
Citation: Yoldaş, H.İ; Haseeb, A.;

Mofarreh, F. Certain Curvature

Conditions on Kenmotsu Manifolds

and ?-η-Ricci Solitons. Axioms 2023,

12, 140. https://doi.org/10.3390/

axioms12020140

Academic Editor: Mica Stankovic

Received: 17 December 2022

Revised: 24 January 2023

Accepted: 26 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Certain Curvature Conditions on Kenmotsu Manifolds and
?-η-Ricci Solitons
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1. Introduction

The study of manifolds is of high interest to geometers and physicists due to its wide
applications in geometry, physics, and relativity. By studying the manifolds, the geometers
have benefited from two fundamental tools—the Riemannian curvature tensor and the
Ricci tensor–in understanding the differential geometric properties of the manifolds. Over
the years, several new concepts have been introduced to the literature with the help of
these tools in order to describe complex structures. One of these concepts is the ?-Ricci
tensor S?, which was first introduced by Tachibana on almost Hermitian manifolds [1].
After Tachibana’s work, Hamada [2] gave the definition of this concept for a contact metric
manifold E as follows,

S?(X1, X2) =
1
2
(trace{ϕ ◦ R(X1, ϕX2)}),

for any vector fields X1, X2 ∈ X(E). Here, R is the Riemannian curvature tensor, S? is the
?-Ricci tensor of type (0, 2), ϕ is a tensor field of type (1, 1) and X(E) denotes the set of
all smooth vector fields of E. Hamada also took into account the concept of ?-Einstein
manifold and gave a classification of ?-Einstein hypersurfaces. The ?-Einstein manifold is a
Riemannian manifold whose ?-Ricci tensor is a constant multiple of its metric tensor g, that
is, S? = λg, where λ is a constant.

The ?-Ricci tensor, which has been very popular recently, carries important curvature
properties, and these properties give helpful information regarding the geometry and struc-
ture of the manifold. Therefore, it has been the subject of interest of many mathematicians,
and many studies have been done on this subject. For detailed information about this
subject we recommend, in particular, references [1–6].

On the other hand, Hamilton [7] defined the notion of Ricci soliton as a natural
generalization of Einstein manifolds in 1988. After Hamilton’s definition, several classes of
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Ricci solitons have been introduced in the literature. One important class is the notion of
?-Ricci soliton that was introduced by Kaimakamis et al. in 2014. They studied this notion
in the context of real hypersurfaces of a complex space form [8]. A Riemannian metric
g on a smooth manifold E is called ?-Ricci soliton, if there exists a smooth vector field J
satisfying [8]

(£J g)(X1, X2) + 2S?(X1, X2) + 2ρg(X1, X2) = 0, ρ ∈ R,

for any vector fields X1, X2 on E. Here, £J indicates the Lie-derivative operator along the
vector field J. If £J g = 0, then the ?-Ricci soliton becomes a ?-Einstein manifold. Such
a soliton is called steady, shrinking, or expanding according as ρ = 0, ρ < 0 or ρ > 0,
respectively.

As a generalization of ?-Ricci soliton, Dey and Roy introduced the notion of ?-η-Ricci
soliton as follows [9]:

(£J g)(X1, X2) + 2S?(X1, X2) + 2ρg(X1, X2) + 2ση(X1)η(X2) = 0, ρ, σ ∈ R, (1)

for any vector fields X1, X2 on E. We denote the ?-η-Ricci soliton by (g, J, ρ, σ). If σ = 0
in (1), then such a soliton reduces to a ?-Ricci soliton (g, J, ρ). Recently, many geometers
have made notable contributions to the Ricci, η-Ricci, ?-Ricci, ?-η-Ricci and ?-η-Ricci
Yamabe solitons in the literature. Some of them are [9–24] and references therein.

