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Abstract: A vibration analysis of a flexible follower in an oscillating follower cam system undergoing
a rise-dwell-fall-dwell (RDFD) motion is performed. Owing to the time-dependent boundary effect
caused by considering simultaneously the axial and the lateral displacements of the follower, two
geometric constraints are formulated and added to Hamilton’s principle to establish the vibration
equation of the motion of the follower. The coupled axial and lateral vibration of the flexible follower
has been studied for the first time. The fast Fourier transform (FFT) spectrum generated from the time
history is used for parametric studies. The numerical results of the present study show some new
findings. The major spectral peaks for the lateral follower response locate at the low frequencies of
1 Ω, 3 Ω, 5 Ω, and 7 Ω and the high frequency near the fundamental natural frequency where Ω is the
cam speed. The largest peak locates mostly at the frequency of 3 Ω. For the ascending and descending
motions of the follower RDFD motion, three types of cam profiles are designed. Important new
results are found: although the three cam profiles nearly overlap, the vibration results of the follower
are quite different. By using a modified sinusoidal acceleration motion, the magnitude of the main
lateral peak at low frequencies is minimized. The lateral peak amplitude near the fundamental
natural frequency of the follower is the smallest when the cycloid displacement motion is adopted.

Keywords: vibration; flexible follower; rise-dwell-fall-dwell; time-dependent boundary; Hamil-
ton’s principle

MSC: 37N30; 70G75; 70H25; 74H45; 74K10; 93A30

1. Introduction

Much work has been reported in cam mechanism research. In [1], the kinematics,
dynamics, and design of the cam mechanism are presented. Osman et al. [2] considered
the effect of clearance. The governing equations were established, taking into account
the changes in displacement and velocity. The results showed that the bearing forces had
an upper limit. Saka et al. [3] studied the effect of torsional vibrations on the camshaft’s
mechanisms. Thanks to the reciprocating followers, the variable torque would make tor-
sional vibrations on the camshaft. It was indicated that the torsional vibrations can affect
the follower motion and the contact force. Yilmaz et al. [4] investigated the vibrations of
a follower in the longitudinal direction. The follower with a constant cross section was
considered. The partial differential equation was established by employing the Bernoulli
method. The effect of internal damping was observed after the fourth eigen-frequency.
Cveticanin [5] analyzed the motion stability of the driven cam system. Camshaft and
follower flexibility were taken into account. The system-damping and nonlinear charac-
teristics were also considered. The two-D.O.F. system was used to model the mechanism,
including the system-damping and nonlinear characteristics. The stable conditions of the
follower motion were analytically determined. Chang et al. [6] investigated the vibration
of the follower of cam mechanisms for different cam profiles. A Rayleigh beam was used
to model the flexible follower. The lateral deflection is expanded using the eigen-functions
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of a simply supported beam. The influence of parameters, including follower length, the
radius of the cross section, and the total rise, was studied.

Sundar et al. [7] used a single-DOF system to model a rotating cam follower to study
the contact dynamics. Point contact and line contact were considered to calculate the
contact stiffness by using Hertzian contact theory. Hejma et al. [8] studied the construction
of a cam mechanism. A coil spring was applied to press a flat-faced follower against a radial
disk cam. A new cam profile was proposed with three known lifting functions. Yousuf [9]
analyzed a roller follower and a polydyne cam with different cam speeds. The influence of
the clearance of the follower guide on chaos was considered. Then Yousuf [10] modeled a
spherical cam mechanism to study the nonlinear dynamics. The effect of parameters such
as follower guide size and cam angular velocity was investigated. The follower aperiodic
motion has also been discussed.

Yousuf [11] studied the effect of the internal distance of the guide rail from the in-
terior, the constant rotational speed of the cam, and the offset of the follower on the
chaos. Chang et al. [12] carried out theoretical research and experimental verification on
the improved design of the assembled conjugate disk cam to achieve complete rotation
balance. Based on the proposed theoretical study and experimental verification, the pro-
posed modified design has been proven to be feasible and effective to improve the dynamic
performance of the conjugate cam mechanism with oscillating roller followers. Wang
and Wang [13] developed a novel surface-based vibration isolation mechanism for the
parametric design of stiffness characteristics, which consisted of double links, coil springs,
roller cam followers, and curved surfaces. This design approach was used to isolate severe
vibrations. An experimental platform was also built, and a vibration test was carried out to
verify the vibration isolation performance. Many researchers have performed the dynamic
analysis of beam systems with the effects of time-dependent boundary [14–20]. Fung [21]
analyzed the behavior of a slider-crank mechanism. The time-dependent boundary effects
were considered in the modeling of the flexible linkage. For the vibration analysis of the
quick-return mechanism, time-dependent boundary effects were also considered in the
flexible link modeling [22,23]. Lowe et al. [24] investigated propagating waves generated
by time-dependent traction boundary conditions in elastic structural elements. They re-
ported solutions to generalized models of this important class of problems through the
well-established Mindlin-Goodman method and its two successors. Chai et al. [25] studied
the aerothermoelastic properties of composite laminates with time-dependent boundary
conditions. The results showed that both the displacement feedback control and the linear
quadratic Gaussian method can suppress the vibration. They [26] also studied the non-
linear vibration of composite laminates with time-dependent boundary conditions and
base excitations. The results contributed to the nonlinear dynamic analysis and design of
the studied panels. Chai et al. [27] investigated the aerothermoelastic flutter behavior of
nonlinear composite laminates with time-dependent boundary conditions in supersonic
airflow and studied the active flutter and aerothermal postbuckling suppression for the
studied panels. It was shown that the developed linear quadratic regulator/extended
Kalman filter controller was more effective in the flutter and postbuckling control of the
studied panels.

