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Abstract: This research aims to present a linear operator U;’, ‘,;’V f utilizing the g-Mittag—Leffler function.
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Janowski function. For the harmonic p-valent functions f class, we investigate the harmonic geometric
properties, such as coefficient estimates, convex linear combination, extreme points, and Hadamard
product. Finally, the closure property is derived using the subclass H 7 4(%, W, V) under the g-
Bernardi integral operator.
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1. Main Concepts of Quantum Calculus

Quantum calculus, often known as g-calculus (or g-analysis), is a method for studying
calculus that is similar to traditional calculus but focused on finding g-analogous conclu-
sions without the need for limits. The g-differential equations are generally defined on the
scale Ty, where T and g are the time and scale index, respectively. Euler and Jacobi devised
the fundamental formulae of g-calculus in the eighteenth century. Jackson ([1,2]) introduced
and developed the concepts of g-derivative and g-integral. Moreover, the geometries of
g-analysis were found in many studies presented on quantum groups. It has also been iden-
tified that there is a relationship between g-integral and g-derivative. With the expansion of
the g-calculus study, many relevant facts have also been explored, including the g-Gamma
and g-Beta functions, the g-Laplace transform, and the g-Mittag—Leffler function. The
theory of g-calculus operators has been recently applied in the areas of ordinary fractional
calculus, optimal control problems, finding solutions to the g-difference and g-integral
equations, and g-transform analysis (see [3,4]). Furthermore, certain classes of functions
that are analytic in U using fractional g-calculus operators were investigated by numerous
research (for example, see [5-12]).

This paper aims to further develop the theory of fractional g-calculus operators in geo-
metric function theory. Initially, this study provides some essential definitions and concepts
of g-calculus and symmetric g-calculus, which have been employed in this research.

This work begins with the basic concepts and, consequently, an in-depth analysis of
our proposed applications of the g-calculus. Throughout this paper, assume that 0 < g < 1.
The following definitions provide an introduction to the g-calculus operators for a complex-
valued function f:
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Let S(p) be the class of analytic and multivalent functions f in the open unit disc
U= {z € C: |z] < 1} with the normalized form:

f(z) =2 + i ajzj, (p € N). 1)
j=p+l

Definition 1. For 0 < g < 1, the g-number [x], is expressed by

(ke C)
[k]q :=
n—1 .
Y q (k =neN).
k=0
Definition 2 ([1]). The g-derivative operator D is given by

flqz) — f(2)
(9—1)z

The g-derivative of the function f in (1) is given by

D4f(2) = (z #0).

0,f(2) = [ply? 4 L [ilya? "
j=p+l

The q-factorial indicated by [j],! is defined by
(il = [j]qU—l]q...[Z]q[l]'ql i=123,...,
1 1 j=0,
so that

f'(z) := lim Qq{[p]qul + i [j],,ajzjl}

q—)17 j:p+l

oo
=pzrt+ ) ja]-z]_l.
j=p+1

The g-Gamma function is defined by
k+1

- R ~0 (8:)e
Ta(0) = (1-q)! le—qkw =(1-q Q(qg;q)oo'

where (0; k), the g-Pochhammer is given as

(0:K)g = (0)g(0+ D)gla+2)g - (g +k—1)g = <Qi‘7;"n (0 € Rk € N).

Obviously,
Iy(o+1) = [e],Tq(0) and Ty(1) = 1.

In the following section, we have introduced some concepts of harmonic p-valent
functions and the Mittag-Leffler function. Then, we have derived a number interesting
results regarding p-valent functions related to the operator ﬁ’;,j Z/” (z). Furthermore, this

paper demonstrates some of the geometric results of the operator £f,’, Z’” f(2).
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2. Harmonic Functions, Definitions and Motivation

In the complex domain D C U, if the values u and v are real harmonic, then the
continuous function f = u + iv is called the harmonic function in D. In any simply
connected domain D, the function f can be stated by

f=F+G, 2)

where both 7 and G are analytic functions in D. The function F is called analytic of f, and
G the conjugate-analytic (or co-analytic) of f. Clunie and Sheil-Small [13] discovered that
|F'(z)] > |G'(z)| is a necessary and sufficient condition for the harmonic functions (2) to
be locally multivalent and sense-preserving in D (also, see [14]).