The concept of soliton has been a current and popular topic for the last 20 years.
In particular, this concept has become a more popular field of study for mathematicians
after Perelman actively used Ricci solitons in his work to solve the Poincare conjecturé
in 2002. The Ricci soliton and its generalizations have extensive applications, not only in
mathematical physics but also in quantum cosmology, quantum gravity, and black holes as
well. The Ricci soliton can be considered as a kinematic solution in fluid space-time, the
profile of which develops a characterization of spaces of constant curvature along with
the locally symmetric spaces. It also expresses geometrical and physical applications with
relativistic viscous fluid space-time, admitting heat flux and stress, dark fluid, dust fluid,
and radiation era in general relativistic space-time. A two-dimensional Ricci soliton can be
used to discuss the behavior of mass under Ricci flow. The Ricci soliton is an important
tool, as it can help in understanding the concepts of energy or entropy in general relativity.
This property is the same as that of the heat equation due to which an isolated system
loses the heat for thermal equilibrium. We, as a scholar in mathematics, study this subject
theoretically, but this subject has many applications in physics. Therefore, it will be a field
of study for physicists working on this topic.

During the last few years, one of the most active fields of study in differential geometry
is the theory of contact manifolds. Contact metric manifolds are special Riemannian mani-
folds that have almost contact metric structure. Such manifolds have many applications in
theoretical physics. They have several subclasses with various names and structures. One
of these striking subclasses is the Kenmotsu manifold [25]. These manifolds were defined
by K. Kenmotsu. He showed that a locally Kenmotsu manifold is a warped product I × f N
of an interval I and a Kaehler manifold N with warping function f (t) = cet. Here, c( 6= 0)
is a constant. In recent years, Kenmotsu manifolds have been extensively studied by many
geometers, such as ([6,13,15,23]).

In the present paper, we consider ?-Ricci solitons in the context of Kenmotsu manifolds
satisfying certain curvature conditions. The present paper consists of five sections. Section 1
is the introductory section. In Section 2, some useful definitions and basic concepts of
the contact metric manifolds are given. In Section 3, we study certain flatness and ϕ-
semisymmetric conditions in Kenmotsu manifolds. In Section 4, we study ?-η-Ricci solitons
in Kenmotsu manifolds and obtain some significant results. Finally, an example of three-
dimensional Kenmotsu manifolds has been constructed to verify some of our results.
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2. Preliminaries

In this section, we give the preliminary concepts and definitions that are required for
the study of Kenmotsu manifolds. Moreover, this section helps the readers for a better
understanding of the subsequent sections in the paper.

A (2n + 1)-dimensional almost contact metric manifold E2n+1 is a differentiable mani-
fold that have an almost contact metric structure (ϕ, ζ, η, g) satisfying [26,27]

η(ζ) = 1, ϕ2X1 + X1 = η(X1)ζ, η(X1) = g(X1, ζ) (2)

and

g(ϕX1, ϕX2) + η(X1)η(X2) = g(X1, X2) (3)

for any vector fields X1, X2 ∈ X(E2n+1). Here, ϕ is a tensor field of type (1, 1) on E2n+1, ζ is a
vector field, η is a 1-form associated with the unit vector field ζ, such that η(ζ) = g(ζ, ζ) = 1
and g is the Riemannian metric tensor.

One can easily see that the following are deducible from the equalities (2) and (3):

η ◦ ϕ = 0, ϕζ = 0. (4)

An almost contact metric manifold (E2n+1, ϕ, ζ, η, g) is called a Kenmotsu manifold
if [25]

(∇X1 ϕ)X2 = g(ϕX1, X2)ζ − η(X2)ϕX1, (5)

where ∇ appears for the Levi–Civta connection.
An almost contact metric manifold is a Kenmotsu manifold, if and only if

∇X1 ζ = X1 − η(X1)ζ (6)

for any vector field X1 on E2n+1.
For a (2n + 1)-dimensional Kenmotsu manifold E2n+1, we have

(∇X1 η)X2 = g(X1, X2)− η(X1)η(X2), (7)

R(ζ, X1)X2 = η(X2)X1 − g(X1, X2)ζ, (8)

S(X1, ζ) = −2nη(X1), (9)

S(ζ, ζ) = −2n, (10)

Qζ = −2nζ, (11)

S(ϕX1, ϕX2) = S(X1, X2) + 2nη(X1)η(X2), (12)

(∇ζ Q)X1 = −2QX1 − 4nX1, (13)

(£ζ g)(X1, X2) = 2(g(X1, X2)− η(X1)η(X2)), (14)

where Q is the Ricci operator related to the Ricci tensor S of type (0, 2) by S(X1, X2) =
g(QX1, X2).

