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Abstract: This study aims to investigate the asymptotic behavior of a class of third-order delay differ-
ential equations. Here, we consider an equation with a middle term and several delays. We obtain an
iterative relationship between the positive solution of the studied equation and the corresponding
function. Using this new relationship, we derive new criteria that ensure that all non-oscillatory
solutions converge to zero. The new findings are an extension and expansion of relevant findings
in the literature. We apply our results to a special case of the equation under study to clarify the
importance of the new criteria.
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1. Introduction

The core of the qualitative theory of delay differential equations (DDE) is the inves-
tigation of qualitative behavior such as oscillation, stability, periodicity, and others. One
of the subfields of qualitative theory is oscillation theory, which focuses on the analysis
of solutions’ asymptotic and oscillatory behavior. The study of the oscillation theory of
the DDEs began by linking the oscillatory behavior of the equations to the absence of any
real solutions to the characteristic equation. The odd-order differential equations did not
receive the same attention as the even-order equations. This is due to the fact that the
behavior of positive solutions of odd-order differential equations is richer in possibilities
than even-order equations. In addition, the characteristic equation of odd-order ordinary
differential equations must have real solutions.

Functional differential equations of the sort known as DDEs account for the memory
of phenomena. DDEs have numerous physical and engineering uses; for examples, see [1,2].
These uses include soil settlement, elasticity problems, and structure deflection in electrical
networks with lossless transmission lines. To comprehend and analyze the behavior of
these solutions, a study of the oscillatory behavior of DDE solutions needs to be developed.
Half-linear equations have various applications in the study of p-Laplace equations, non-
Newtonian fluid theory, porous media, and other domains; see [3–5]. In addition to the great
development in the study of the qualitative aspect of solutions of differential equations,
the numerical studies of solutions of differential equations have developed greatly; see, for
example, [6–8].
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In this study, we investigate the oscillatory behavior of third-order DDE of neutral type

d
dl

(
a ·
(

d2

dl2B
)κ
)
+

(
h ·
(

d2

dl2B
)κ
)
+

j

∑
i=1

qi · [νκ ◦ ηi] = 0, l ≥ l0, (1)

where κ > 0 is a ratio of odd integer numbers, j is a positive integer number, B(l) :=
ν(l) + c0[ν ◦ µ](l), and [ν ◦ µ](l) = ν(µ(l)). Throughout this work, we assume that a is
differentiable positive real-valued function, µ, ηi, h and qi are continuous real-valued
functions on [l0, ∞), c0, hi and qi are nonnegative for i = 1, 2, . . . , j, a′(l) > 0, µ(l) < l,
ηi(l) < l, η′(l) > 0, liml→∞ µ(l) = liml→∞ η(l) = ∞and∫ ∞

l0

1
a1/κ(r)

exp
(
−1

κ

∫ ∞

l0

h(z)
a(z)

dz
)

dr = ∞, (2)

where
η(l) := min{ηi(l), i = 1, 2, . . . , j}.

By a solution of (1), we mean a function ν ∈ C2([l∗, ∞)), l∗ ≥ l0, which has the property
B ∈ C2([l∗, ∞)), a · (B′′)κ ∈ C1([l∗, ∞)), and ν satisfies (1) on [l∗, ∞). We only focus on
solutions of (1) that exist on [l0, ∞) and satisfy

sup{|ν(l)| : l ≥ l∗} > 0 for every l∗ ≥ l0.

A solution ν of (1) is said to be oscillatory if it has arbitrary large zeros, that is, there exists
a sequence of zeros {ln}∞

n=0 (i.e., x(ln) = 0) of v such that limn→∞ ln = ∞. We say that
(1) is almost oscillatory if any solution ν is either oscillatory or satisfies liml→∞ ν(l) = 0.
During the paper, we will need the next class:

Sx : all positive solutions of (1) whose B satisfies B(l)B′(l) > 0.

Recently, researchers have shown an interest in the oscillatory features of DDEs.
For example, it is easy to find many interesting results and improved techniques in [9–12],
which focused on establishing oscillation parameters for delay and advanced equations.
On the other hand, works [13–16] were concerned with extending the results of the delay
equations to the neutral equations. On the other hand, the great development in the study
of the asymptotic and oscillatory behavior of the solutions of difference and dynamic
equations can be noted; see, for example, [17–19].