Let H(p,j) be the family of harmonic multivalent functions f = F + G that are
orientation keeping the open unit disc U = {z : |z| < 1}. The analytic functions F and G
are defined by

F=z2'+ Y, ajzj and Q:Zdjzj
j=p+1 j=p

and

f=F+G=2"+ Y aZd+) dz, ©)
j=p+1 j=p

The family #(1,j) = H(j) of harmonic univalent functions is presented by Jahangiri
et al. [15] (also see [16-21]).

Furthermore, we consider the subclass H(p, j) of the family #(p, j) that consists of
functions f = F + G, where the functions F and G are defined as below:

=7 Tl ad 9@ =L (hi<n. @

j=p+1

Recently, many studies have emphasized the concept of p-valent harmonic functions
and their applications (for example, see [22-26]).

If the analytic functions f,h € H(p,j), then the function f is subordinate to the
function k, denoted by (f < h), if there exists a Schwarz function ¢ with

®(0) =0, [d(z)| <1, (zel),

such that
f(z) = h(D(z)).

In addition, we get the following equivalence if the function / is univalent in U:

f(z) < h(z) & f(0) = h(0) and f(U) C h(U).
We now mention the well-known Mittag-Leffler function E,(z) provided by Mittag—
Leffler [27], which is defined by

; U]+ T+ 1) (0,z€ C,R(¢) >0),

where R, I are the real part and the gamma function, respectively.
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Within chaotic, stochastic, and dynamic systems, partial differential equations, and sta-
tistical distributions, many considerations can be seen in applying this function. Wiman [28]
defined the Mittag-Leffler function with two parameters

Eou(z Z NCGETL (o,u,z€ C,R(c) > 0,R(u) > 0).

Shukla and Prajapati [29] provided the Mittag-Leffler function with three parameters
Eg:’;, (z) as follows:

0 ]
Egj];(z) =, ﬂz— (o,u,p,z€ C,R(0) >0,R(u) >0,R(p) >0),

where k € (0,1) UNand (p);; = Chs SO 1) is the generalized Pochhammer symbol.

The Mittag—Leffler function plays a vital role in solving fractional order differential and
integral equations. It has recently become a subject of rich interest in the field of fractional
calculus and its applications. Numerous research has been conducted on the theory of
the Mittag—Leffler function. For more review, Bansal and Prajapat [30] (also Srivastava
and Bansal [31]) investigated geometric properties of the Mittag-Leffler function E; (z).
In addition, many other researchers studied properties of the Mittag—Leffler function,
including starlikeness, convexity, and differential subordination (see [32-35]). In the fact,
the generalized Mittag-Leffler function E, ;(z) is still vastly used in geometric function
theory and a variety of applications (see [36]).

Hadi et al. [37] defined a generalized g-Mittag—Leffler function with three parameters
as below:

Zj
Eu(gz) =z + Z; I V+‘7] ik (c,u,p e C,R(e) >0,R(1) >0,R(p) >0). (5)

We note that if g — 17, we have the Mittag—Leffler function defined by Shukla and
Prajapati [29].

Motivated by the importance of studying the applications of quantum calculus and the
Mittag—Leffler function in the physical and mathematical sciences, we first present a new
linear operator Eg’, Z’V f,which is defined by the g-Mittag—Leffler function with harmonic
p-valent functions. Then, we use this operator to introduce a subclass of Janowski (p, 9)-
convex harmonic functions. For the harmonic p-valent functions f, we investigate some
harmonic geometric properties, including coefficient estimates, convex hulls, convex linear
combination, extreme point, and Hadamard product. Furthermore, we derive the closure
property under the g-Bernardi integral operator.

Now, we introduce the function Mg/}, (p,q;2z) € S(p) related to the g-Mittag—Leffler
function in (5) as follows:

To(o+p)zP~! 1
M (p, 2 J(gp, 2 _)
op(Pr;2) P ol 2) = 0
= Ty(o+pu)T(p+ jk)

=zI + .
j ;ﬂ Tg(oj+ I (o +K);j!

(6)

Z, (p>12z€l),

where o, 1,0 € C,R(0) > 0, R(i) > 0,R(p) >0, and (p)y; r(lf’;;])(]).
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From the function M% ,(p,q;z), we define a linear operator £y7" : S(p) — S(p)

as follows: .
LhT" f(z) = M (pq;2) * f(2)
= To+uTp+jk) )

=zl + —q,7).
];ﬂfq (j + )T (o + k)it

Wheng — 17,k =1,0 =0, and p = 1, then Ly7" f(z) = f(2).