Horssen et al. [28] showed how to use characteristic coordinates to solve initial bound-
ary value problems for wave equations involving Robin-type boundary conditions with
time-dependent coefficients. Akbari et al. [29] proposed a comprehensive analytical tech-
nique to evaluate the non-Fourier thermal behavior of 3D hollow spheres under arbitrarily
chosen space- and time-dependent boundary conditions. A quantitative analysis, including
the profiles of the time-dependent temperature and 3D distributions of temperature at dif-
ferent time frames, has been performed. Belekar et al. [30] presented an analytical solution
for the temperature distribution in a stationary wet granular mixture in a heated cylindrical
vessel, a typical geometry for an industrial filter-dryer. It provided useful predictions of
the wall heat flux that was required as an input to zero-dimensional heat and mass transfer
models to accurately predict the heating and drying time.
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To the best of the author’s knowledge, the time-dependent boundary effect caused by
the axial and lateral displacements of the follower has not been considered in the vibration
analysis modeling of the oscillating roller follower. In this study, a dynamic analysis of a
cam mechanism with an oscillating roller follower is performed. One end of the follower
is connected with the roller rolling along the cam guide rail, and the other end of the
follower rotates around the fixed pivot. The contact point between the roller and the cam is
a time-dependent boundary condition of the follower. The axial and lateral deflections are
simultaneously established for the vibration analysis of the flexible follower. In traditional
research, the contact point between the roller and the cam can be calculated by using
kinematics. To calculate the contact position, two time-dependent constraint equations
are applied to the derivation of the motion equations, utilizing Hamilton’s principle. The
author [6] has so far modeled the flexible follower with only lateral deflection, so the contact
position can be determined using only kinematic analysis. In this study, the assumed modes
are employed to establish the deflections. By applying the Runge–Kutta method to solve
the system equations of motion, the follower deflections can be obtained. This results in
the time history and FFT spectrum of the axial and lateral vibration response. The axial
and lateral vibration analysis of the follower for three kinds of rise-dwell-fall-dwell motion
is performed. The effects of system parameters such as the base circle radius of the cam,
the rotational speed of the cam, the length of the follower, the radius of the cross section of
the follower, the total rise of the follower, and the stiffness value of the torsion spring on
vibration behavior are also studied.

The novelty and contributions of this paper are as follows:

(1) The best novelty of the work is that the vibration modeling of an oscillating roller
follower that factors in the time-dependent boundary effect caused by the axial and
lateral displacements of follower has been proposed for the first time.

(2) The proposed method combining Hamilton’s principle with Lagrangian multipliers,
the assumed mode method, and the simplification of a differential-algebraic equation
can effectively solve the follower vibration problem under consideration of time-
dependent boundary conditions.

(3) The axial and lateral vibration spectra of the follower for the three kinds of rise-dwell-
fall-dwell motion, including the motion of cycloid displacement, modified sinusoidal
acceleration, and modified trapezoidal acceleration, are obtained and discussed.

2. Derivation of System Equations of Motion

Figures 1 and 2 show the schematic diagram of the oscillating roller-follower cam
system. One end of the follower is connected with a roller rolling in the cam groove, and the
other end of the follower is provided with a preloaded torsion spring and rotates around
a fixed pivot (O2). Rayleigh beam theory is used to model the follower. If the contact (C)
between the roller and the cam is smooth, friction will be negligible. Next, the parameters
in Figures 1 and 2 are introduced. d is the distance from the follower-fixed pivot to the
center of the cam rotation (O1), l is the follower length, rb is the cam radius of the base
circle, rr is the radius of the roller, ks is the stiffness of the torsion spring, E is the follower’s
endpoint, P is any point of the follower, D is the output node, θ is the cam rotation angle,
ϕo is the initial follower angle, and ϕ is the follower angular displacement. O1 − x1y1 is
the rotating coordinate system fixed on the cam. A is a reference point of the cam profile
and located on the O1 − x1 axis, O1 − XY is the fixed coordinate system, and O2 − xy is
a rotating coordinate system fixed on the follower. u is the axial displacement along the
x-axis, and v is the lateral displacement along the y-axis. Ω is the angular velocity of the
cam, and φ = ϕ(Ωt) + ϕo.
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Figure 1. Schematic diagram of the oscillating roller-follower cam system.

Figure 2. Deformation diagram of the cam system.

Start by building the cam profile by using three different movements. Then using
the derived time-dependent constraint equation, the work done by the constraint force is
derived. The kinetic and strain energies of the system are formulated. The assumed mode
method is applied to expand the follower displacements in the axial and lateral directions.
According to Hamilton’s principle, the equations of the motion of the system can be derived
by variation equations.

2.1. Establishment of the Cam Profile

Figure 1 shows the schematic diagram of the oscillating roller-follower cam system.
The angular displacement of the follower is a function of the cam rotation angle θ, denoted
as ϕ(θ). ϕ(θ) = 0 at θ = 0. A vibration analysis of a follower with three kinds of the
rise-dwell-fall-dwell motion (RDFD motion) of the oscillating follower is carried out, as
shown in Figure 3. For the rise and fall cycles, three motions, such as the motion of cycloid
displacement (CD), modified sinusoidal acceleration (MSA), and modified trapezoidal
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acceleration (MTA), are used to design the cam profile. The three motions that express the
ascending function ϕ(θ) are described as follows [1]:

Figure 3. Three motions of the rise-dwell-fall-dwell motion of the oscillating follower.