For third-order DDEs, Baculikova and Dzurina [20] presented the oscillation condition
for DDE

d
dl

(
a ·
(

d2

dl2B
)κ
)
+ q · [νκ ◦ η] = 0, (3)

where B := ν + p · [ν ◦ µ], p(l) < c0 < 1 and a′(l) > 0, and proved that, if

lim inf
l→∞

∫ ∞

l
q(z)

η2κ(z)

zκ
dz >

(2κ)κ

(κ + 1)κ+1(1− c0)
κ

,

then Sx = ∅. Baculikova and Dzurina [21] tested the oscillatory properties of (3), and it
was shown that, if the first-order DDE

y′ + q ·
(
(η − l0)

2(1− [p ◦ η])

2r1/κ

)κ

· [y ◦ η] = 0
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is oscillatory, then Sx = ∅. Moreover, for (3), Thandapani and Li [22] proved that Sx = ∅, if

lim sup
l→∞

∫ l

l0

(
1

2κ−1 ρ(z)Q(z)− (1 + pκ(l)/µ0)

(κ + 1)κ+1
(ρ′(z))κ+1

(ρ(z)β1(η(z), l0)η′(z))
κ

)
= ∞,

where η′ > 0, µ′ ≥ µ0 > 0, Q(l) := min{q(l), [q ◦ µ](l)} and ρ ∈ C([l0, ∞), (0, ∞)).
The oscillatory behavior of DDE

d
dl

(
r2 ·

d
dl

(
r1 ·

d
dl

ν

))
+ p · ν′ + q · [ f ◦ ν ◦ g] = 0

was discussed in a number of studies; see, for example, [23–25]. Moaaz et al. [26] evaluated
the oscillation of the more general third-order DDE

d
dl

(
r2 ·

d
dl

(
r1 ·

d
dl

ν

))
+ p ·

[
f ◦ ν′ ◦ µ

]
+ q · [g ◦ ν ◦ σ] = 0.

The asymptotic properties of the solutions to DDEs with odd-order were addressed by
Moaaz et al. [27] in several ways.

In this work, the asymptotic properties of solutions to the DDEs of third-order are
investigated. We create conditions that ensure that all non-oscillatory solutions of the
studied equation tend to zero. We use more than one approach to establish new criteria of
an iterative nature that enables us to apply the results more than once while the previous
relevant results fail.

2. Main Results

For brevity, we define

ω(l) := exp
(∫ l

l0

h(z)
a(z)

dz
)

,

θ(ν, $) :=
∫ ν

$

1

ω
1
κ (z)a

1
κ (z)

dz for $ < ν,

µ{0} = l, µ{m} =
[
µ ◦ µ{m−1}

]
for m = 1, 2, . . . ,

and

P(l) := (1− c0)
(n−1)/2

∑
m=0

c2m
0

(
µ{2m+1}(l)

l

)2/λ

,

where l1 ≥ l0 and n is an odd positive integer.

Lemma 1 ([28]). Let φ ∈ Cm+1([l0, ∞), (0, ∞)), and φ(k)(l) > 0 for k = 0, 1, 2, . . . , m and
φ(m+1)(l) ≤ 0. Then, φ(l) ≥ λ l

m φ′(l) for all λ ∈ (0, 1), and for l ≥ l1, where l1 is suffi-
ciently large.

Lemma 2. Let ν be a positive solution of (1). Then, B and B′′ are positive,
(
ω · a · (B′′)κ)′ is

nonnegative, and B′ is of one sign, for l ≥ l1, where l1 is sufficiently large.

