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Abstract: In this paper, we study the best approximation of a fixed fuzzy-number-valued continuous
function to a subset of fuzzy-number-valued continuous functions. We also introduce a method to
measure the distance between a fuzzy-number-valued continuous function and a real-valued one.
Then, we prove the existence of the best approximation of a fuzzy-number-valued continuous function
to the space of real-valued continuous functions by using the well-known Michael selection theorem.
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1. Introduction

Approximation theory originated from the necessity of approximating real-valued
continuous functions by a simpler class of functions, such as trigonometric or algebraic
polynomials and has attracted the interest of many mathematicians for over a century.
Among the most recognized results in this branch of functional analysis, we can mention
the Stone–Weierstrass theorem, Korovkin type results and the approximation of functions
using neural networks.

More recently, all the above results have also been addressed in the context of fuzzy
functions (see, e.g., [1–6]).

Another fundamental problem in approximation theory is the study of the best ap-
proximation in spaces of continuous functions, which has a long story with famous results
by Chebyshev, Haar, Young, Remez, de la Vallée-Poussin who established the existence
of best approximations, as well as characterized and estimated them. In this context, the
problem of the uniform approximation of a scalar-valued function continuous on a compact
set by a family of continuous functions on such a compact set (see, e.g., [7,8] or [9]) should
be mentioned.

The search for the best approximation of a continuous set-valued function by vector-
valued ones is another important topic in approximation theory and has been studied by
several authors (see, e.g., [10–13] or [14]).

In this paper, we address these two problems of the best approximation type in the
context of fuzzy-number-valued continuous functions.

First, we study the best approximation of a fixed fuzzy-number-valued continuous
function to a subset of fuzzy-number-valued continuous functions.

Second, we introduce a novel method to measure the distance between a fuzzy-
number-valued function and a real-valued one based on the concept of nearest interval
approximation of fuzzy numbers [15]. Then, we prove the existence of the best approxima-
tion of a fuzzy-number-valued continuous function to the space of real-valued continuous
functions by using the well-known Michael selection theorem.
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2. Preliminaries

Let F(R) denote the family of all fuzzy subsets on the real numbers R (see [16]). For
λ ∈ [0, 1] and a fuzzy set u, its λ-level set is defined as

[u]λ := { x ∈ R : u(x) ≥ λ }, λ ∈]0, 1],

and [u]0 stands for the closure of { x ∈ R : u(x) > 0 }.
The family of elements u ∈ F(R) which satisfies the following properties:

1. There exists an x0 ∈ R with u(x0) = 1, that is, u is normal;
2. u(λx + (1− λ)y) ≥ min{u(x), u(y)} for all x, y ∈ R, λ ∈ [0, 1], which is to say that u

is convex;
3. [u]0 is a compact set in R;
4. u is upper-semicontinuous,

is called the fuzzy number space E1 (see, e.g., [17]) and contains the reals. If u ∈ E1, then it
is known that the λ-level set [u]λ of u is a compact interval for each λ ∈ [0, 1]. We write
[u]λ = [u−(λ), u+(λ)].

The following characterization of fuzzy numbers, which was proved by Goetschel and
Voxman [17], is essential in the sequel:

Theorem 1. Let u ∈ E1 and [u]λ = [u−(λ), u+(λ)], λ ∈ [0, 1]. Then, the functions u−(λ) and
u+(λ) satisfy:

1. u+(λ) is a nonincreasing bounded left continuous function on (0, 1];
2. u−(λ) is a nondecreasing bounded left continuous function on (0, 1];
3. u−(1) ≤ u+(1);
4. u−(λ) and u+(λ) are right continuous at λ = 0.

Conversely, if two functions γ(λ) and ν(λ) fulfill the conditions (i)–(iv), then there is a unique
u ∈ E1 such that [u]λ = [γ(λ), ν(λ)] for each λ ∈ [0, 1].

As usual, (see, e.g., [17]) given u, v ∈ E1 and k ∈ R, we define the sum u + v :=
[u−(λ), u+(λ)] + [v−(λ), v+(λ)] and the product ku := k[u−(λ), u+(λ)]. With these two
operations, E1 is not a vector space, and (E1,+) is not even a group.