Remark 1. If R(0) > max{0, R(k) — 1} and R (k) > 0, the following operators are obtained
1. Ifq— 17, wefind the operator L"" f(z) investigated by Xu and Liu [38].
2. Whenq — 1~ and p = 1, we find the operator LY f(z) investigated by Attiya [39].

For f € H(p,j) in the form (3), we define the operator £’;,', g’” f as follows:

LYl f(z) = LY  Flz) + LG (2), ®)

where

(o]
E;’f;’”}"(z) =zP + Z Pqa;7,
j=p+1

Lh"G(2) = Y 9o
i=pr
Tg(c+m)T (p+jk)
and i = qutffﬂt) T(o+k)j!"

We define the class HT (8, W, V) using the operator [Zg’f;’” f in (8) as follows:

Definition 3. A multivalent functions f = F + G € H(p,j) is said to be in the class HT g
@W, V) if

Qq(ZD L',p”lf( ) ([l — )1+Wz

o (L @) T T

+79, )

or equivalently

Qq(zﬁ Lo @) [pla+{ OV =V)(Iply = 8) + Viply}=
( PUHf( ) 1+Vz ’

Utilizing of the subordination principle, f € HT p4(0, W, V) if and only if there is a Schwarz
function ¢ such that

D4(204Lyyg" f(2)) _ [plg +{W = V) (Iplg — 8) + VIplg}o(2)

Dq(Lyg" f(2)) 1+Vo(2)

that is
D,(29y E‘W”f(z)) _ [ ]
D, fz)) P

%}m {W=V)(Iplg = 9) +VIplg}

where0 < ¢ < [ply, -1 <V <W <1, and E‘;’/Z’”f(z) is defined in (8).

<1, (10)
%

We also define

HT pq(0,W,V) = HT pq(0, W, V) H(p.))
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Example 1. Ifk = 1,0 =0, and p = 1, the class H'T p,4(8, VW, V) would reduce to the following
subclass HK (8, W, V)

(Z%f (2))

z 1+Wz
(f( ) = ([P]q

1+Vz

—9) +9. (11)

3. A Set of Main Results

To demonstrate the geometric properties for the class H7 4(8, W, V), the necessary
and sufficient condition must first be proved.

Unless otherwise stated, in this paper, we suppose that 0 < ¢ < [p];, -1 <V < W <1
and0 < g <1

Theorem 1. Let f = F +G € H(p,j) in the form (3), then f € HT (8, W, V) if the following
inequality holds:

XA+ V)ala Pl = OV = V) ([l )l
j=p+
YAVl = ) = V=)l — bl P
=P
< (V=W)([plg —9)[plq,
where P, = %

Proof. Suppose that the inequality (12) is correct, it follows from (10) that

1Dy (20, L35 £(2)) — [PlaDg Loy £ ()
— [V, 0255 £(2)) — [V = V) ([P — 8) + VIplDa £ (2)

— 1 Y el — Pl et + X 1oy — [Pl) e |
j=p+1 j=p
1= W=V ([l — B) [Pl
# 3 [=Vila(lla = ) + OV = V) ([l ~ )y
j=p+
£ Y [ Vlilylla — [Pla) + OV = V) (g — )y 7 )
=P
<~ (V= W)([ply — ) [plyl2lP?
+ 3 104 V) la(lla = pla) ~ OV = V)(pla — ) =
j=p+
+ L1+ V) o[ — [Pla) = OV = V)([ply — )1l 121
=P
<—=(V-W)(pls —9)Iplq
Y (AWl — [Pla) — W = V) ([pla — O)]ipglas]
j=p+1

+ 2 (AW [lg([ilg = [plg) = OV = V)([plg — 9)wgld)l,
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thus, we observe
—(V=W)(lplg = )Iply
+ Z [T+ V)[4 ([lg = [plg) = W =V)([plg — 8)]¢pga;
j=p+1
+ 2 A+ W) [lg([ilg = [plg) = OV = V)([plg — 0)]thgd; < 0.
J=pP
Consequently, utilizing the maximum modulus theorem, we obtain
D,(z9y ﬁp‘”’f(z))
> @) Pl 1
Dy(204Lp7" f(2)) '
Voo~ AW = V) ([plg = 8) + Viple}
Therefore, f € HT 4(9, W, V).
For the following harmonic function, the coefficient bound (12) is sharp
(V =W)([plg — 8)Irlq :
) =zF + s 1,7
j >p:+1 TV = ) - V=W, o™
N i (VY =W)(lplg — 8)[plq by
= [AEV)]la([flg = [plg) = W =V)(Iplg = 0)]¢y "

with Y22 v + 252, (vl = 1. O

Whenk =1,0 =0, and p = 1, Theorem 1 becomes

Corollary 1. Let f = F + G € H(p,j) in the form (3), then f € HKp,4(8, W, V) if the following
inequality holds:

(e )

‘21{<1+v>mq<mq—[pm—<w—v><[p1q—z9>>}|aj|

j=p+
£ YA+ V(s = [Ple) = OV = V) ([ply — )}, .
=P

< (V-=W)(Iplq — )[pls-

Next, we prove that the inquality (12) is necessary and sufficient condition for the

class HT pq(8, W, V).

Theorem 2. Let f = F+G € H(p,j) in the form (4). Then the harmonic function f €
HT p,q(0, W, V) if and only if the inequality condition (12) holds.

Proof. Since 77 (8, W, V) C HT pq(8,W,V), then the sufficient condition holds by the
previous Theorem 1. Now, we have to prove just the necessity condition.
Let f € HT p4(8,W,V), from (10) yields

Dg(2D4L " f(2)
q(ﬁPVHf(Z)) [P]q
Dy(zDqLyg"f(2) _ _
v 0,(L077F(2)) {OV =V)(Iplg — 8) + Viply}
- Zf.ozpﬂ g ([l — [P}q)lpﬂ”ﬂzfl - Zf”:pmq([j]q - [P]q)%mjﬁjfl
(V=W)(lplg = 9)[plgzp ™ = T2 1 AglajlzZi = = T2, Agld; 2

7
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where A; = [V[jl4([jlg — [plg) = OV = V)([plg — 9)]¢g-
For z = r < 1, we deduce that
e p+1[J]q([7] [Pl qlajlri =+ 52, [ ([lg — [plg) gld; 1 15)

(V=W)([plg = O)plgr? " — i pra Aglajlri = = X532, Agld;[ri =
When r — 1, if condition (12) is not satisfied, inequality (15) is also not satisfied. In the
range (0,1), we may, thus, identify at least one zg = rq for which the quotient (15) is
greater than 1. This conflicts with the prerequisite for f € H7 4(8, W, V), hence the proof
is complete. O

_Inthe next result, we establish the extreme points of closed convex hulls of the subclass
HT pq(8, WV, V).

Theorem 3. The function f € HT pq(9,W,V) if and only if
flz) = Y (0 F;+ X,G)), (16)

where Fp = zP,

j q i
S (e (7 P P R (P PO A
and
p (V= W)(lplg — 8)[plg o
9= AV = [Pla) — OV =) ([ply = Bgy U = PP L)

with Y2, (8; + X)) = 1,9; > 0, and ¥; > 0.
Particularly, the extreme points of the subclass ﬁTM (8, W, V) are {F;} and {G;}.

Proof. Let f be defined as below

[e0]

F2) = Y (0F; + R,G) = Yo (8 + 8=
j=p j=p
S = W)l ~ Ol
L T P - Vo @)
o V= W)l O
= L TV Ty =Tl = OV =y =

We deduce from (17) and (4) that

ol (V= W) (Iply = ®)lply
N TV [y = ) — 0V = V) ([Pl — Ty

and

|dj| =
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Now
° § [0Vl = ) = OV = V)(ply = Olda
=3 VW) ([, — D),
= [(14 V)l — [plg) — W = V) ((ply — )]ty
; R 4
§30+N —9,=1-9,<1.

Thus, Theorem 2 leads to the result f € HT q(3, W, V).
Conversely: Let f € HT 4(9,W,V), then

' q
= VI~ ) — 07 = V) (g~ Ol

and

| < V= W)(lpls — 9)[plg
— @ EWVIaUlg = [plg) = OV =V)([plg = 9)]¢g
Letting
@Vl llg = Tplg) = W = V) ([plg — 9)] g Dl (=
%= V= W)([ely - O] G U=prlp+a)
and

w, — LAEV)g([flg = [Plg) — OV = V)([plg qud|
J (V=W)(plg — Nlplq

with E;o:p(ﬂj + Nj) =1

We get the result f(z) = ¥7° ,(8;F; + X;G;), after substituting the values of [4;] and |d;|
from the above relations in (4). O