Proof. Assume that ν is a positive solution of (1) on [l0, ∞). It is easy to deduce that

exp
(∫ l

l0

h(z)
a(z)

dz
)((

a ·
(
B′′
)κ
)′

+ h ·
(
B′′
)κ
)
=
(

ω · a ·
(
B′′
)κ
)′

,

which converts Equation (1) into the form

(
ω · a ·

(
B′′
)κ
)′

+
j

∑
i=1

ω · qi · [νκ ◦ ηi] = 0.
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Hence, (
ω · a ·

(
B′′
)κ
)′

= −
j

∑
i=1

ω · qi · [νκ ◦ ηi] ≤ 0. (4)

Thus, ω · a · (B′′)κ is of one sign for l ≥ l1, where l1 ≥ l0. Hence, B′′(l) < 0 or B′′(l) > 0
for l ≥ l1.

If B′′(l) < 0, then there is a M > 0 such that

ω(l)a(l)B′′(l)κ ≤ −M < 0.

Integrating this inequality from l1 to l, we obtain

B′(l) ≤ B′(l1)−M
1
κ

∫ l

l1

1

a
1
κ (z)ω

1
κ (z)

dz.

Letting l → ∞ and using (2), we obtain B′ → −∞. Thus, B′(l) < 0 eventually. However,
B′′(l) < 0 and B′(l) < 0 eventually imply B(l) < 0 for l ≥ l1, a contradiction. Then,
B′′(l) > 0.

Lemma 3. Assume that ν ∈ Sx. Then,

ν(l) ≥ (1− c0)B(l)
(n−1)/2

∑
m=0

c2m
0

(
µ{2m+1}(l)

l

)2/λ

. (5)

for n ∈ N is an odd and λ ∈ (0, 1), and l ≥ l2, where l2 ≥ l1 large enough.

Proof. Let ν ∈ Sx. From the definition of B, we have

ν = B − c0[ν ◦ µ] = B − c0[B ◦ µ] + c2
0

[
ν ◦ µ{2}

]
= B − c0[B ◦ µ] + c2

0

[
B ◦ µ{2}

]
− c3

0

[
ν ◦ µ{3}

]
.

By continuing this process, we obtain

ν(l) =
n

∑
m=0

(−1)mcm
0 B
(

µ{m}(l)
)
+ (−1)ncn+1

0 ν
(

µ{n+1}(l)
)

≥
(n−1)/2

∑
m=0

(
c2m

0 B
(

µ{2m}(l)
)
− c2m+1

0 B
(

µ{2m+1}(l)
))

, (6)

for all l ≥ l1 ≥ l0, where l1 is sufficiently large. Since B′(l) > 0 and µ{2m+1}(l) ≤ µ{2m}(l)
for all m = 0, 1, . . . , inequality (6) becomes

ν(l) ≥ (1− c0)
(n−1)/2

∑
m=0

c2m
0

[
B◦µ{2m+1}

]
. (7)

Using Lemma 1 with φ = B and m = 2, we obtain that B(l) ≥ λ
2 lB′(l) for all λ ∈ (0, 1)

and l ≥ l1. By integrating this inequality from µ{2m+1} to l , we obtain

B
(

µ{2m+1}(l)
)
≥
(

µ{2m+1}(l)
l

)2/λ

B(l),
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for all l ≥ l2 ≥ l1. Thus, inequality (7) implies

ν(l) ≥ (1− c0)B(l)
(n−1)

2

∑
m=0

c2m
0

(
µ{2m+1}(l)

l

)2/λ

.

The proof is now complete.

2.1. Nonexistence of Solutions in Sx

Below, we use the Riccati substitution technique to obtain a condition that guarantees
no solutions in class Sx.

Theorem 1. If there exists a function ρ ∈ C1([l0, ∞), (0, ∞)) such that

lim sup
l→∞

∫ l

l0

(
ρ(z)ω(z)

(
η(z)

z

)2/λ j

∑
i=1

qi(z)Pκ(ηi(z))

− 1
ρκ(z)θκ(z, l1)

(
ρ′(z)

κ + 1

)κ+1
)

dz=∞, (8)

for some λ ∈ (0, 1), then Sx = ∅.

Proof. Assume the contrary that ν ∈ Sx. Now, it follows from (1) that

(
ω · a ·

(
B′′
)κ
)′

= −
j

∑
i=1

ω · qi · [νκ ◦ ηi]. (9)

From Lemma 3, we arrive at (5). Combining (1) and (4), we find

(
ω(l)a(l)

(
B′′(l)

)κ
)′
≤ −ω(l)

j

∑
i=1

qi(l)Pκ(ηi(l))Bκ(ηi(l))

≤ −ω(l)Bκ(η(l))
j

∑
i=1

qi(l)Pκ(ηi(l)) (10)

Now, we define

ψ := ρ · ω · a · (B′′)κ

Bκ
.