The fuzzy number space E1 can be endowed with several metrics (see, e.g., [16]) but
perhaps the most used is the following:

Definition 1 ([16,17]). For u, v ∈ E1,

d∞(u, v) := sup
λ∈[0,1]

max
{
|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|

}
.

This metric on E1 is called the supremum metric. Indeed, E1 is a complete metric
space with this metric. Furthermore, if we consider the Euclidean topology on R, it can
be topologically identified with the closed subspace R̃ = { x̃ : x ∈ R } of (E1, d∞) where
x̃+(λ) = x̃−(λ) = x for all λ ∈ [0, 1]. We always assume that E1 is equipped with the
supremum metric.

Proposition 1 ([3] Proposition 2.3). The following properties are satisfied by the metric space
(E1, d∞):

1. d∞(∑m
i=1 ui, ∑m

i=1 vi) ≤ ∑m
i=1 d∞(ui, vi), where ui, vi ∈ E1 for i = 1, ..., m.

2. d∞(ku, kv) = kd∞(u, v), where u, v ∈ E1 and k > 0.
3. d∞(ku, µu) =| k− µ | d∞(u, 0), where u ∈ E1, k ≥ 0 and µ ≥ 0.
4. d∞(ku, µv) ≤| k− µ | d∞(u, 0) + µd∞(u, v), where u, v ∈ E1, k ≥ 0 and µ ≥ 0.
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In C(K,E1), the space of continuous functions defined on the compact Hausdorff
space K which take values in (E1, d∞), we use the following metric:

D( f , g) = sup
t∈K

d∞( f (t), g(t)),

which yields the uniform convergence topology on C(K,E1).
Let us next introduce a useful tool for this section.

Definition 2. Let M be a nonempty subset of C(K,E1). We define

Conv(M) := {ϕ ∈ C(K, [0, 1]) : ϕ f + (1− ϕ)g ∈ M f or all f , g ∈ M}.

Proposition 2 ([3] Proposition 3.2). Let M be a nonempty subset of C(K,E1). Then, we infer:

1. φ ∈ Conv(M) implies that 1− φ ∈ Conv(M).
2. If φ, ϕ ∈ Conv(M), then φ · ϕ ∈ Conv(M).

Definition 3. It is said that M ⊂ C(K, [0, 1]) separates the points of K (or it is point-separating)
if given x, y ∈ K, there exists ψ ∈ M such that ψ(x) 6= ψ(y).

Lemma 1 ([3] Lemma 3.6). Let M ⊆ C(K,E1). If Conv(M) is point-separating, then, given
x0 ∈ K and an open neighborhood N of x0, there is a neighborhood U of x0 contained in N such
that for all 0 < δ < 1

2 , there is ϕ ∈ Conv(M) such that

1. ϕ(t) > 1− δ, for all t ∈ U ;
2. ϕ(t) < δ, for all t /∈ N .

3. Best Approximation for Subspaces of C(K,E1)

Given a metric space (X, d) and a nonempty (closed) subset A of X and given an
element x ∈ X, we can define

d(x, A) = inf
y∈A

d(x, y)

and the problem of the best approximation consists in finding an element yx ∈ A such
that d(x, A) = d(x, yx). Although we focus on the problem of the best approximation in
the space of fuzzy-valued continuous functions endowed with the crisp distance D( f , g)
defined above, it is worth noting that this problem has been studied for fuzzy metric spaces
as well (see, e.g., [18–20]).

In this section, we get a sharper result, by obtaining that the distance is achieved at a
single point.

Definition 4. Let A be a subspace of C(K,E1) and let f ∈ C(K,E1). We define

d( f , A) := inf
g∈A
{sup

x∈K
d∞( f (x), g(x))} = inf

g∈A
{D( f , g)}

dx( f , A) := inf
g∈A
{d∞( f (x), g(x))}

Theorem 2. Let W be a subspace of C(K,E1) and assume that Conv(W) separates points. For
each f ∈ C(K,E1), we have

d( f , W) = dx( f , W)

for some x ∈ K.