A Kenmotsu manifold (E2n+1, ϕ, ζ, η, g) is called a η-Einstein manifold if its Ricci
tensor S( 6= 0) satisfies [25]

S(X1, X2) = λg(X1, X2) + µη(X1)η(X2),

where λ and µ are smooth functions on E2n+1. If µ = 0, then E2n+1 reduces to an Einstein
manifold.

A Kenmotsu manifold E2n+1 is called weakly ϕ-Einstein if

Sϕ(X1, X2) = βgϕ(X1, X2) (15)



Axioms 2023, 12, 140 4 of 14

for some smooth function β. Here, gϕ is defined by gϕ(X1, X2) = g(ϕX1, ϕX2) and Sϕ

(called the ϕ-Ricci tensor of E2n+1) is the symmetric part of S?, such that

Sϕ(X1, X2) =
1
2

(
S?(X1, X2) + S?(X2, X1)

)
, (16)

where S? is the (0, 2) type ?-Ricci tensor of E2n+1. If the function β in (15) is a real number,
then E2n+1 is called ϕ-Einstein manifold [28].

Now we recall some special curvature tensors, viz., the projective (or the Weyl pro-
jective), the concircular and theM-projective curvature tensors that have many physical
applications in geometry, physics and theory of relativity (see [29–31]).

The projective curvature tensor P, the concircular curvature tensor Z and the M-
projective curvature tensorM of a (2n + 1)-dimensional Kenmotsu manifold E2n+1 are
respectively defined by

P(X1, X2)X3 = R(X1, X2)X3 −
1

2n

{
S(X2, X3)X1 − S(X1, X3)X2

}
, (17)

Z(X1, X2)X3 = R(X1, X2)X3 −
r

2n(2n + 1)

{
g(X2, X3)X1 − g(X1, X3)X2

}
, (18)

and

M(X1, X2)X3 = R(X1, X2)X3 −
1

4n

{
S(X2, X3)X1 − S(X1, X3)X2 (19)

+g(X2, X3)QX1 − g(X1, X3)QX2

}
for any vector fields X1, X2, X3 on E2n+1. Here, r is the scalar curvature of E2n+1. IfM = 0,
Z = 0 and P = 0, then the manifold E2n+1 is called anM-projectively flat, a concircularly
flat, and a projectively flat, respectively. Moreover, (17) implies that the manifold E2n+1 is
projectively flat if and only if it is of constant curvature.

A Kenmotsu manifold (E2n+1, g), n > 1, is said to be
(i) ϕ-projectively semisymmetric if P(X1, X2) · ϕ = 0,
(ii) ϕ-M-projectively semisymmetric ifM(X1, X2) · ϕ = 0,
for all X1, X2 ∈ X(E2n+1).

3. Kenmotsu Manifolds Satisfying Certain Flatness and ϕ-Semisymmetric Conditions

In this section, first we study the projectively flat, the concircularly flat and the
M-projectively flat Kenmotsu manifolds and prove that the ?-Ricci tensor of these flat
Kenmotsu manifolds is symmetric and these flat manifolds are ϕ-Einstein, whereas the
?-Ricci tensor of the concircularly flat Kenmotsu manifold is symmetric and the mani-
fold is weakly ϕ-Einstein. Moreover, we study ϕ-projectively semisymmetric and ϕ-M-
projectively semisymmetric Kenmotsu manifolds and prove that the ?-Ricci tensor of these
semisymmetric Kenmotsu manifolds is symmetric and these semisymmetric manifolds are
ϕ-Einstein.

First we prove the following result.

Theorem 1. Let E2n+1 be a (2n + 1)-dimensional projectively flat Kenmotsu manifold, then S? of
E2n+1 is symmetric and the manifold is ϕ-Einstein.