Clearly, ψ(l) > 0 for all l ≥ l1 and

ψ′ =
ρ′

ρ
ψ + ρ

(
ω · a · (B′′)κ)′

Bκ
− κρ

ω · a · (B′′)κ

Bκ+1 B′. (11)

Using Lemma 1 with φ = B and m = 2, we obtain that B(l) ≥ λ
2 lB′(l) for all λ ∈ (0, 1)

and l ≥ l1. By integrating this inequality from η to l , we obtain

[B◦η] ≥
(η

l

)2/λ
· B, (12)

Since
(
ω · a · (B′′)κ)′ ≤ 0, we obtain

B′(l) ≥
∫ l

l1

1

ω
1
κ (z)a

1
κ (z)

ω
1
κ (z)a

1
κ (z)B′′(z)dz

≥
[
ω(l)a(l)

(
B′′(l)

)κ
] 1

κ
θ(l, l1). (13)



Axioms 2023, 12, 166 6 of 13

Combining (10)–(13), we obtain

ψ′ ≤ ρ′

ρ
· ψ− ρ ·ω · [B

κ ◦ η]

Bκ
·

j

∑
i=1

qi · [Pκ ◦ ηi]

−κρ ·
[
ω · a · (B′′)κ] κ+1

κ

Bκ+1 · θ(l, l1)

≤ ρ′

ρ
· ψ− ρ ·ω ·

(η

l

)2/λ
·

j

∑
i=1

qi · [Pκ ◦ ηi]

− κ

ρ
1
κ

θ(l, l1) · ψ
κ+1

κ . (14)

Set

Ψ(ψ) :=
ρ′

ρ
ψ− κ

θ

ρ
1
κ

ψ
κ+1

κ .

We see that

Ψ′(ψ) =
ρ′

ρ
− (κ + 1)

θ

ρ
1
κ

ψ
1
κ .

Thus, Ψ(ψ) attains its maximum value on R at ψ∗ = ρ
(

ρ′

ρ(κ+1)θ

)κ
, and

Ψ(ψ) ≤ max
ψ∈R

Ψ(ψ) =

(
ρ′

κ + 1

)κ+1 1
ρκθκ

.

Then, (14) becomes

ψ′(l) ≤ −ρ(l)ω(l)
(

η(l)
l

)2/λ j

∑
i=1

qi(l)Pκ(ηi(l))

+

(
ρ′(l)
κ + 1

)κ+1 1
ρκ(l)θκ(l, l1)

.

By integrating this inequality from l1 → l, we find

∫ l

l1

(
ρ(z)ω(z)

(
η(z)

z

)2/λ j

∑
i=1

qi(z)Pκ(ηi(z))

− 1
ρκ(z)θκ(z, l1)

(
ρ′(z)

κ + 1

)κ+1
)

dz≤ψ(l1),

which contradicts (8).

Next, we derive a condition that ensures there are no solutions in class Sx using the
comparison principle.

Theorem 2. If the DDE

y′(l) + ω(l)y(η(l))
(∫ η(l)

l1
θ(z, l1)dz

)κ j

∑
i=1

qi(l)Pκ(ηi(l)) = 0 (15)

is oscillatory, then Sx = ∅.
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Proof. Assume the contrary that ν ∈ Sx. As in the proof of Theorem 1, we obtain that (10)
and (13) hold for all l ≥ l1 ≥ l0. Integrating (13) from l1 to l, we have

B(l) ≥
[
ω(l)a(l)

(
B′′(l)

)κ
] 1

κ
∫ l

l1
θ(z, l1)dz,

which with (10) gives(
ω(l)a(l)

(
B′′(l)

)κ
)′

≤ −ω(l)ω(η(l))a(η(l))
(
B′′(η(l))

)κ
(∫ η(l)

l1
θ(z, l1)dz

)κ j

∑
i=1

qi(l)Pκ(ηi(l)).