Proof. We first show that d( f , W) = supx∈K dx( f , W). It is apparent that d( f , W) ≥
supx∈K dx( f , W) since d( f , W) ≥ dx( f , W) for each x ∈ K. Let us prove that d( f , W) ≤
supx∈K dx( f , W).
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To this end, fix ε > 0. Given x′ ∈ K, we can find fx′ ∈W such that d∞( f (x′), fx′(x′)) <
supx∈K dx( f , W) + ε. We next fix the following open neighborhood of x′:

N(x′) := {t ∈ K : d∞( f (t), fx′(t)) < sup
x∈K

dx( f , W) + ε}.

Take an open neighborhood U(x′) x′ which satisfies the properties in Lemma 1.
Since K is compact, we can find finitely many {x1, . . . , xm} in K such that K ⊂ U(x1)∪

. . . ∪U(xm). Choose δ > 0 such that δ < min(1, ε
km ), where

k := max{D( f , 0), D( f , fx1), ...D( f , fxm)}.

By Lemma 1, we know that there exist φ1, · · · , φm ∈ Conv(W) such that for all i =
1, . . . , m,

(i) φi(t) > 1− δ, for all t ∈ U(xi);
(ii) 0 ≤ φi(t) < δ, i f t /∈ N(xi).

Let us define the functions
ψ1 := φ1,
ψ2 := (1− φ1)φ2,
...
ψm := (1− φ1)(1− φ2) · · · (1− φm−1)φm.

By Proposition 2, we know that ψi ∈ Conv(W) for all i = 1, . . . , m. Next, we claim that

ψ1 + . . . + ψj = 1− (1− φ1)(1− φ2) · · · (1− φj),

j = 1, . . . , m. Indeed, it is clear that

ψ1 + ψ2 = φ1 + (1− φ1)φ2 = 1− (1− φ1) · (1− φ2).

By induction, let us assume that it is true for a certain j ∈ {4, ..., m− 1}. We claim

ψ1 + . . . + ψj + ψj+1 = 1− (1− φ1)(1− φ2) · · · (1− φj)(1− φj+1).

Namely,
ψ1 + . . . + ψj + ψj+1 =

= 1− (1− φ1)(1− φ2) · · · (1− φj) + (1− φ1)(1− φ2) · · · (1− φj)φj+1 =

= 1− (1− φ1)(1− φ2) · · · (1− φj)(1− φj+1),

as was to be checked.
Fix x0 ∈ K. Then, there is some i0 ∈ {1, . . . , m} such that x0 ∈ U(xi0). Hence,

φi0(x0) > 1− δ and consequently,

1 ≥
m

∑
i=1

ψi(x0) = 1− (1− φi0(x0)) ∏
i 6=i0

(1− φi(x0)) > 1− δ.

Furthermore, we clearly infer

ψi(t) < δ for all t /∈ N(xi0), i = 1, . . . , m. (1)

Let
h := ψ1 fx1 + ψ2 fx2 + . . . + ψm fxm . (2)

It seems apparent that

h = φ1 fx1 + (1− φ1)[φ2 fx2 + (1− φ2)[φ3 fx3 + · · ·+ (1− φm−1)[φm fxm · · · ]].
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Therefore, h ∈W since φi ∈ Conv(W) for i = 1, ..., m (see Definition 2).
From Proposition 1, we know that, given x ∈ K,

d∞( f (x), h(x)) ≤ d∞

(
f (x),

m

∑
i=1

ψi(x) f (x)

)
+ d∞

(
m

∑
i=1

ψi(x) f (x), h(x)

)
≤

≤
∣∣∣∣∣1− m

∑
i=1

ψi(x)

∣∣∣∣∣d∞( f (x), 0)) +
m

∑
i=1

ψi(x)d∞( f (x), fxi (x)).

On the one hand, |1−∑m
i=1 ψi(x)|d∞( f (x), 0)) ≤ δD( f , 0) ≤ ε.

On the other hand, let

Ix = {1 ≤ i ≤ m : x ∈ N(xi)}

and
Jx = {1 ≤ i ≤ m : x /∈ N(xi)}.