Proof. We consider that the manifold E2n+1 is projectively flat, then the Equation (17)
turns to

R(X1, X2)X3 =
1

2n

{
S(X2, X3)X1 − S(X1, X3)X2

}
(20)
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for any vector fields X1, X2, X3 on E2n+1. By replacing X3 = ϕX3 in (20), we have

R(X1, X2)ϕX3 =
1

2n

{
S(X2, ϕX3)X1 − S(X1, ϕX3)X2

}
,

which by taking the inner product with ϕX4 provides

g(R(X1, X2)ϕX3, ϕX4) =
1

2n

{
S(X2, ϕX3)g(X1, ϕX4)− S(X1, ϕX3)g(X2, ϕX4)

}
(21)

for any vector field X4 on E2n+1.
Let {ζ = U1, U2, . . . , U2n+1} be an orthonormal basis (called ϕ-basis) of the tangent

space TpE2n+1, for all p ∈ E2n+1. Putting X1 = X4 = Uk in (21) and summing over k
(k = 1, 2, . . . , 2n + 1), we can easily compute

S?(X2, X3) =
1

2n

{
S(X2, X3) + 2nη(X2)η(X3)

}
. (22)

Replacing X1 by ζ in (17) and then using (8) and (9) we arrive at

η(X3)X2 − g(X2, X3)ζ =
1

2n

{
S(X2, X3)ζ + 2nη(X3)X2

}
. (23)

Now, taking the inner product of (23) with ζ and using (2) one immediately has

S(X2, X3) = −2ng(X3, X3). (24)

It follows from (22) and (24) that

S?(X2, X3) = −g(X2, X3) + η(X2)η(X3). (25)

Interchanging the roles of X2 and X3 in (25) provides

S?(X3, X2) = −g(X3, X2) + η(X3)η(X2). (26)

Subtracting (26) from (25) yields S?(X2, X3) = S?(X3, X2). This means that S? of E2n+1

is a symmetric tensor. Therefore, we obtain

Sϕ(X2, X3) = −g(ϕX2, ϕX3),

where we have used the equations (16), (25) and (26). Thus, E2n+1 is a ϕ-Einstein manifold,
which completes the proof.

The next theorem gives a necessary condition for a Kenmotsu manifold to be weakly
ϕ-Einstein.

Theorem 2. If E2n+1 is a (2n + 1)-dimensional concircularly flat Kenmotsu manifold, then S? of
E2n+1 is symmetric and the manifold is weakly ϕ-Einstein.

Proof. Let E2n+1 be a concircularly flat Kenmotsu manifold. Then, the Equation (18)
transforms to

R(X1, X2)X3 =
r

2n(2n + 1)

{
g(X2, X3)X1 − g(X1, X3)X2

}
(27)

for any vector fields X1, X2, X3 on E2n+1.
Taking the inner product on both sides of (27) with X4 we have

g(R(X1, X2)X3, X4) =
r

2n(2n + 1)

{
g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)

}
(28)
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for any vector fields X4 on E2n+1.
Now, by replacing X3 by ϕX3 and X4 by ϕX4 in (28) we have

g(R(X1, X2)ϕX3, ϕX4) =
r

2n(2n + 1)

{
g(X2, ϕX3)g(X1, ϕX4)− g(X1, ϕX3)g(X2, ϕX4)

}
. (29)

Keeping in mind the ϕ-basis and putting X1 = X4 = Uk in (29) and then summing
over k (k = 1, 2, . . . , 2n + 1), we can easily compute

S?(X2, X3) =
r

2n(2n + 1)
g(ϕX2, ϕX3), (30)

from which it can be seen that S? of E2n+1 is symmetric.
Now, from (15), (16) and (30) we find

Sϕ(X2, X3) = βgϕ(X2, X3),

where β = r
2n(2n+1) . Therefore, E2n+1 is weakly ϕ-Einstein.

As a direct consequence of the Theorem 2, we have the following.

Corollary 1. If E2n+1 is a (2n + 1)-dimensional concircularly flat Kenmotsu manifold whose
scalar curvature is constant, then E2n+1 is ϕ-Einstein.

Theorem 3. If E2n+1 is a (2n + 1)-dimensionalM-projectively flat Kenmotsu manifold, then S?

of E2n+1 is symmetric and the manifold is ϕ-Einstein.