Now, if we set y := ω · a · (B′′)κ > 0, then we note that y > 0 is a solution of

y′(l) + ω(l)y(η(l))
(∫ η(l)

l1
θ(z, l1)dz

)κ j

∑
i=1

qi(l)Pκ(ηi(l)) ≤ 0.

Therefore, from [29], Equation (15) also has a positive solution, which is a contradiction.

Corollary 1. If

lim inf
l→∞

∫ l

η(l)
ω(z)

(∫ η(z)

l1
θ(z, l1)dz

)κ j

∑
i=1

qi(z)Pκ(ηi(z))dz >
1
e

, (16)

then Sx = ∅.

Proof. From Theorem 2 in [30], condition (16) guarantee that (15) is oscillatory.

In the following theorem, by finding a condition of Hille and Nehari type, we guaran-
tees that Sx = ∅.

Theorem 3. If

lim inf
l→∞

lk

a(l)ω(l)

∫ ∞

l

(
ω(z)

(
λ

2
η2(z)

z

)κ j

∑
i=1

qi(z)Pκ(ηi(z))

)
dz >

κκ

(κ + 1)κ+1 , (17)

for some λ ∈ (0, 1), then Sx = ∅.

Proof. Assume the contrary that ν ∈ Sx. As in the proof of Theorem 1, we obtain that (10)
holds for all l ≥ l1 ≥ l0. Now, we define

z :=
ω · a · (B′′)κ

(B′)κ .

Clearly, z(l) > 0 for all l ≥ l1 and

z′ =
(
ω · a · (B′′)κ)′

(B′)κ − κ
ω · a · (B′′)κ+1

(B′)κ+1 ,

which with (10) gives

z′(l) ≤ −ω(l)
Bκ(η(l))
(B′(l))κ

j

∑
i=1

qi(l)Pκ(ηi(l))−
κ

a
1
κ (l)ω

1
κ (l)

z
κ+1

κ (l). (18)
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Using the monotonic properties of the derivatives of B′, we obtain, from the mean value
theorem that

B′′(η(l)) ≤ B
′(η(l))−B′(l1)

η(l)− l1
, (19)

and

B′′(η(l)) ≥ B
′(l)−B′(η(l))

l − η(l)
. (20)

From (19), there exists a l2 ≥ l1 such that

B′(η(l))
B′′(η(l)) ≥

B′(η(l))−B′(l1)
B′′(η(l)) ≥ η(l)− l1 ≥ λ0η(l), (21)

for all λ0 ∈ (0, 1). From (20) and (21), we obtain

B′(l)
B′(η(l)) ≤ (l − η(l))

B′′(η(l))
B′(η(l)) + 1

≤ l − η(l)
λ0η(l)

+ 1

≤ l
λ0η(l)

. (22)

Using Lemma 1 with φ = B and m = 2, we obtain that B(l) ≥ λ1
2 lB′(l) for all λ1 ∈ (0, 1),

which with (22) implies

B(η(l))
B′(l) =

B′(η(l))
B′(l)

B(η(l))
B′(η(l)) ≥

λ

2
η2(l)

l
,

for all λ ∈ (0, 1). Therefore, from (18), we arrive at

z′(l) ≤ −ω(l)
(

λ

2
η2(l)

l

)κ j

∑
i=1

qi(l)Pκ(ηi(l))−
κ

a
1
κ (l)ω

1
κ (l)

z
κ+1

κ (l) (23)

≤ 0.

This implies that
1
κ

z′

z
κ+1

κ
< − 1

a
1
κ ·ω 1

κ

,

and so
d
dl

(
1

z
1
κ

)
= −1

κ

z′

z κ+1
κ

>
1

a
1
κ ·ω 1

κ

.

Integrating this inequality, we find

z(l)θκ(l, l1) < 1. (24)

Then, z→ 0 as l → ∞. In addition, we define

Ω := lim inf
l→∞

lκz(l)
a(l)ω(l)

> 0.