1. CD:

0 ≤ θ ≤ β: ϕ(θ) = ϕT

(
θ

β
− 1

2π
sin(

2πθ

β
)

)
(1)

2. MSA:

0 ≤ θ ≤ β

8
: ϕ(θ) = ϕT

(
π

4 + π

θ

β
− π

4(4 + π)
sin(

4πθ

β
)

)

β

8
< θ ≤ 7β

8
: ϕ(θ) = ϕT

(
2

4 + π
+

π

4 + π

θ

β
− 9

4(4 + π)
cos(

4πθ

3β
− π

6
)

)
(2)

7β

8
< θ ≤ β: ϕ(θ) = ϕT

(
4

4 + π
+

π

4 + π

θ

β
− 9

4(4 + π)
sin(

4πθ

β
)

)
3. MTA:

0 ≤ θ ≤ β

8
: ϕ(θ) = ϕT

(
0.38898448

θ

β
− 0.0309544 sin(

4πθ

β
)

)

β

8
< θ ≤ 3β

8
: ϕ(θ) = ϕT

(
2.44406

(
θ

β

)2
− 0.22203097

θ

β
+ 0.00723407

)
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3β

8
< θ ≤ β

2
: ϕ(θ) = ϕT

(
1.6110154

θ

β
− 0.0309533 sin(

4πθ

β
− π)− 0.3055077

)
(3)

β

2
< θ ≤ 5β

8
: ϕ(θ) = ϕT

(
1.6110154

θ

β
+ 0.0309544 sin(

4πθ

β
)− 0.3055077

)

5β

8
< θ ≤ 7β

8
: ϕ(θ) = ϕT

(
−2.44406184

(
θ

β

)2
+ 4.6660917

θ

β
− 1.2292648

)

7β

8
< θ ≤ β: ϕ(θ) = ϕT

(
0.6110154 + 0.38898448

θ

β
+ 0.0309544 sin(

4πθ

β
− π)

)
In Equations (1)–(3), β is the rising cycle, which is set as π

2 in this paper, and ϕT
is the total rise range. The ascending function is suitable for descending, with minor
modifications. To convert an ascending function to a descending function, simply subtract
the ascending function ϕ(θ) from the largest ascending ϕT . The descending cycle is also set
to π

2 .
By using envelope theory [1], the cam profile can be determined. The cam contour

coordinates are indicated as (x1C, y1C) and can be derived as follows (see Figure 1):

x1C = d cos θ − l cos α− rr√
1+( P

Q )
2 ,

y1C = d sin θ − l sin α + (x1C − d cos θ + l cos α) P
Q

(4)

where
P = d sin θ − l(1− ϕ′(θ)) sin α,
Q = d cos θ − l(1− ϕ′(θ)) cos α,
α = θ − ϕ(θ)− ϕ0

(5)

The roller center coordinate is indicated as (x1E, y1E) and can be derived as follows:

x1E = d cos θ − l cos α,
y1E = d sin θ − l sin α

(6)

From the observation in Figure 1, it can be seen that the follower’s initial position
before the start of the rise is ϕo, and the derivation is as follows:

ϕo = cos−1 d2 + l2 − (rb + rr)
2

2d l
(7)

2.2. The Constraints of the Time-Dependent Boundary

Figure 2 shows the deformation diagram of the cam system. The angular velocity of
the cam is constant and is given as Ω. O1 − x1y1 is the rotating coordinate system fixed on
the cam. O1 − XY is the fixed coordinate system, and the corresponding unit coordinate
vector is given as {I, J}T . The point E′ is the deformed follower’s endpoint, and the point
C is the contact point between the roller and the cam. The points E′ and C expressed in the
fixed frame are given as follows:

XE′ = x1E′ cos Ωt + y1E′ sin Ωt,
YE′ = −x1E′ sin Ωt + y1E′ cos Ωt,
XC = x1C cos Ωt + y1C sin Ωt,
YC = −x1C sin Ωt + y1C cos Ωt

(8)
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Figure 2 shows the deformation diagram of the cam system. O2 − xy is a rotating
coordinate system: its unit coordinate vector is {i, j}T , and its x-axis is coincident with the
follower’s undeformed centerline. After the deformation of the follower, the follower’s
endpoint E moves to the position E′ by axial displacement uE along the x-axis and lateral
displacement vE along the y-axis. It is the time-dependent boundary at one end of the
follower. The deformed position vector of E relative to the origin O1 can be represented
as follows:

RE′ = dI + (l + uE)i + vEj
= [d− (l + uE) cos φ− vE sin φ]I
+[(l + uE) sin φ− vE cos φ]J

(9)

where φ = ϕ(Ωt) + ϕo is the rise angle of the follower at time t.
By combining Equations (8) and (9), the two geometric constraints along the X and Y

axes can be obtained, as follows:

Φ1 = d− (l + uE) cos φ− vE sin φ− XE′ = 0 (10)

Φ2 = (l + uE) sin φ− vE cos φ−YE′ = 0 (11)

In Equations (10) and (11), φ(Ωt), uE, and vE simultaneously occur. This can be
interpreted as the coupling of rigid body rotation and flexible vibration under the time-
dependent boundaries.