Then, for all i ∈ Ix, we have

ψi(x)d∞( f (x), fxi (x)) ≤ ψi(x)(sup
x∈K

dx( f , W) + ε) ≤ sup
x∈K

dx( f , W) + ε

and, for all i ∈ J, inequality (1) yields

ψi(x)d∞( f (x), fxi (x)) ≤ δd∞( f (x), fxi (x)) ≤ δD( f , fxi ) ≤ δk.

From the above two paragraphs, we can infer

d∞( f (x), h(x)) ≤ ε + sup
x∈K

dx( f , W) + ε + δkm ≤ sup
x∈K

dx( f , W) + 3ε

and, since x ∈ K is arbitrary,

D( f , h) ≤ sup
x∈K

dx( f , W) + 3ε.

As a consequence, we deduce that

d( f , W) = inf
g∈W
{D( f , g)} ≤ sup

x∈K
d( fx, Wx).

Finally, we can define a continuous function γ : K −→ R as

γ(x) := inf
g∈W
{d∞( f (x), g(x))}.

Since K is compact, we know that γ attains its supremum at some x′ ∈ K. Hence, we
can write d( f , W) = dx′( f , W).

4. Best Approximation with Respect to Real-Valued Continuous Functions

In approximation theory, a natural question is when we can approximate a set-valued
function by continuous real-valued functions. In the classical setting, Cellina’s Theorem [21]
is the fundamental result (see also [22–24]). In this section, we introduce a method to
measure the distance between a fuzzy-number-valued function and a real-valued one. Then,
we prove the existence of the best approximation of a fuzzy-number-valued continuous
functions to the space of real-valued continuous functions.

The first problem is to find a suitable definition for the distance between a fuzzy-
number-valued function and a real-valued one. Following the ideas in [12], we can define a
distance for each level λ ∈ [0, 1].
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Definition 5. Let f ∈ C(K,E1) and let F ∈ C(K). The distance at level λ between f and F can
be defined as

Dλ( f , F) := sup
x∈K

{
sup{|F(x)− t| : t ∈ Iλ := [ f (x)−(λ), f (x)+(λ)]}

}
.

Now, we need to provide how to choose the best level to measure the distance.
Bearing in mind that the intervals Iλ form a nonincreasing family, it implies that the

distances form a nondecreasing family as well, that is,

Dλ( f , F) ≥ Dη( f , F) if 0 ≤ λ ≤ η ≤ 1.

Thus, if we choose

D( f , F) := inf
λ∈[0,1]

Dλ( f , F) = D1( f , F)

we measure the distance at the interval with the minimum length (the core), possibly
single-valued.

If, on the contrary, we choose

D( f , F) := sup
λ∈[0,1]

Dλ( f , F) = D0( f , F)

we get the measurement at the support. As noted in [15], these intervals are not the best to
represent the fuzzy number f (x).

Another choice, more accurate, is to find a level λ which represents an average of the
length of the level intervals (see, e.g., [25–27]).

The function g(λ) = f (x)+(λ)− f (x)−(λ) is a nonincreasing function for each x ∈ K.
Theorem 2.4 in [28] can be applied to get t ∈ [0, 1] and λ ∈ (0, 1) such that∫ 1

0
( f (x)+(λ)− f (x)−(λ))dλ = t · g(λ + 0) + (1− t) · g(λ− 0)

where g(λ + 0) and g(λ − 0) stand for the one-sided limits of g. We choose λx as the
minimum λ satisfying such a condition and taking Iλx := [ f (x)−(λx), f (x)+(λx)], we
can define

D( f , F) := Dλx ( f , F) = sup
x∈K

{
sup
t∈Iλx

{|F(x)− t|}
}

(3)

Definition 6. Let f ∈ C(K,E1). We can define the distance between f and C(K) as

D( f , C(K)) := inf
F∈C(K)

D( f , F).

where D( f , F) is given by (3).

Definition 7. Let f ∈ C(K,E1) and x ∈ K. We can define

rad(x, f ) := inf
α∈R
{sup{|α− β| : β ∈ Iλx}}

It is clear that rad(x, f ) turns out to be the radius of the interval [ f (x)−(λx), f (x)+(λx)].