Then, for any ε > 0, there is a l2 ≥ l1 such that

lκz(l)
a(l)ω(l)

≥ Ω− ε, (25)
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for all l ≥ l2. By integrating (23) from l to ∞, we conclude that

−z(l) ≤ −
∫ ∞

l

(
ω(z)

(
λ

2
η2(z)

z

)κ j

∑
i=1

qi(z)Pκ(ηi(z))

)
dz

−
∫ ∞

l

κ

a
1
κ (z)ω

1
κ (z)

z
κ+1

κ (z)dz,

and so

lk

a(l)ω(l)

∫ ∞

l

(
ω(z)

(
λ

2
η2(z)

z

)κ j

∑
i=1

qi(z)Pκ(ηi(z))

)
dz

≤ lkz(l)
a(l)ω(l)

− lk

a(l)ω(l)

∫ ∞

l

κa(z)ω(z)

zκ+1

(
zκz(z)

a(z)ω(z)

) κ+1
κ

dz.

Using (25) and the fact that (a(l)ω(l))′ > 0, we arrive at

lk

a(l)ω(l)

∫ ∞

l

(
ω(z)

(
λ

2
η2(z)

z

)κ j

∑
i=1

qi(z)Pκ(ηi(z))

)
dz

≤ lkz(l)
a(l)ω(l)

− lk

a(l)ω(l)
(Ω− ε)

κ+1
κ

∫ ∞

l

κa(z)ω(z)

zκ+1 dz,

≤ lkz(l)
a(l)ω(l)

− lk(Ω− ε)
κ+1

κ

∫ ∞

l

κ

zκ+1 dz,

≤ lkz(l)
a(l)ω(l)

− (Ω− ε)
κ+1

κ .

Taking lim infl→∞, we obtain

lim inf
l→∞

lk

a(l)ω(l)

∫ ∞

l

(
ω(z)

(
λ

2
η2(z)

z

)κ j

∑
i=1

qi(z)Pκ(ηi(z))

)
dz ≤ Ω−Ω

κ+1
κ

Using the inequality

Bψ− Aψ
κ+1

κ ≤ κκ

(κ + 1)κ+1
Bκ+1

Aκ
,

with A = 1, B = 1, and ψ = Ω, we obtain

lim inf
l→∞

lk

a(l)ω(z)

∫ ∞

l

(
ω(z)

(
λ

2
η2(z)

z

)κ j

∑
i=1

qi(z)Pκ(ηi(z))

)
dz ≤ κκ

(κ + 1)κ+1 .

which contradicts (17).

Example 1. Consider the DDE

d
dl

(
1
l

d2

dl2B(l)
)
+

1
l2

d2

dl2B(l) +
q0

l4 ν(β l) = 0, (26)

where l > 1, B(l) = v(l) + 1
2 v(α l), q0 > 0 and α, β ∈ (0, 1). It is easy to verify that µ{m} = αml,

for m = 1, 2, . . . , and

P0 =
(n−1)/2

∑
m=0

α8m+4
(

1
2

)2m+1
.
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By choosing ρ(l) = l2 and λ = 1/2, condition (8) reduces to

q0 >
1
P0β4 . (27)

Moreover, conditions (16) and (17) reduce to

q0 >
1

2P0β2 , (28)

and
q0 >

2
eP0β2 ln 1

β

, (29)

respectively. Using the results in this section, any of conditions (27)–(29) guarantee that Sx = ∅.

Remark 1. Consider the special case of (26) when α = 0.9. Figure 1 shows the lower bounds of the
values of parameter q0 for conditions (27)–(29). We note that these conditions are different from
each other, and one of them cannot include the other along β ∈ (0, 1).

Figure 1. The minimum values of q0 for which conditions (27)–(29) are satisfied.

2.2. Asymptotic Behavior

Theorem 4. Let ν be an eventually positive solution of (1) and B′(l) < 0. If

∫ ∞

l0

∫ ∞

υ

(
1

ω(u)a(u)

∫ ∞

u
ω(z)

j

∑
i=1

qi(z)dz

)1/κ

dudυ = ∞, (30)

then ν converges to zero.

Proof. Suppose that ν is an eventually positive solution of (1) and B′(l) < 0. Now, since B
is positive and decreasing, we obtain that liml→∞ B(l) = δ ≥ 0.