2.3. The Strain Energy, Potential Energy, and Kinetic Energy
2.3.1. The Strain Energy

After the follower is deformed, any point P of the follower moves to position P′ with
axial displacement up along the x-axis and lateral displacement vp along the y-axis, as
shown in Figure 2. By ignoring higher-order terms when applying Lagrangian strain, the
follower strain can be derived, as follows:

εxx =
∂ up
∂ x − y ∂2vp

∂ x2 + 1
2 [(

∂ up
∂ x − y ∂2vp

∂ x2 )
2
+ (

∂ vp
∂ x )

2
]

≈ ∂ up
∂ x − y ∂2vp

∂ x2 ,

εyy = 1
2 (

∂ vp
∂ x )

2
≈ 0,

εxy = 1
2 [

∂ vp
∂ x −

∂ vp
∂ x −

∂ vp
∂ x (

∂ up
∂ x − y ∂2vp

∂ x2 )] ≈ 0

(12)

where ε is the strain at the point P of the follower.
By using Hooke’s law, the follower strain energy is

Urod = 1
2
t

V
E (

∂ up
∂ x − y ∂2vp

∂ x2 )
2

dV

= 1
2 [E A (

∂ up
∂ x )

2
+ E I (

∂2vp
∂ x2 )

2
]dx

(13)

where E, A, and I are the material elasticity modulus, the cross-sectional area, and moment
of inertia of the cross-sectional area of the follower, respectively. Additionally, the cross

section of the follower is designated as a circle, so A = π r f
2 and I =

π r f
4

4 , where r f is the
radius of the circular cross section of the follower.

Given the deformation of the torsion spring, the corresponding strain energy is
given as

Us =
1
2

ks(φ− ϕse)
2 (14)

where ks is the stiffness of the torsion spring, φ = ϕ(Ωt) + ϕo, and ϕse = ϕo − ϕp. Addi-
tionally, ϕse is the static equilibrium angle of the torsion spring, and ϕp is the preload angle
of the torsion spring.
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2.3.2. The Potential Energy

The position vector of the position P′ shown in Figure 2 is

RP′ = (xp + up − yp
∂ vp

∂ x
) i + (yp + vp) j (15)

Although the effect in this study may be small, the gravitational potential energy V,
including the rod component Vrod and the roller component Vroller, is derived as follows:

V = Vrod + Vroller
= 1

2
t

V
RP′ · J ρ g dV + RE′ · J mr g

=
∫ l

0 [(xp + up) sin φ− vp cos φ] ρ gAdx + [(l + uE) sin ϕ− vE cos ϕ] mr g

(16)

where ρ is the mass density, g is gravitational acceleration, and mr is the roller’s mass.

2.3.3. The Kinetic Energy

The velocity at position P′ can be derived by taking the derivative of position vector
RP′ with respect to time t, as follows:

.
RP′ = [

.
up − yp

∂
.
vp

∂ x
+

.
φ (yp + vp)]i + [

.
vp −

.
φ (xp + up − yp

∂ vp

∂ x
)]j (17)

By integrating the following, the kinetic energy of a follower rod is

Trod = 1
2
t

V
ρ
∥∥∥ .

RP′
∥∥∥2

dV

= 1
2

∫ l
0{ρ A [

.
up

2 +
.
φ

2
vp

2 + 2
.
φ

.
up vp +

.
vp

2 +
.
φ

2
(xp + up)

2

−2
.
φ

.
vp (xp + up)] + ρ I [( ∂

.
vp

∂ x )
2
+

.
φ

2
+

.
φ

2
(

∂ vp
∂ x )

2
− 2

.
φ

∂
.
vp

∂ x ]

}
dx

(18)

The translational energy and rotational energy of the roller are as below:

Troller = 1
2 mr

∥∥∥ .
RE′
∥∥∥2

+ 1
2 Jr

.
θ

2
r

= 1
2 mr

{
(

.
uE +

.
φ vE)

2
+ [

.
φ (l + uE)−

.
vE]

2
}

+ 1
2

Jr
r2

r
[(

.
XE′ −

.
XC)

2
+ (

.
YE′ −

.
YC)

2
]

(19)

where Jr is the roller’s mass polar moment of inertia and θr is the roller’s rotation angle.

2.4. Assumed Mode Method

The follower rotates about a fixed pivot. To satisfy the hinged boundary, the following
assumed mode method [31] is applied to expand the axial and lateral displacements at the
point P:

up(xp, t) = au1(t)
xp

l
+

N

∑
i=2

aui(t) sin
(i− 1) π xp

l
(20)

vp(xp, t) = av1(t)
xp

l
+

N

∑
i=2

avi(t) sin
(i− 1) π xp

l
(21)

where xp
l is the first mode satisfying the displacement of the follower endpoint connected

to the roller. The other modes use sin (i−1) π xp
l , i = 2, 3, · · · . aui(t) and avi(t) are the

corresponding amplitudes of axial and lateral displacements up and vp.
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2.5. Hamilton’s Principle

By applying the variational principle (Hamilton’s principle) to the follower system
under study, the following equation is obtained:∫ t2

t1

δ[(Trod + Troller)− (Urod + Us)− (Vrod + Vroller) + λ1Φ1 + λ2Φ2 ]dt = 0 (22)

In this formula, the kinetic energy, strain energy, and potential energy are used, and
the virtual work caused by the time-dependent geometric constraints is also included by
applying the Lagrange multiplier.

By expanding the displacements in Equation (22) by using the assumed modes in
Equations (20) and (21), the system equation of motion in vector form is established below.

M
..
Q + N + ΦT

Q λ = F (23)

where M and Φ are the mass matrix and constraint vector, respectively, which are functions
of the generalized coordinate vector Q. The dynamic vector N is a function of Q and

.
Q.

The damping and Coriolis effects are present in this vector. The vector F on the right side
of the equation is caused by gravity.