Proof. Let E2n+1 be anM-projectively flat Kenmotsu manifold. Then, the Equation (19)
takes the form

R(X1, X2)X3 =
1

4n

{
S(X2, X3)X1 − S(X1, X3)X2 + g(X2, X3)QX1 − g(X1, X3)QX2

}
(31)

for any vector fields X1, X2, X3 on E2n+1.
Taking the inner product of (31) with ϕX4 we lead to

g(R(X1, X2)X3, ϕX4) =
1

4n

{
S(X2, X3)g(X1, ϕX4)− S(X1, X3)g(X2, ϕX4)

+ g(X2, X3)S(X1, ϕX4)− g(X1, X3)S(X2, ϕX4)
}

. (32)

Moreover, by replacing X3 by ϕX3 in (32), we get

g(R(X1, X2)ϕX3, ϕX4) =
1

4n

{
S(X2, ϕX3)g(X1, ϕX4)− S(X1, ϕX3)g(X2, ϕX4) (33)

+g(X2, ϕX3)S(X1, ϕX4)− g(X1, ϕX3)S(X2, ϕX4)
}

.

Now, considering the ϕ-basis and putting X1 = X4 = Uk in (33), then taking summa-
tion over k (k = 1, 2, . . . , 2n + 1), we easily obtain

S?(X2, X3) =
1

4n

{
2S(X2, X3) + 4nη(X2)η(X3)

}
. (34)

Taking ζ in place of X1 in (31) and utilizing (8), (9), (11) we find

η(X3)X2 − g(X2, X3)ζ =
1

2n

{
S(X2, X3)ζ + 2nη(X3)X2 − 2ng(X2, X3)ζ

−η(X3)QX2

}
,
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which by taking the inner product with ζ and then using (2) and (9) leads to

S(X2, X3) = −2ng(X2, X3). (35)

By means of (35), the Equation (34) turns to

S?(X2, X3) = −g(X2, X3) + η(X2)η(X3), (36)

from which it can be seen that S? of E2n+1 is symmetric. By considering (36) in (16), it
follows that

Sϕ(X2, X3) = −g(ϕX2, ϕX3).

Thus we get the desired result.

Now we prove the following result.

Theorem 4. If E2n+1 is a (2n + 1)-dimensional ϕ-projectively semisymmetric Kenmotsu manifold,
then S? of E2n+1 is symmetric and the manifold is ϕ-Einstein.

Proof. Let E2n+1 be a ϕ-projectively semisymmetric Kenmotsu manifold, i.e., E2n+1 satisfies
the condition P.ϕ = 0. This implies that

P(X1, X2)ϕX3 = ϕP(X1, X2)X3 (37)

for any vector fields X1, X2, X3 on E2n+1.
In view of (17), (37) takes the form

R(X1, X2)ϕX3 −
1

2n

{
S(X2, ϕX3)X1 − S(X1, ϕX3)X2

}
= (38)

ϕR(X1, X2)X3 −
1

2n

{
S(X2, X3)ϕX1 − S(X1, X3)ϕX2

}
,

which by taking the inner product with ϕX4 becomes

g(R(X1, X2)ϕX3, ϕX4)− 1
2n

{
S(X2, ϕX3)g(X1, ϕX4)− S(X1, ϕX3)g(X2, ϕX4)

}
= g(R(X1, X2)X3, X4)− η(R(X1, X2)X3)η(X4)− 1

2n

{
S(X2, X3)g(ϕX1, ϕX4)

−S(X1, X3)g(ϕX2, ϕX4)
}

. (39)

By using the ϕ-basis and plugging X1 = X4 = Uk in (39), then taking summation over
k (k = 1, 2, . . . , 2n + 1), after a straightforward calculation we find

S?(X2, X3) =
1
n

S(X2, X3) + g(X2, X3) + η(X2)η(X3). (40)

Now by putting X1 = ζ in (38) and then using (4), (8) and (9), we obtain

S(X2, X3) = −2ng(X2, X3),

which together with (40) takes the form

S?(X4, X2) = −g(X4, X2) + η(X4)η(X2). (41)

Consequently, we have

Sϕ(X4, X2) = −g(ϕX4, ϕX2). (42)
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From the Equations (41) and (42), our result follows.

Theorem 5. If E2n+1 is a (2n + 1)-dimensional ϕ-M-projectively semisymmetric Kenmotsu
manifold, then S? of E2n+1 is symmetric and the manifold is ϕ-Einstein.

