 2068. [Google Scholar] [CrossRef]
- Kibaroglu, S.; Cebecioglu, O. Generalized cosmological constant from gauging Maxwell-conformal algebra. Phys. Lett. B 2020, 803, 135295. [Google Scholar] [CrossRef]
- Shin’ichi, N.; Odintsov Sergei, D.; Valerio, F. Searching for dynamical black holes in various theories of gravity. Phys. Rev. D 2021, 103, 044055. [Google Scholar] [CrossRef]
- Epp, V.; Pervukhina, O. The Stormer problem for an aligned rotator. MNRAS 2018, 474, 5330–5339. [Google Scholar] [CrossRef] [Green Version]
- Epp, V.; Masterova, M.A. Effective potential energy for relativistic particles in the field of inclined rotating magnetized sphere. Astrophys. Space Sci. 2014, 353, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Kumaran, Y.; Ovgun, A. Deflection angle and shadow of the reissner-nordstrom black hole with higher-order magnetic correction in einstein-nonlinear-maxwell fields. Symmetry 2022, 14, 2054. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E. Shapovalov wave-like spacetimes. Symmetry 2020, 12, 1372. [Google Scholar] [CrossRef]
- Osetrin, E.; Osetrin, K.; Filippov, A. Plane Gravitational Waves in Spatially-Homogeneous Models of type-(3.1) Stackel Spaces. Russ. Phys. J. 2019, 62, 292–301. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E.; Osetrina, E. Geodesic deviation and tidal acceleration in the gravitational wave of the Bianchi type IV universe. Eur. Phys. J. Plus 2022, 137, 856. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E.; Osetrina, E. Gravitational wave of the Bianchi VII universe: Particle trajectories, geodesic deviation and tidal accelerations. Eur. Phys. J. C 2022, 82, 1–16. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Shirokov, I.V. Noncommutative integration method for linear partial differential equations. functional algebras and dimensional reduction. Theoret. Math. Phys. 1996, 106, 1–10. [Google Scholar] [CrossRef]
- Shapovalov, A.; Breev, A. Harmonic Oscillator Coherent States from the Standpoint of Orbit Theory. Symmetry 2023, 15, 282. [Google Scholar] [CrossRef]
- Breev, A.I.; Shapovalov, A.V. Non-commutative integration of the Dirac equation in homogeneous spaces. Symmetry 2020, 12, 1867. [Google Scholar] [CrossRef]
- Breev, A.I.; Shapovalov, A.V. Yang–Mills gauge fields conserving the symmetry algebra of the Dirac equation in a homogeneous space. J. Phys. Conf. Ser. 2014, 563, 012004. [Google Scholar] [CrossRef] [Green Version]
- Magazev, A.A.; Boldyreva, M.N. Schrodinger equations in electromagnetic fields: Symmetries and noncommutative integration. Symmetry 2021, 13, 1527. [Google Scholar] [CrossRef]
- Magazev, A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups. Theor. Math. Phys. 2012, 173, 1654–1667. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebra of symmetry operators for Klein-Gordon-Fock Equation. Symmetry 2021, 13, 727. [Google Scholar] [CrossRef]
- Odintsov, S.D. Editorial for Feature Papers 2021–2022. Symmetry 2023, 15, 32. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebra of the symmetry operators of the Klein-Gordon-Fock equation for the case when groups of motions G3 act transitively on null subsurfaces of spacetime. Symmetry 2022, 14, 346. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebras of integrals of motion for the Hamilton-Jacobi and Klein-Gordon-Fock equations in spacetime with a four-parameter groups of motions in the presence of an external electromagnetic field. J. Math. Phys. 2022, 63, 023505. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations, 2nd ed.; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Obukhov, V.V. Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in the stackel spaces of type (1.1). Int. J. Geom. Meth. Mod. Phys. 2021, 3, 2150036. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Theoretical Physics, Field Theory, 7th ed.; Science, C., Ed.; Nauka: Moskow, Russia, 1988; Volume II, 512p, ISBN 5-02-014420-7. [Google Scholar]
- Petrov, A.Z. Einstein Spaces; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Obukhov, V.V. Maxwell Equations in Homogeneous Spaces for Admissible Electromagnetic Fields. Universe 2022, 8, 245. [Google Scholar] [CrossRef]
- Obukhov, V.V. Maxwell Equations in Homogeneous Spaces with Solvable Groups of Motions. Symmetry 2022, 14, 2595. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhov, V.V. Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(IX). Axioms 2023, 12, 135. https://doi.org/10.3390/axioms12020135
Obukhov VV. Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(IX). Axioms. 2023; 12(2):135. https://doi.org/10.3390/axioms12020135
Chicago/Turabian StyleObukhov, Valeriy V. 2023. "Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(IX)" Axioms 12, no. 2: 135. https://doi.org/10.3390/axioms12020135
APA StyleObukhov, V. V. (2023). Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G3(IX). Axioms, 12(2), 135. https://doi.org/10.3390/axioms12020135