The constraint vector Φ formed by the combination of Equations (10) and (11) is given
as

Φ = [Φ1 Φ2]
T = 0 (24)

The vector Q is shown below:

Q = [a1 a2 a3 · · · aN b1 b2 b3 · · · bN θ], (25)

By taking the time derivative of Equation (24) twice, the constraint acceleration equa-
tion is obtained as follows:

ΦQ
..
Q = −[(ΦQ

.
Q)Q + 2

∂ΦQ

∂ t
]

.
Q− ∂2Φ

∂ t2 ≡ ξ (26)

By combining Equations (23) and (26), the equation of motion of the system is[
M ΦT

Q
ΦQ 0

][ ..
Q
λ

]
=

[
F−N

ξ

]
(27)

The follower vibration of the studied cam system can be analyzed by solving the above
differential-algebraic equation.

3. Simplification of Differential-Algebraic Equation

The vector Q is divided into the following by applying the partitioning method [32]:

Q = [q1 q2] (28)

where
q1 = [a1 a2 · · · aN b1 b2 · · · bN−1], (29)

q2 = [bN θ] (30)

Substituting the decomposition of Equation (28) into Equation (27), the equation of
motion for the system is expressed as

Mpp ..
q1 + Mpq ..

q2 + ΦT
q1
λ = Fq1 −Nq1

Mqp ..
q1 + Mqq ..

q2 + ΦT
q2
λ = Fq1 −Nq2

Φp
..
q1 + Φq

..
q2 = ξ

(31)
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By simplifying Equation (31) by eliminating λ and
..
q2, the equation becomes

~
M(q1)

..
q1 +

~
N(q1,

.
q1) = 0 (32)

where
~

M = Mq1q1 −Mq1q2 Φ−1
q2

Φq1
−ΦT

q1
(Φ−1

q2
)(Mq2q1 −Mq2q2 Φ−1

q2
Φq1

),
~
N = [Nq1 − Fq1 −ΦT

q1
(Φ−1

q2
)

T
(Nq2 − Fq2)]

+[Mq1q2 Φ−1
q2
−ΦT

q1
(Φ−1

q2
)

TMq2q2 Φ−1
q2

] ξ

(33)

Let
B = [q1

.
q1]

T (34)

Equation (32) is re-expressed as

.
B =

[ .
q1

−
~

M
−1 ~

N

]
(35)

To study the vibration of the follower, the Runge–Kutta fourth-order method can be
used to solve Equation (35).

4. Numerical Results and Discussion

By using a numerical example of a follower cam system, the vibration of a flexible fol-
lower is studied. The follower’s rise-dwell-fall-dwell motion (RDFD motion) is considered,
as shown in Figure 3. Three motions, such as the motion of cycloid displacement (CD),
modified sinusoidal acceleration (MSA), and modified trapezoidal acceleration (MTA),
are used to design the cam profile for the ascending and descending cycles. The system
parameter data of the studied cam mechanism for numerical analysis are shown in Table 1.
The vibration responses in the lateral and axial direction at the output node D (0.55l from
O2) of the follower, as shown in Figure 1, are investigated.

Table 1. Data for the cam system parameters.

A 78.54 mm2 rb 66 mm

d 136 mm r f 5 mm

E 2.1× 108kg/mm · s2 rr 15 mm

g 9810 mm/s2 β π/2

I 490.87mm4 ρ 7.8× 10−6kg/mm3

Jr 5.625 kg ·mm2 Ω 320 rad/s

ks
1.44× 105kg ·

mm2/s2 ϕp π/90

l 98mm ϕT π/18

mr 0.05 kg

Zero initial conditions are used in this study. To verify the convergence of the assumed
mode method, four numbers of modes are employed. The cycloid displacement motion
used for the RDFD motion and the cam speed of 320 rad/s are considered. The time
responses of the follower output node in the lateral and axial directions are denoted as
vD and uD, respectively, as shown in Figures 4 and 5. The curves N = 2 and N = 3 have
obvious errors, and N = 4 and N = 5 nearly overlap. Because the results of the study almost
converge to N = 4, N = 4 is used for the following studies.
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Figure 4. The time responses of the follower output node D in the lateral direction where
Ω = 320 rad/s, using four mode numbers.

Figure 5. The time responses of the follower output node D in the axial direction where
Ω = 320 rad/s, using four mode numbers.
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The vibration of the follower using the cycloid displacement motion for the RDFD
motion at three cam speeds, specifically 280, 320, and 360 rad/s, is studied. The time
responses of the follower output node in the lateral and axial directions are shown in
Figures 6 and 7. The time history diagram indicates that the follower contains two parts:
one is the response of a large amplitude and a low frequency only in the ascending and
descending cycles, and the other is the response of a small amplitude and a high frequency
appearing in the whole cycle of the RDFD motion. The larger cam speed induces the larger
vibration response in lateral and axial directions, simultaneously. Especially the vibration
amplitude is more obvious in the ascending and descending cycles of the RDFD motion.

Figure 6. The time responses of the follower output node D in the lateral direction at three cam
speeds: 280, 320, and 360 rad/s.