Proof. Let E2n+1 be a ϕ-M-projectively semisymmetric Kenmotsu manifold, i.e., E2n+1

satisfies the conditionM.ϕ = 0. The conditionM.ϕ = 0 implies that

M(X1, X2)ϕX3 = ϕM(X1, X2)X3 (43)

for any vector fields X1, X2, X3 on E2n+1.
Keeping in mind (19), the Equation (43) takes the form

R(X1, X2)ϕX3 − 1
4n

{
S(X2, ϕX3)X1 − S(X1, ϕX3)X2 + g(X2, ϕX3)QX1

−g(X1, ϕX3)QX2

}
= ϕR(X1, X2)X3 − 1

4n

{
S(X2, X3)ϕX1 − S(X1, X3)ϕX2

+g(X2, X3)ϕQX1 − g(X1, X3)ϕQX2

}
. (44)

By putting X1 = ζ in (44) and recalling (4), (8), (9), (11), we have

−g(X2, ϕX3)ζ −
1

4n

{
S(X2, ϕX3)ζ − 2ng(X2, ϕX3)ζ

}
= η(X3)ϕX2 −

1
4n

{
2nη(X3)ϕX2 − η(X3)ϕQX2

}
,

which by taking the inner product with ζ provides

S(X2, ϕX3) = −2ng(X2, ϕX3). (45)

Replacing X3 by ϕX3 in (45) and by virtue of (2), (9) we deduce

S(X2, X3) = −2ng(X2, X3), (46)

which yields

QX2 = −2nX2. (47)

Now taking the inner product of (44) with ϕX4 we have

g(R(X1, X2)ϕX3, ϕX4)− 1
4n

{
S(X2, ϕX3)g(X1, ϕX4)− S(X1, ϕX3)g(X2, ϕX4)

+g(X2, ϕX3)g(QX1, ϕX4)− g(X1, ϕX3)g(QX2, ϕX4)
}
= g(R(X1, X2)X3, X4) (48)

−η(R(X1, X2)X3)η(X4)− 1
4n

{
S(X2, X3)g(ϕX1, ϕX4)− S(X1, X3)g(ϕX2, ϕX4)

+g(X2, X3)g(ϕQX1, ϕX4)− g(X1, X3)g(ϕQX2, ϕX4)
}

for any vector field X4 on E2n+1.
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By substituting (47) in (48) we have

g(R(X1, X2)ϕX3, ϕX4)− 1
4n

{
S(X2, ϕX3)g(X1, ϕX4)− S(X1, ϕX3)g(X2, ϕX4)

−2ng(X2, ϕX3)g(X1, ϕX4) + 2ng(X1, ϕX3)g(X2, ϕX4)
}
= g(R(X1, X2)X3, X4) (49)

−η(R(X1, X2)X3)η(X4)− 1
4n

{
S(X2, X3)g(ϕX1, ϕX4)− S(X1, X3)g(ϕX2, ϕX4)

−2ng(X2, X3)g(ϕX1, ϕX4) + 2ng(X1, X3)g(ϕX2, ϕX4)
}

.

Considering the ϕ-basis and putting X1 = X4 = Uk in (49) and then taking summation
over k (k = 1, 2, . . . , 2n + 1), after straightforward computation we obtain

S?(X2, X3)− 1
4n

{
S(ϕX3, ϕX2)− 2ng(ϕX3, ϕX2)

}
= S(X2, X3)

−η(X2)η(X3) + g(X2, X3)− 1
4n

{
2nS(X2, X3)− S(ϕX2, ϕX3)

−4n2g(X2, X3) + 2ng(ϕX2, ϕX3)
}

,

from which, in view of (12) and (46), we easily obtain

S?(X2, X3) = −g(X2, X3) + η(X2)η(X3),

which by using in (16) gives

Sϕ(X2, X3) = −g(ϕX2, ϕX3).

Our claim follows from the last two equations.

4. ?-η-Ricci Solitons on Kenmotsu Manifolds

There are many classes of manifolds studied in differential geometry. One of them
includes Einstein manifolds. The manifolds where the Ricci tensor is proportional to the
metric tensor are called Einstein manifolds. Because the Ricci tensor is a part of Einstein’s
famous field equations, thus the manifolds endowed with the Ricci tensor are closely
related to Einstein’s field equations. That’s why these manifolds are very important in both
Riemannian geometry and the general theory of relativity. It is emphasized that the results
of the present paper are important because they are reduced to the Einstein manifold.

In this section, we consider Kenmotsu manifolds endowed with ?-η-Ricci solitons, and
we obtain some significant results concerning such manifolds. To prove our next theorems,
we use the following lemma.