G=pp+1...),

Theorem 4. The subclass HT (8, W, V) is a convex set of the functions f = F +G € H(p, j).
Proof. Let f; € HT pq(9, W, V) given by

fi(Z) = Zp — Z |Lli,]'|Zj — Z ‘d,-,j|z]', (l = 1,2). (18)
j=p+1 j=p

Then, for0 < J <1

J(2) = If1,j(2) + (1 = D f2(2)

[e.9)

=zr- ) (J\al,]«] + (1= T)[az,|) )zl — Z J|d1,j/ +(1 —:l)|d2,j|)zf,
j=p+l j=p
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also belongs to the subclass 7-[Tp,q (3,W, V).
By the result of Theorem 2, we get

[e9)

32 (V= ) = OV =)l )|
+§{<l W)yl = plg) = OV = V) (g — ) He |

+<1—J>{jil{uwnﬂq(mq—[p]> W = V)([ply — )y Has,
+§{<1 W)yl = plg) = OV = V) [y — ) Hea |

<V =W)([plg = 8)[ply) + (1 =DV = W)(Iply — 9)lplg)
= (V=W)(lply = 9)lpls-

Here the subclass H7T ,q(9, W, V) is convex set, because J € HT (8, W, V). O

Theorem 5. We have

EHT pa@W V) ={Fj:j={pp+1.. Y HG:j={p+Lp+2..}}
where
Fp =2z,
o V=W)(Iplq — )Iply :
S 1§ )1 F Ry 7 ) e (19)

|
V=W (lpls — O) y
A V) a{ls = Ple) — OV = V) ([ply — 001y

Proof. Suppose that 0 < J < 1 and
Gi=1A+Q1-Df,

where f1, fo € HT ,q(8, W, V) are defined in (18).
From (12), we obtain

G =

(V=W)([plq — 9)[plq
[+ W) [1q([q = [Plg) = WV = V)([plg — 9)]¢g

and as result, a1, = ap, = Oforn € {p+1,p+2,...} and dy, = dp, = O forn €
{p+Lp+2.. 3\ {j} _

Thus, it follows that G; = f; = fo, hence G; € HT ;4(1, W, V).

Similarly, we can satisfy that the functions F; in (19) are also extreme points of
HT pq(0,W,V).

Now, let the function f in (18) belongs to the extreme points of the class H7T p,4(8, W, V)
and f is not of the form (19).

Then there existsn € {p+1,p +2,...}, such that

dj1] = |dj2| =

a (V= W) ([plg — 8)[Plg

O S IR Ty = o) — 0V = Vol — 9779y -
or (V= W)(Iply — B)Iply

O < S TVl — )~ OV = V) (Tl — 0014 .
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If (20) is satisfied, we have
[ V)l ply) — OV = V)([ply = Opland 1o
: (V= W)y~ Oy ST Eiy
weget0 <1<1,F, #¢ and f =IF, + (1 —1)¢. Hence f ¢ 87?[7',0,,7(19, W, V).
Similarly, if (21) is satisfied, we also have
1 [+ V)[nlg(lnlg — [plg) — W = V)([plg — O)]¢glan] 1 (
(V=W)(lpls — 8)plg B
thus0<J1<1,G, #v,and f = 3G, + (1 — J)v. Hence f ¢ 57-l7'p,q(l9, W,V). O

f=3Gn),

4. Hadamard Product Property
The Hadamard product and the closed under a convex linear combination of the

subclass 7-[Tp,q (9, W, V) are provided in the following results.
The Hadamard product of harmonic functions with negative coefficient is given by

(fxh)(z) =20 — Y |ayjar|2 — Y |dijdo|Z, (22)
j=p+1 j=p
where . .
flz)=2"— ) ‘al,]-|zj -) ]dl,]-lff (23)
j=p+1 j=p
and - -
I’l(Z) = Zp — 2 |a2,]-|zj — Z ’dZ,]|Z] (24)
j=p+1 j=p

Theorem 6. If f,h € ﬁTp,q(ﬂ, W, V), then f xh € ﬁTp,q(ﬁ, W, V).