Figure 7. The time responses of the follower output node D in the axial direction at three cam speeds:
280, 320, and 360 rad/s.
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Figures 8 and 9 establish the fast Fourier transform (FFT) spectrum of the follower
output node under the cycloid displacement motion with Ω = 320 rad/s, which determines
the cause of the high-frequency oscillation phenomenon. There are some spectral peaks at
some lower frequencies that are multiples of the cam rotation speed. This may be due to the
nonlinear effects. Additionally, some peaks occur at higher frequencies, near 41.5 Ω. To gain
an insight into the vibration spectrum of the follower output node, the values of the main
spectral peaks for the lateral and axial vibrations are presented, as can be found in Tables 2
and 3, respectively. Three RDFD motions with different cam profiles in the ascending and
descending cycles are investigated. They include the motions of cycloid displacement (CD),
modified sinusoidal acceleration (MSA), and modified trapezoidal acceleration (MTA).
Tables 2 and 3 show the peak amplitudes of the lateral and axial vibration spectra of the
follower output node D for the three RDFD motions with Ω = 320 rad/s, respectively.
For the lateral vibration, the peaks locate mainly at the frequencies of odd multiples of
cam speed Ω. The highest peak locates at the frequency of 3 Ω for all the three RDFD
motions. A small amplitude peak locates at the high frequency of 41.5 Ω (13,280 rad/s).
The natural frequencies of the simply supported follower are calculated, and the first three
are 13,331, 53,324, and 119,978 rad/s. High-frequency components may coincide with the
follower’s first natural frequency, creating a resonance condition. Although the follower
rod vibrates significantly only in the ascending and descending sections, it still maintains a
high-frequency vibration close to the fundamental natural frequency in the dwell section.
Additionally, from the time history in Figure 6, it is also seen that the follower still vibrates
with about the fundamental natural frequency during the dwell section. This means that
the vibrations in the dwell part are excited mainly thanks to the fundamental frequency.

Figure 8. The FFT spectrum of the follower output node D in the lateral direction where
Ω = 320 rad/s.
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Figure 9. The FFT spectrum of the follower output node D in the axial direction where Ω = 320 rad/s.

Table 2. The peak amplitude of the lateral vibration spectrum of the follower output node D for the
three RDFD motions where Ω = 320 rad/s.

The Peak Frequency
The Three RDFD * Motions (Peak Amplitude Unit: mm)

CD 1 MSA 2 MTA 3

1 Ω 3.733 × 10−3 3.704 × 10−3 3.719 × 10−3

3 Ω 8.194 × 10−3 7.553 × 10−3 7.905 × 10−3

5 Ω 6.442 × 10−3 4.596 × 10−3 5.728 × 10−3

7 Ω 1.782 × 10−3 4.589 × 10−4 1.300 × 10−3

41.5 Ω 1.769 × 10−3 2.749 × 10−3 2.205 × 10−3

* rise-dwell-fall-dwell motion, 1 cycloid displacement motion, 2 modified sinusoidal acceleration motion,
3 modified trapezoidal acceleration motion.

Table 3. The peak amplitudes of the axial vibration spectrum of the follower output node D for the
three RDFD motions where Ω = 320 rad/s.

The Peak Frequency
The Three RDFD Motions (Peak Amplitude Unit: mm)

CD 1 MSA 2 MTA 3

1 Ω 1.328 × 10−5 1.321 × 10−5 1.322 × 10−5

2 Ω 1.505 × 10−5 1.592 × 10−5 1.543 × 10−5

3 Ω 2.829 × 10−5 2.612 × 10−5 2.724 × 10−5

4 Ω 3.882 × 10−5 3.906 × 10−5 3.854 × 10−5

5 Ω 2.170 × 10−5 1.541 × 10−5 1.916 × 10−5

6Ω 4.413 × 10−5 3.813 × 10−5 4.020 × 10−5

1,2,3 The same abbreviations as those in Table 2.

In addition, the peak amplitude depends on the cam profile. For the study case in
Table 2, the peak amplitudes at frequencies 1 Ω, 3 Ω , 5 Ω, and 7 Ω are smaller when
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using the modified sinusoidal acceleration motion than when using the other motions.
The dominated peak is at the frequency of 3 Ω for the three kinds of motion. The peak
amplitude around the fundamental natural frequency using the cycloid displacement
motion is 1.769 × 10−3 mm and is smaller than those using the other motions. It is shown
that different ascending and descending motions will cause different vibrational results.
To reduce the lateral vibration of the follower, the selection of the cam profile from among
the three motions studied is a very important factor. If low-vibration amplitudes at low
frequencies (1 Ω, 3 Ω , 5 Ω, and 7 Ω) are the primary concern, the modified sinusoidal
acceleration motion is recommended. However, the corresponding vibration response of a
high frequency is the most severe. If vibrations during the dwell interval are of primary
concern, it is recommended to use the cycloid displacement motion to form the RDFD
motion. However, it results in the maximum low-frequency-vibration response. When the
modified trapezoidal acceleration motion is applied, all low- and high-frequency spectral
peaks are between those using the other two motions.

For axial vibration, the main peaks listed in Table 3 are at integer multiples of the
cam speed, but they are a small order of magnitude less than 10−4 mm. The largest peak
occurs at the frequency of 6 Ω when the cycloid displacement motion is considered, and
the magnitude is 4.413 × 10−5 mm. Therefore, in the following study, the table used to list
the peak amplitudes of the axial vibration spectrum is ignored. It is also seen from Figure 9
that the peak amplitude of the axial displacement near the fundamental frequency is less
than 10−5 mm. The first natural mode of the vibration of the follower is dominated by
the transverse mode, so the excited axial displacement near the fundamental frequency is
extremely small and can be ignored.