Assume that δ > 0. Then, for ε > 0, there is l1 ≥ l0 such that δ < B(l) < δ + ε, for all
l ≥ l1. Taking ε < (δ− δc0)/c0. Hence, we have

ν = B − c0[ν ◦ µ] > δ− c0[B ◦ µ] > δ− c0(δ + ε)

=
δ− c0(δ + ε)

δ + ε
(δ + ε)

> δ0B, (31)
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where δ0 = δ−c0(δ+ε)
δ+ε > 0. From (1) and (31), we obtain

(
ω · a ·

(
B′′
)κ
)′
≤ −δκ

0 ω ·
j

∑
i=1

qi · [Bκ ◦ ηi].

Integrating this inequality from l to ∞, we obtain

ω(l)a(l)
(
B′′(l)

)κ
> δκ

0

∫ ∞

l
ω(z)

j

∑
i=1

qi(z)Bκ(ηi(z))dz

> δκ
0 δκ

∫ ∞

l
ω(z)

j

∑
i=1

qi(z)dz,

and

B′′(l) > δ0δ

(
1

ω(l)a(l)

∫ ∞

l
ω(z)

j

∑
i=1

qi(z)dz

)1/κ

. (32)

Integrating (32) from l to ∞ and integrating the resulting inequality from l1 to ∞, we obtain

B′(l)− lim
l→∞
B′(l) < −δ0δ

∫ ∞

l

(
1

ω(u)a(u)

∫ ∞

u
ω(z)

j

∑
i=1

qi(z)dz

)1/κ

du. (33)

From Lemma 2, we have B′′(l) > 0 for l ≥ l1. Since B′ is a negative increasing function,
we find that liml→∞ B′(l) = −L2 < ∞. Hence, (33) becomes

B′(l) < −δ0δ
∫ ∞

l

(
1

ω(u)a(u)

∫ ∞

u
ω(z)

j

∑
i=1

qi(z)dz

)1/κ

du.

Therefore,

B(l1) > δ0δ
∫ ∞

l1

∫ ∞

υ

(
1

ω(u)a(u)

∫ ∞

u
ω(z)

j

∑
i=1

qi(z)dz

)1/κ

dudυ,

which contradicts (30). This implies liml→∞ B(l) = 0, and so liml→∞ v(l) = 0.

Theorem 5. If condition (30) and one of conditions (8), (16), or (17) are satisfied, then Equation (1)
is almost oscillatory.

Proof. Assume that ν is an eventually positive solution of (1) on [l0, ∞). It follows from
Lemma 2 that B(l) > 0 or B(l) < 0, for l ≥ l1. However, any of conditions (8), (16), or (17)
guarantee that Sx = ∅, and thus the possibility of B(l) > 0 is ruled out. On the other hand,
condition (30) ensures that every eventually positive solution of (1) converges to zero.

3. Conclusions

Our interest in this work is to study the asymptotic behavior of solutions of third-order
differential equations that include a middle term and several delays. The study of odd-
order differential equations did not obtain the same attention as the even-order differential
equations. This is due to the many analytical difficulties and the many possibilities of
derivatives of solutions.

After classifying the positive solutions of the studied equation, we obtained some rela-
tionships that link the derivatives of these solutions. Then, we employed these relationships
to obtain an iterative relationship between the solution and its corresponding function.
Using this relationship, we obtained different forms of criteria that ensure that there are
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no solutions in class Q. Finally, we set new conditions that ensure that all non-oscillatory
solutions to Equation (1) converge to zero.

To find criteria that ensure the oscillation of all solutions of the studied equation, we
need a criterion that excludes the so-called Kenser solutions, which are those that have a
corresponding function whose sign differs from the sign of its first derivative. It would be
interesting to find criteria that ensure that all solutions of Equation (1) oscillate. In addition,
it is also interesting to obtain new oscillation criteria for the studied differential equation in
the noncanonical case, that is, when∫ ∞

l0

1
a1/κ(r)

exp
(
−1

κ

∫ ∞

l0

h(z)
a(z)

dz
)

dr < ∞.
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