Definition 8. Let f ∈ C(K,E1). We define the radius of f as

rad( f ) := sup
x∈K

rad(x, f )
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Remark 1. From these definitions we infer easily that

D( f , F) ≥ rad( f )

for all F ∈ C(K). Hence,
D( f , C(K)) ≥ rad( f ).

Theorem 3. Let f ∈ C(K,E1). Then, there exists a function F0 ∈ C(K) such that

D( f , C(K)) = D( f , F0).

Proof. Let us define a map G : K −→ 2R such that, for each x ∈ K,

G(x) := {α ∈ R : Iλx ⊆ [α− rad( f ), α + rad( f )]}

Let us first check that G(x) 6= ∅ for each x ∈ K. We know that

rad(x, f ) := inf
α∈R

sup
β∈Iλx

|α− β| ≤ rad( f ).

Since rad(x, f ) turns out to be the radius of the interval Iλx , it is clear that the center of
this interval belongs to G(x).

It is apparent that G(x) is closed for each x ∈ K since the intervals which appear in its
definition are closed.

Now we take α1, α2 in G(x) and k1, k2 ≥ 0 with k1 + k2 = 1. Then, given α ∈ Iλx ,

|α− (k1α1 + k2α2)| = |α(k1 + k2)− (k1α1 + k2α2)|

≤ k1|α− α1|+ k2|α− α2| ≤ rad( f ),

which shows that G(x) is convex for each x ∈ K.
Next, we shall prove that the map G is lower semicontinuous, that is, we have to check

that the set
O := {x ∈ K : G(x) ∩O 6= ∅}

is open in K for every open set O ⊂ R. To this end, fix x0 ∈ O and take α0 ∈ G(x0) ∩O for
a certain open set O. Let δ0 > 0 such that (α0 − δ0, α0 + δ0) ⊂ O. From the continuity of f
and from the fact that

Iλx0
⊂ [α0 − rad( f ), α0 + rad( f )],

we infer that, given ε > 0, as we have

[α0 − rad( f ), α0 + rad( f )] ⊂ (α0 − rad( f )− ε, α0 + rad( f ) + ε),

there exists an open neighborhood Q(ε) of x0 such that

Iλx ⊂ (α0 − (rad( f ) + ε), α0 + rad( f ) + ε)

for all x ∈ Q(ε). Our goal is to prove that Q(ε) ⊆ O for some ε > 0 to get the openness of
O.

Fix x1 ∈ Q(ε). Since G(x1) 6= ∅, there exists α1 ∈ G(x1). That is,

Iλx1
⊂ [α1 − rad( f ), α1 + rad( f )].

Moreover, we know that

Iλx1
⊂ (α0 − (rad( f ) + ε), α0 + rad( f ) + ε).
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Taking ε > 0 as small as necessary, we can find δ′ < δ0 such that

[α0 − (rad( f ) + ε), α0 + rad( f ) + ε] ∩ [α1 − rad( f ), α1 + rad( f )]

⊂ [(α0 + δ′)− rad( f ), (α0 + δ′) + rad( f )]

and consequently

Iλx1
⊂ [(α0 + δ′)− rad( f ), (α0 + δ′) + rad( f )],

which implies that α0 + δ′ ∈ G(x1) ∩O. Hence, x1 ∈ O, as desired.
Gathering the information we have obtained so far, we know that G is a lower semi-

continuous mapping defined between K and the closed convex subsets of R. Hence, by the
Michael selection theorem [29], we infer that there exists F0 ∈ C(K) such that F0(x) ∈ G(x)
for all x ∈ K.

As a consequence of the above paragraph, we can deduce that

D( f , F0) ≤ rad( f ),

which, combined with the comments before this theorem, yields D( f , F0) = rad( f ) =
D( f , C(K)).

5. Conclusions

In this paper, we addressed two problems of the best approximation type in the
context of fuzzy-number-valued continuous functions: (1) the problem of the uniform
approximation of a fuzzy-number-valued function continuous on a compact set by a family
of continuous functions, continuous on this compact set; and (2) the existence of the best
approximation of a fuzzy-number-valued continuous function to the space of real-valued
continuous functions. We obtained positive results in both cases.
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