For the following parametric studies, consider a cam profile using cycloid displace-
ment motion. Table 4 presents the spectral peak amplitudes for the three cam speeds of
280, 320, and 360 rad/s. The main peaks are at the frequencies of 1 Ω, 3 Ω , 5 Ω, and
7 Ω and a high frequency around the fundamental frequency. The peak amplitude at the
frequency of 3 Ω is 1.039 × 10−2 mm at Ω = 360 rad/s, and it is larger than that at the
other two cam speeds. Vibration amplitude is significantly affected by cam speed. They are
larger in magnitude when higher cam rotation speeds are applied. For cam speeds of 280,
320, and 360 rad/s, the corresponding high frequencies are 47.0 Ω (13,160 rad/s), 41.5 Ω
(13,280 rad/s), and 37.0 Ω (13,320 rad/s). They are all near the fundamental frequency
13,331 rad/s. It is found that the peak amplitude at the high frequency is 1.175 × 10−2

mm at Ω = 360 rad/s, and it is larger than that at the other two cam speeds and even that
at the frequency of 3 Ω . When the cam rotation speed is high, the peak caused by the
fundamental natural frequency is very large. This may be due to the large centrifugal effect
when a high cam speed is applied. Therefore, the deformation of the follower at a high cam
rotation speed during the dwell interval cannot be ignored.

Table 4. The peak amplitude of the lateral vibration spectrum of the follower output node D at three
rotation speeds.

The Peak Frequency
Three Cam Rotation Speeds (rad/s) (Peak Amplitude Unit: mm)

Ω = 280 Ω = 320 Ω = 360

1 Ω 2.839 × 10−3 3.733 × 10−3 4.746 × 10−3

3 Ω 6.262 × 10−3 8.194 × 10−3 1.039 × 10−2

5 Ω 4.914 × 10−3 6.442 × 10−3 8.189 × 10−3

7 Ω 1.354 × 10−3 1.782 × 10−3 2.274 × 10−3

37.0 Ω - - 1.175 × 10−2

41.5 Ω - 1.769 × 10−3 -

47.0 Ω 1.060 × 10−3 - -
-: the response peak is very small.
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The effects of parameters such as the follower length, the follower cross-sectional
radius, the total follower rise, the cam base circle radius, and the torsion spring stiffness
value on vibration behavior are also investigated. Table 5 shows the peak amplitudes of
the lateral vibration spectrum of the follower output node under the cycloid displacement
motion where Ω = 320 rad/s using three rod lengths, specifically 88, 98, and 108 mm. The
peaks of l =108 mm are much higher than those of the other two cases. The main peak
amplitude occurring at the frequency of 3 Ω is 1.336× 10−2 mm for the case of l =108 mm.
It is found that the rod length significantly influences the main peak magnitude. This can
be explained by the fact that a longer follower makes the rod less stiff, resulting in a greater
response. For the 88, 98, and 108 mm rod lengths, the peak frequencies at a high frequency
are 51.0 Ω, 41.5 Ω, and 34.2 Ω, respectively, calculated as 16,320, 13,280, and 10,944 rad/s.
The fundamental natural frequencies of follower vibration are also calculated as 16,533,
13,331, and 10,976 rad/s for the three rod lengths of 88, 98, and 108 mm, respectively. The
high frequency is close to the fundamental natural frequency. For low vibration, a short
follower is recommended.

Table 5. The peak amplitude of the lateral vibration spectrum of the follower output node D where
Ω = 320 rad/s and with three follower rod lengths.

The Peak Frequency
Three Follower Rod Lengths (mm) (Peak Amplitude Unit: mm)

l = 88 l = 98 l = 108

1 Ω 2.169 × 10−3 3.733 × 10−3 6.104 × 10−3

3 Ω 4.788 × 10−3 8.194 × 10−3 1.336 × 10−2

5 Ω 3.753 × 10−3 6.442 × 10−3 1.055 × 10−2

7 Ω 1.031 × 10−3 1.782 × 10−3 2.938 × 10−3

34.2 Ω - - 3.127 × 10−3

41.5 Ω - 1.769 × 10−3 -

51.0 Ω 7.583 × 10−4 - -
-: the response peak is very small.

The response spectra of the three circular cross-sectional radii 4, 5, and 6 mm of the
follower are shown in Table 6. The peaks of r f = 4 mm are higher than those of the
other two cases. The dominated peak amplitude occurring at the frequency of 3 Ω is
1.281 × 10−2 mm for the case of r f = 4 mm. For the 4, 5, and 6 mm rod radii, the peak
frequencies at a high frequency are 33.3 Ω, 41.5 Ω, and 49.8 Ω, respectively, calculated
as 10,656, 13,280, and 15,936 rad/s. The corresponding fundamental natural frequencies
of follower vibration are also calculated as 10,665, 13,331, and 15,998 rad/s. It is seen
that the high frequency is close to the fundamental natural frequency. The radius of the
circular cross section of the follower significantly influences the main peak magnitude.
The smaller the follower’s cross-sectional radius, the greater the vibration response. This
is interpreted as follows: the smaller the follower’s cross-sectional radius, the lower the
follower’s stiffness. It recommended that the radius of the circular section of the follower
be large to reduce the vibration of the follower.
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Table 6. The peak amplitude of the lateral vibration spectrum of the follower output node D where
Ω = 320 rad/s and with three follower rod radii.

The Peak Frequency
Three Follower Rod Radii (mm) (Peak Amplitude Unit: mm)

rf = 4 rf = 5 rf = 6

1 Ω 5.753 × 10−3 3.733 × 10−3 2.610 × 10−3

3 Ω 1.281 × 10−2 8.194 × 10−3 5.686 × 10−3

5 Ω 1.015 × 10−2 6.442 × 10−3 4.456 × 10−3

7 Ω 2.837 × 10−3 1.782 × 10−3 1.227 × 10−3

33.3 Ω 8.055 × 10−3 - -

41.5 Ω - 1.769 × 10−3 -

49.8 Ω - - 6.525 × 10−4

-: the response peak is very small.