Proof. Let f,h € HT pq(9, W, V). Since h € HT 4(9, W, V), we find that |a,,| < 1 and
|d2,p| < 1. Then from the Hadamard product f * h, we obtain

é (A4 V)il ) = 09 = V)l — 2l o
+§{<1 Va7l — [Pla) — OV = V) ([ply — )}yl |
< é LA+ V)l = ) = 09 = V) (g = 0) |

+ LA+ V)0~ [Plg) — OV = V)([ply = 8) b
< (V- ;})([P]q —9)[ply-

Hence f xh € HT (0, W,V). O
i~ il |a]-,s|zf D S \d]-,s|2j (s =1,2,...) be in the subclass

Theorem 7. Let fs(z) =z — L2
HT pq(9, W, V). Then the function

T() = flnsfsu), (e >0, )“jl pe=1),
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also belongs to the subclass HT ,q(8, W, V). This means HT p,q(8, W, V) is closed under convex
linear combination.

Proof. Since f; € ﬁTp,q(l?, W, V), then

Y LA+ Wil = [plg) = OV = V)([ply — 0) oy
j=p+1
£ YA+ Va0l = Plg) = OV = V)([ply — 8}l
=P

Now,

T@ =2~ Y (Y nelag)d — Y(3 neldis))2. 25)

j=p+1 s=1 j=p s=1
From (25) and (17), we conclude that

i (T +W){lg([flg = [pla) = OV = V) ([Pl — 9)) } g (i pslaa))

e V=) ([l = O =
+§ {0+ V00l ) [;]sv_vﬁ—) ;})q@p]q 0)}y ol
-% {]_5; | {0+ V0l ) [;]EW;) ;})q([p]q MM, )
+§ (0 V0l ) [;1§V—V19_> ;})q@p]q Dy 1y
<Pa=

Hence, J € 7-77},,,,(19, w, V). O

5. Closure Property

Next, we prove the closure property of the subclass 77 p4(8 W, V) under the
g-Bernardi integral operator for p-valent functions (see [40]), which is given by

[p+wlq

B, f(z) = /0 L (Dot (0 > —p,z € 1), (26)

Definition 4. For f € H(p, ]), we define the q-Bernardi integral operator for p-valent functions
Ih.f : H(p,j) — H(p,j) as follows:

z (e . o
Tiaf(2) :w/ T — ) et — Zdj”]dqt

° et 27)

_o 3y ey, \J—Z p+wad-|2f > —pzel)

[+l e

j=p+1
Then

Thof (2) = T4 F(2) + Th 4G (2). (28)

Theorem 8. If f € ﬁTp,q(l‘}, W, V), then If,,qf € ﬁTM(lS‘, W, V).
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Proof. Since f € 7-[7'p,q(l9, W, V), by Theorem 2, we conclude that

Y (V) — [Pla) — W = V) ([pla — )}l
j=p+1
£ YA+~ [P~ OV =) ([l — bl )
=P

We have to prove

> {0 VIl - ) - OV = V)l - )y Pt

j=p+l
+ LAV~ )~ 00 = V)l - 0w et
=P

< (V=W)([pls = 9)lply,
and we observe that the inequality (30) is correct, if

[p+wlq <1
J+wlg

Since p < j, then the inequality (30) is satisfied, and this yields to the result. [

6. Concluding Remarks

Recently, the g-calculus and its applications have received great attention in several
fields of mathematical and physical sciences (especially quantum physics), as well as an
affirmation of the importance of the Mittag—Leffler function in the structure of fractional
calculus. In this paper, we have introduced the subclass of g-convex harmonic p-valent
functions connected with the g-Mittag—Leffler function. For this harmonic subclass, we
have obtained the necessary and sufficient condition, convex hulls, convex linear combi-
nation, extreme point, and Hadamard product. Finally, this research has investigated the
closure property for this class employing the g-Bernardi integral operator for harmonic
p-valent functions.

The outcomes of this study may be beneficial to investigate several different classes
of univalent (or p-valent) functions connected to various fields, notably those that use the
generalized g-Mittag—Leffler function. Therefore, the findings of this paper can facilitate
new research works in Geometric Function Theory and related subjects, such as differ-
ential subordination notions, the upper bounds of Fekete-Szegt inequality, and Hankel
determinant. For more details on the suggested works, see [33,41,42].

It should be noted that the Fox-Wright hypergeometric function 4% is much more
general than many of the expansions of the Mittag—Leffler function. The survey of the more
complicated and general case of the Srivastava—Wright operator (see [43,44]), defined by
the Fox-Wright function ;Y¥5, is a recent interesting subject in Geometric Function Theory.
Many properties of the Srivastava—Wright operator can be found in several recent works
(see [30,39,45,46]).
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