Lemma 1 ([6]). In a (2n + 1)-dimensional Kenmotsu manifold, the ?-Ricci tensor S? is given by

S?(X1, X2) = S(X1, X2) + (2n− 1)g(X1, X2) + η(X1)η(X2) (50)

for any vector fields X1, X2 on E2n+1.

Now, first we prove the following theorem:

Theorem 6. Let E2n+1 be a (2n + 1)-dimensional Kenmotsu manifold endowed with ?-η-Ricci
soliton (g, ζ, ρ, σ). Then the manifold is Einstein as well as ϕ-Einstein.

Proof. Considering (g, ζ, ρ, σ) as a ?-η-Ricci soliton on E2n+1, then in view of (1), we have

(£ζ g)(X1, X2) + 2S?(X1, X2) + 2ρg(X1, X2) + 2ση(X1)η(X2) = 0 (51)

for any vector fields X1, X2 on E2n+1.
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By using (6), (14) and (50), the Equation (51) turns to

S(X1, X2) = −(ρ + 2n)g(X1, X2)− ση(X1)η(X2). (52)

Taking X1 = X2 = ζ in (52) and making use of (10), we get

ρ + σ = 0. (53)

By taking the covariant derivative of (52) with respect to X4 and keeping in mind (6),
we are led to

(∇X4 S)(X1, X2) = −σ(g(X1, X4)η(X2) + g(X2, X4)η(X1)− 2η(X1)η(X2)η(X4)), (54)

where

(∇X4 S)(X1, X2) = ∇X4 S(X1, X2)− S(∇X4 X1, X2)− S(X1,∇X4 X2).

With the help of (6), (7) and (9) it can be easily seen that

(∇X4 S)(X1, ζ) = −S(X1, X4)− 2ng(X1, X4). (55)

By the cyclic rearrangement of X1, X2 and X4 in (54), we have

(∇X1 S)(X2, X4) = −σ(g(X2, X1)η(X4) + g(X4, X1)η(X2)− 2η(X1)η(X2)η(X4)), (56)

and

(∇X2 S)(X4, X1) = −σ(g(X1, X2)η(X4) + g(X4, X2)η(X1)− 2η(X1)η(X2)η(X4)). (57)

By adding the Equations (54)–(57), we have

(∇X4 S)(X1, X2) + (∇X1 S)(X2, X4) + (∇X2 S)(X4, X1) = (58)

−2σ(g(X1, X4)η(X2) + g(X2, X4)η(X1) + g(X1, X2)η(X4)− 3η(X1)η(X2)η(X4)).

Now taking X4 = ζ in (58) and using (13), we arrive at

4ng(X1, X2) + 2S(X1, X2) = σ(g(X1, X2)− η(X1)η(X2)). (59)

Keeping in mind the ϕ-basis and putting X1 = X2 = Uk in (59) and then summing
over k (k = 1, 2, . . . , 2n + 1), we obtain

4n(2n + 1) + 2r = 2nσ. (60)

Setting X2 = ζ in (54) and using (55), we obtain

2ng(X1, X4) + S(X1, X4) = σ(g(X1, X4)− η(X1)η(X4)), (61)

from which we obtain

2n(2n + 1) + r = 2nσ. (62)

By combining (60) and (62), it follows that 2nσ = 0, and hence σ = 0. By using this
fact together with (53), the Equation (52) leads to

S(X1, X2) = −2ng(X1, X2), (63)

which informs us that E2n+1 is Einstein.
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Furthermore, substituting (63) in (50) we are led to

S?(X1, X2) = −g(X1, X2) + η(X1)η(X2).

Consequently, we have

Sϕ(X1, X2) = −g(ϕX1, ϕX2).

Hence, the proof is completed.

Theorem 7. Let E2n+1 be a (2n + 1)-dimensional Kenmotsu manifold endowed with ?-η-Ricci
soliton (g, J, ρ, σ) such that J is pointwise collinear with ζ. Then E is weakly ϕ-Einstein.