The three total ascents ϕT of π
24 , π

18 , and π
12 rad are also investigated. The results seen

from Table 7 show that the peaks of ϕT = π
12 rad are higher than those of the other two cases.

The dominated peak amplitude occurring at the frequency of 3 Ω is 1.229 × 10−2 mm for
the case of ϕT = π

12 rad. A larger total follower rise results in a larger follower vibration
response. The magnitude of the peak is also found to be almost proportional to the total
rise, e.g., π

24 : π
18 : π

12
∼=6.146× 10−3 : 8.194× 10−3 : 1.229×: 10−2 for the frequency of 3 Ω.

Table 7. The peak amplitude of the lateral vibration spectrum of the follower output node D where
Ω = 320 rad/s and with three total rises.

The Peak Frequency
Three Total Rises (rad) (Peak Amplitude Unit: mm)

ϕT = π
24 ϕT = π

18 ϕT = π
12

1 Ω 2.800 × 10−3 3.733 × 10−3 5.601 × 10−3

3 Ω 6.146 × 10−3 8.194 × 10−3 1.229 × 10−2

5 Ω 4.833 × 10−3 6.442 × 10−3 9.663 × 10−3

7 Ω 1.337 × 10−3 1.782 × 10−3 2.670 × 10−3

41.5 Ω 1.321 × 10−3 1.769 × 10−3 2.701 × 10−3

Three cam base circle radii are investigated. In Table 8, the peaks of rb = 60 mm
are a little higher than those of the other two cases. However, it can be seen that the peak
amplitude varies little with the cam base circle radius. The dominated peak amplitude
occurring at the frequency of 3 Ω is 8.202× 10−3 mm for the case of rb = 60 mm. The effect
of the cam base circle radius on follower vibration amplitude appears to be negligible. The
high frequency of 41.5 Ω (13,280 rad/s), the same as that in Table 2, nears the fundamental
natural frequency of 13,331 rad/s.
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Table 8. The peak amplitude of the lateral vibration spectrum of the follower output node D case
where Ω = 320 rad/s and with three cam base circle radii.

The Peak Frequency
Three Cam Base Circle Radii (mm) (Peak Amplitude Unit: mm)

rb = 60 rb = 66 rb = 72

1 Ω 3.733 × 10−3 3.733 × 10−3 3.733 × 10−3

3 Ω 8.202 × 10−3 8.194 × 10−3 8.192 × 10−3

5 Ω 6.448 × 10−3 6.442 × 10−3 6.441 × 10−3

7 Ω 1.783 × 10−3 1.782 × 10−3 1.782 × 10−3

41.5 Ω 1.823 × 10−3 1.769 × 10−3 1.756 × 10−3

Three values are used to discuss the effect of torsion spring stiffness. It can be seen
from Table 9 that the peaks of ks = 0 kg·mm2/s2 are higher than those of the other two cases.
The larger the stiffness coefficient of the torsion spring, the smaller the peak amplitude,
though the change is small. The dominated peak amplitude occurring at the frequency of
3 Ω is 8.215 × 10−3 mm for the case of ks = 0 kg·mm2/s2. The high frequency of 41.5 Ω
(13,280 rad/s), the same as that in Table 2, nears the fundamental natural frequency of
13,331 rad/s.

Table 9. The peak amplitude of the lateral vibration spectrum of the follower output node D where
Ω = 320 rad/s and with three torsion spring stiffness coefficients.

The Peak Frequency
Three Torsion Spring Coefficients (kg·mm2/s2) (Peak Amplitude Unit: mm)

ks = 0 ks = 1.44 × 105 ks = 1.44 × 106

1 Ω 3.818 × 10−3 3.733 × 10−3 3.971 × 10−3

3 Ω 8.215 × 10−3 8.194 × 10−3 8.010 × 10−3

5 Ω 6.448 × 10−3 6.442 × 10−3 6.390 × 10−3

7 Ω 1.782 × 10−3 1.782 × 10−3 1.774 × 10−3

41.5 Ω 1.788 × 10−3 1.769 × 10−3 1.617 × 10−3

5. Conclusions

Thanks to the time-dependent boundary effect caused by the axial and lateral dis-
placements of the follower, two geometric constraints are successfully formulated and
multiplied by Lagrangian multipliers to add to the variational principle, to establish the
vibration equation of the motion of the follower of the oscillating follower cam system. The
new findings of the present study are as follows:

(1) The coupled axial and lateral vibration of the continuous flexible follower has been
studied for the first time. The major spectral peaks for the lateral follower response
located at the low frequencies of 1 Ω, 3 Ω , 5 Ω, and 7 Ω and the high frequency near
the fundamental frequency. The dominated peak located at the frequency 3 Ω , except
that the cam rotated at a high speed. The axial follower response was very small
compared with the lateral response.

(2) The follower vibrations under three motion conditions, cycloid displacement mo-
tion, modified sinusoidal acceleration motion, and modified trapezoidal acceleration
motion, were studied. Important new results were found: while the curves for the
three kinds of motion nearly coincided, the vibrational outcomes of the follower
considerably varied. The magnitude of the main lateral peaks at low frequencies
was minimal by using the modified sinusoidal acceleration motion. When using the
cycloid displacement motion, the lateral peak amplitude around the fundamental
natural frequency of the follower was minimal.
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Though the convergence of the assumed mode method has been considered and
discussed, it is recommended that future work needs to verify and improve the results’
accuracy by setting up experiments and adding some other numerical methods.
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