Proof. Let J be pointwise collinear with ζ, that is, J = bζ for some function b. Then, one
can calculate

(£J g)(X1, X2) = X1(b)η(X2) + X2(b)η(X1) + 2b(g(X1, X2)− η(X1)η(X2)) (64)

for any vector fields X1, X2 on E2n+1.
As (g, J, ρ, σ) is ?-η-Ricci soliton on E2n+1, then from (1) and (64) we have

X1(b)η(X2) + X2(b)η(X1) + 2b(g(X1, X2)− η(X1)η(X2)) + 2S?(X1, X2) (65)

+2ρg(X1, X2) + 2ση(X1)η(X2) = 0.

Putting X1 = X2 = ζ in (65) and then utilizing (10) and (50) we find

ζ(b) = −(ρ + σ). (66)

Again putting X2 = ζ in (65) and then from (9), (50) and (66), we obtain

X1(b) = −(ρ + σ)η(X1), (67)

which together with (65) leads to

S?(X1, X2) = −(ρ + b)g(X1, X2) + (ρ + b)η(X1)η(X2). (68)

Thus, from (16) and (68) we have

Sϕ(X1, X2) = (ρ + b)gϕ(X1, X2),

which completes the proof.

Now, we present an example of three-dimensional Kenmotsu manifold to verify some
of our results.

Example 1 ([32]). We consider a three-dimensional Riemannian manifold E3 = {(x, y, z) ∈
R3, z 6= 0}, where (x, y, z) are the usual coordinates in R3. Let U1, U2 and U3 be the linearly
independent vector fields on E3 given by

U1 = z
∂

∂x
, U2 = z

∂

∂y
, U3 = −z

∂

∂z
= ζ.

Let g be the Riemannian metric defined by

g(Ui, Ui) = 1, f or i = 1, 2, 3,

g(Ui, Uj) = 0, f or i 6= j,

and given by



Axioms 2023, 12, 140 12 of 14

g =
1
z2

{
dx⊗ dx + dy⊗ dy + dz⊗ dz

}
.

Now let the 1-form η and the (1, 1)-tensor field ϕ be defined by

η(X1) = g(X1, U3) , ϕ(U1) = −U2, ϕ(U2) = U1, ϕ(U3) = 0

for all X1 on E3.
The linearity property of ϕ and g yields

η(U3) = 1, ϕ2X1 = −X1 + η(X1)ζ, g(ϕX1, ϕX2) = g(X1, X2)− η(X1)η(X2),

for all X1, X2 on E3. Therefore, (E3, ϕ, ζ, η, g) is an almost contact metric manifold of
dimension 3 for U3 = ζ.

By direct calculations, we obtain

[U1, U2] = 0, [U1, U3] = U1, [U2, U3] = U2.

By the use of Koszul’s formula for the Riemannian metric g, we obtain

∇U1U3 = U1, ∇U2U3 = U2, ∇U1U1 = ∇U2U2 = −U3,

∇U3U3 = ∇U1U2 = ∇U2U1 = ∇U3U1 = ∇U3U2 = 0.

Therefore, by using the above values, it can be easily verified that E3 is a 3-dimensional
Kenmotsu manifold.

The following components of R can be easily obtain

R(U1, U2)U3 = 0, R(U1, U3)U2 = 0, R(U2, U3)U1 = 0,

R(U1, U2)U2 = −U1, R(U1, U2)U1 = U2, R(U1, U3)U3 = −U1,

R(U1, U3)U1 = U3, R(U2, U3)U3 = −U2, R(U3, U2)U2 = −U3,

which gives

S(U1, U1) = S(U2, U2) = S(U3, U3) = −2, S(Ui, Uj) = 0, i 6= j.

With the help of (50), we find

S?(U1, U1) = S?(U2, U2) = −1, S?(U3, U3) = 0, S?(Ui, Uj) = 0, i 6= j (69)

for all i, j = 1, 2, 3.
Now taking J = ζ in (1), we have

(£ζ g)(X1, X2) + 2S?(X1, X2) + 2ρg(X1, X2) + 2ση(X1)η(X2) = 0 (70)

for any vector fields X1, X2 on E3. Taking X1 = X2 = Ui in (70) and summing over
i(1 ≤ i ≤ 3) and then using (69) yields

σ = 0 and ρ = 0.

Then, the data (g, ζ, ρ, σ) satisfying the Equation (1) is a ?-η-Ricci soliton with σ = 0
and ρ = 0 on E3. This result verifies Theorem 6. Moreover, we remark that this example
supports Theorems 1–3.
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